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Abstract. A mathematical description of the refractoriness period in neuronal dif-
fusion modeling is given and its moments are explicitly obtained in a form that is
suitable for quantitative evaluations. Then, for the Wiener, Ornstein-Uhlenbeck and
Feller neuronal models, an analysis of the features exhibited by the mean and variance
of the first passage time and of refractoriness period is performed.

1 Introduction
Mathematical descriptions of dead time, or refractoriness, in neuronal modeling have long
traditions dating back at least to mid sixties when special attention was devoted to the
description of the evolution of networks of switching elements whose behavior was meant to
simulate that of physiological neurons via certain rather drastic simplifications [4]. Further-
more, the approach to neural modeling was shown to bear certain strong analogies with the
stochastic description of the input-output features of radioactive particle counters. In such
context, as early as 1948, W. Feller proved that under a suitable formulation all problems
concerning single counters reduce to special instances of the theory of the summation of
random variables. Exploiting the above mentioned analogies, the simplest neural model
may be conceived as a black box possessing the following distinctive features: (i) it is a
threshold element, (ii) its output response consists of pulses of constant amplitude and
width and (iii) there exists a constant dead time. More accurately, one could define this
dead time also as a deterministic function of certain measurable parameters, such as time
or input pulse amplitude, or view it as a stochastic process.

As a first attempt towards a quantitative treatment of the dead time effects in neural
modeling, we look at the input of the neuron as a randomly distributed Poisson-type pulse
train. Its output is then determined by imposing the restriction that following each input
pulse a dead time period is activated during which no further pulses can be produced at
the output. Even for such an oversimplified instance the investigation of the role played by
the dead time in determining the distribution of the output when the input is described by
a given distribution is a very challenging task.

Let τ denote this dead time, i.e. the time interval following every firing during which
the neuron cannot fire again. Let us assume that the net input to the neuron in time
interval (0, T ) is modeled by a sequence of positive pulses of standard strength whose time
of occurrences are Poisson distributed with rate λ > 0. We purpose to determine the
distribution Πn(T, τ) of the output pulses as a function of dead time τ . A rather cumbersome
amount of computations leads one to conclude that the assumed input distribution

Pn(T ) =
(λT )n

n!
e−λ T , T > 0, n = 0, 1, 2, . . .(1)
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generates the following firing distribution valid for all n ≥ 1 (cf. [4]) :

Πn(T, τ) = ϑ[T − (n− 1)τ ]
{

1 − e−λ [T−(n−1)τ ]
n−1∑
k=0

λk [T − (n− 1)τ ]k

k!

}

−ϑ(T − nτ)
[
1 − e−λ (T−nτ)

n∑
k=0

λk (T − nτ)k

k!

]
,(2)

where ϑ(x) denotes the Heaviside unit step function:

ϑ(x) =
{

1, x > 0
0, x ≤ 0.(3)

Although the stated problem has been the object of several investigations (see, for instance,
[8]), a quantitative evaluation of the effect of dead time on the statistical parameters of the
output appears to be still lacking.

In the remaining part of this paper, we shall outline a totally different approach towards
the inclusion of refractoriness in the neuronal model. As in [1] and [2], we model the time
course of the membrane potential by a time-homogeneous diffusion process and then assume
that the firing threshold acts as some kind of elastic boundary characterized by preassigned
reflection and absorption parameters. In other words, we assume that an action potential is
released whenever the process first attains the firing threshold. After the firing, a period of
refractoriness of random duration occurs, at the end of which the process is instantaneously
reset at a fixed state. Then, the subsequent evolution of the action potential proceeds as
before, until the threshold is again reached. A new firing then occurs, followed by a new
period of refractoriness, and so on. Use of the above approach allows one to mimic the
effects of refractoriness for the specified neuronal model.

In order to be able to apply the specified paradigm to the description of neuronal models
in the presence of refractoriness, an investigation of certain general features of diffusion
processes in the presence of an elastic boundary is necessary. This task will be accomplished
in Section 2, where we shall analyze the features of the moments of the random variable
modeling the neuron’s intrinsic refractoriness. In Section 3, a specific analysis will be
provided of three neuronal models based on the Wiener, Ornstein-Uhlenbeck and Feller
diffusion processes, and a comparative discussion of the refractoriness features exhibited by
these models will be performed.

2 Effect of Refractoriness
Let {X(t), t ≥ 0} be a regular, time-homogeneous diffusion process, defined over the interval
I = (r1, r2), characterized by drift and infinitesimal variance A1(x) and A2(x), respectively.
Throughout, we shall assume that Feller conditions on these functions are fulfilled [3]. Let
h(x) and k(x) denote scale function and speed density of X(t):

h(x) = exp
{
−2

∫ x A1(z)
A2(z)

dz

}
, k(x) =

2
A2(x)h(x)

and

H(r1, y] =
∫ y

r1

h(z) dz, K(r1, y] =
∫ y

r1

k(z) dz

scale and speed measures, respectively.
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Figure 1: Illustrating first passage time tx through S (i.e. firing time), neuron’s refractoriness
period δr and first exit time �tx for a single sample path x(t) of X(t). By tx, �tx and δr we have

indicated the appropriate values of Tx, �Tx and Tr, respectively.

We define the random variable “first passage time” (FPT) of X(t) through S (S ∈ I)
with X(0) = x < S:

Tx = inf
t≥0

{t : X(t) ≥ S}, X(0) = x < S.(4)

Then,

g(S, t|x) =
∂

∂t
P (T < t), x < S(5)

is the FPT pdf of X(t) through S conditional upon X(0) = x.
In the neuronal modeling context the state S represents the neuron’s firing threshold

and g(S, t|x) the firing pdf.
More realistically then in past approaches, here we shall assume that after each firing

a period of refractoriness of random duration occurs, during which either the neuron is
completely unable to respond, or it only partially responds to the received stimulations. To
this end, we look at the threshold S as an elastic barrier being ‘partially transparent’, in the
sense that its behavior is intermediate between total absorption and total reflection. The
degree of elasticity of the boundary depends on the choice of two parameters, α (absorbing
coefficient) and β (reflecting coefficient), with α > 0 and β ≥ 0. Hence, p

R
:= β/(α + β)

denotes the reflecting probability at the boundary S, and 1−p
R

= α/(α+β) the absorption
probability at S. We denote by T̂x the random variable describing the “first exit time”
(FET) of X(t) through S if X(0) = x < S, and by ge(S, t|x) its pdf. The random variable
Tr will denote the “refractoriness period” and gr(S, t|S) its pdf. Since T̂x can be viewed
as the sum of random variable Tx describing the first passage time through S (firing time)
and of Tr (see Figure 1) one has:

ge(S, t|x) =
∫ t

0

g(S, τ |x) gr(S, t|S, τ) dτ.(6)
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In the sequel we assume that one of the following cases holds:

(i) r1 is a natural nonattracting boundary and K(r1, y] < +∞;

(ii) r1 is a reflecting boundary or it is an entrance boundary.

Under such assumptions, if x < S the first passage probability P (S|x) from x to S is unity
and the FPT moments tn(S|x0) ≡ E(Tn

x ) are finite and can be iteratively calculated as

tn(S|x) :=
∫ ∞

0

tn g(S, t|x) dt = n

∫ S

x

h(z) dz
∫ z

r1

k(u) tn−1(S|u) du (n = 1, 2, . . . ),(7)

where t0(S|x) = P (S|x) = 1 (cf., for instance, [7]).

Theorem 2.1 Under the assumption (i) or (ii), if α > 0 the first exit time probability

P̂ (S|x) :=
∫ +∞

0

ge(S, t|x) dt (x < S)

is unity.

Proof. We consider separately the cases (i) and (ii).
Case (i) Let P̂ (S1, S|x) (r1 < S1 < x < S) be the first exit time probability through the
elastic boundary S in the presence of an absorbing boundary S1. This is solution of the
differential equation

A1(x)
dψ0(x)
dx

+
A2(x)

2
d2ψ0(x)
dx2

= 0(8)

subject to conditions

lim
x↓S1

ψ0(x) = 0, α lim
x↑S

[
1 − ψ0(x)

] − β lim
x↑S

{
h−1(x)

dψ0(x)
dx

}
= 0.(9)

Since

A1(x)
dψ0(x)
dx

+
A2(x)

2
d2ψ0(x)
dx2

≡ 1
k(x)

d

dx

[
1

h(x)
dψ0(x)
dx

]
(10)

from (8) one has

ψ0(x) = A+B

∫ x

h(z) dz,(11)

where A and B are arbitrary real constants. By imposing boundary conditions (9), one
obtains

P̂ (S1, S|x) =
α

∫ x

S1

h(z) dz

α

∫ S

S1

h(z) dz + β

·(12)

Since r1 is a natural nonattracting boundary one has H(r1, x] = +∞; hence, making use of
(12), one has

P̂ (S|x) := lim
S1↓r1

P̂ (S1, S|x) = 1,
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where the last equality follows by exploiting l’Hospital’s rule.
Case (ii) Let P̂ (S|x) (r1 < x < S) the first exit time probability through the elastic
boundary S in the presence of a reflecting boundary or of an entrance boundary r1. This
is solution of the differential equation (8) subject to conditions:

lim
x↓r1

{
h−1(x)

dψ0(x)
dx

}
= 0, α lim

x↑S

[
1 − ψ0(x)

] − β lim
x↑S

{
h−1(x)

dψ0(x)
dx

}
= 0.(13)

Since (10) holds, from (8) one obtains again the general solution (11). By imposing boundary
conditions (13), one finally has P̂ (S|x) = 1.

Theorem 2.2 Under the assumption (i) or (ii), if α > 0 the first exit time moments
t̂n(S|x) ≡ E(T̂ n

x ) can be iteratively calculated as

t̂n(S|x) :=
∫ ∞

0

tn ge(S, t|x) dt = n

{∫ S

x

h(z) dz
∫ z

r1

k(u) t̂n−1(S|u) du

+
β

α

∫ S

r1

k(u) t̂n−1(S|u) du
}

(n = 1, 2, . . . ; x < S),(14)

where t̂0(S|x) = P̂ (S|x) = 1.

Proof. A derivation of (14) follows from the properties of elastic boundaries. We consider
again separately the cases (i) and (ii).
Case (i) Let t̂n(S1, S|x) (r1 < S1 < x < S) be the first exit time moments through the
elastic boundary S in the presence of an absorbing boundary S1. This is solution of the
differential equation

A1(x)
dψn(x)
dx

+
A2(x)

2
d2ψn(x)
dx2

= −nψn−1(x)(15)

subject to conditions

lim
x↓S1

ψn(x) = 0, α lim
x↑S

ψn(x) + β lim
x↑S

{
h−1(x)

dψn(x)
dx

}
= 0.(16)

The general solution of (15) is

ψn(x) = A+B

∫ x

h(z) dz − n

∫ x

h(z) dz
∫ z

k(u)ψn−1(u) du,(17)

where A and B are arbitrary real constants. By imposing boundary conditions (16), one
has

t̂n(S1, S|x) =
n

α

∫ S

S1

h(z) dz + β

{
β

∫ x

S1

h(z) dz
∫ S

z

k(y) t̂n−1(S1, S|y) dy

+α
[ ∫ x

S1

h(u) du ·
∫ S

x

h(z) dz
∫ z

x

k(y) t̂n−1(S1, S|y) dy

+
∫ S

x

h(u) du ·
∫ x

S1

h(z) dz
∫ x

z

k(y) t̂n−1(S1, S|y) dy
]}

.(18)
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Since r1 is a natural nonattracting boundary and K(r1, y] < +∞, making use of (18) and
by applying l’Hospital’s rule, one has

t̂n(S|x) := lim
S1↓r1

t̂n(S1, S|x) = n

{
β

α

∫ S

r1

k(y) t̂n−1(S|y) dy

+
∫ S

x

h(z) dz
∫ z

x

k(y) t̂n−1(S|y) dy +
∫ S

x

h(u) du ·
∫ x

r1

k(y) t̂n−1(S|y) dy
}
,

that identifies with the the right-hand side of (14).
Case (ii) Let t̂n(S|x) (r1 < x < S) be the first exit time moments through the elastic
boundary S in the presence of a reflecting boundary or of an entrance boundary r1. This
is solution of the differential equation (15) subject to conditions

lim
x↓r1

h−1(x)
dψn(x)
dx

= 0, α lim
x↑S

ψn(x) + β lim
x↑S

{
h−1(x)

dψn(x)
dx

}
= 0.(19)

¿From (15) one obtains again the general solution (17). By imposing boundary conditions
(19), one finally is led to (14).

Note that in the absence of refractoriness, (14) are in agreement with (7). Indeed, if β = 0
one has t̂n(S|x) = tn(S|x). The following remark shows that FET moments t̂n(S|x) are
related to the FPT moments tn(S|x).
Remark 2.1 Under the assumption (i) or (ii), if α > 0 one has

t̂n(S|x) = tn(S|x) + n
β

α

n−1∑
j=0

(
n− 1
j

)
tn−1−j(S|x)

∫ S

r1

k(u) t̂j(S|u) du,(20)

t̂n(S|x) = tn(S|x) + n
β

α

n−1∑
j=0

(
n− 1
j

)
t̂j(S|x)

∫ S

r1

k(u) tn−1−j(S|u) du.(21)

Proof. Making use of (14), relations (20) and (21) immediately follow by induction.

Setting n = 1 in (20) or in (21), one can see that the mean of first exit time is given by

t̂1(S|x) = t1(S|x) +
β

α

∫ S

r1

k(u) du (x < S).(22)

Furthermore, setting n = 2 in (20) and in (21), one can obtain two equivalent expressions
for the second order moment of first exit time:

t̂2(S|x) = t2(S|x) + 2
β

α
t̂1(S|x)

∫ S

r1

k(u) du+ 2
β

α

∫ S

r1

k(u) t1(S|u) du

= t2(S|x) + 2
β

α
t1(S|x)

∫ S

r1

k(u) du+ 2
β

α

∫ S

r1

k(u) t̂1(S|u) du.(23)

Hence, the variance V̂ (S|x) of the first exit time is given by

V̂ (S|x) = V (S|x) +
(
β

α

∫ S

r1

k(u) du
)2

+ 2
β

α

∫ S

r1

k(u) t1(S|u) du,(24)

where V (S|x) denotes the FPT variance.
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Theorem 2.3 Under the assumption (i) or (ii), if α > 0 the refractoriness period is doomed
to end with certainty and its moments can be iteratively calculated as

E(Tn
r ) :=

∫ ∞

0

tn gr(S, t|S) dt = n
β

α

∫ S

r1

k(u) t̂n−1(S|u) du (n = 1, 2, . . . ).(25)

Proof. Integrating both sides of (6) in (0,+∞) one has∫ +∞

0

gr(S, t|S) dt = 1,

implying that the refractoriness period is doomed to end with certainty. Furthermore, from
(6) we also have:

t̂n(S|x) :=
∫ +∞

0

tn ge(S, t|x) dt =
∫ +∞

0

dt tn
∫ t

0

g(S, τ |x) gr(S, t|S, τ) dτ

=
∫ +∞

0

dτ g(S, τ |x)
∫ +∞

τ

tn gr(S, t|S, τ) dt

=
∫ +∞

0

dτ g(S, τ |x)
∫ +∞

0

(τ + ϑ)ngr(S, ϑ|S) dϑ

=
n∑

j=0

(
n

j

)
tn−j(S|x)E

(
T j

r

)
. (n = 1, 2, . . . ).

Hence,

E
(
T n

r

)
= t̂n(S|x) −

n−1∑
j=0

(
n

j

)
tn−j(S|x)E

(
T j

r

)
(n = 1, 2, . . . ).(26)

We now proceed by induction. Setting n = 1 in (26) one sees that E
(
Tr

)
= t̂1(S|x)−t1(S|x).

Hence, on account of (22), (25) holds for n = 1. Furthermore, assuming that (26) hold for
j = 1, 2, . . . , n, the right-hand side of (26) for n+ 1 becomes:

t̂n+1(S|x) −
n∑

j=0

(
n+ 1
j

)
tn+1−j(S|x)E

(
T j

r

)
= t̂n+1(S|x) − tn+1(S|x) − (n+ 1)

β

α

n−1∑
j=0

(
n

j

)
tn−j(S|x)

∫ S

r1

k(u) t̂j(S|u) du

= (n+ 1)
β

α

∫ S

r1

k(u) t̂n(S|u) du,(27)

where the last equality follows from (20). From (26) we note that the left-hand side of (27)
is equal to E

(
T n+1

r

)
. Hence, if (25) holds for an arbitrarily fixed n, it also holds for n+ 1,

which completes the proof.

Comparing (14) and (25) we note that

E(Tn
r ) ≡ lim

x↑S
t̂n(S|x).
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In particular, from (25) the first two moments and the variance of the refractoriness period
are seen to be:

E(Tr) =
β

α

∫ S

r1

k(u) du

E(T 2
r ) = 2

β

α

∫ S

r1

k(u) t1(S|u) du+ 2
(
β

α

∫ S

r1

k(u) du
)2

(28)

V (Tr) = 2
β

α

∫ S

r1

k(u) t1(S|u) du+
(
β

α

∫ S

r1

k(u) du
)2

.

Comparing the first and last of (28) with (22) and (24), we have

t̂1(S|x) = t1(S|x) + E(Tr), V̂ (S|x) = V (S|x) + V (Tr),(29)

i.e. the mean (variance) of first exit time through S starting from x is the sum of the mean
(variance) of first passage time through S starting from x and of the mean (variance) of the
refractoriness period.

3 Analysis of three neuronal models
In order to embody some physiological features of real neurons, several alternative models
have been proposed in the literature (cf, for instance, [5], [6] and references therein). In
this Section we shall investigate the behavior of the refractoriness period for the Wiener,
Ornstein-Uhlenbeck (OU) and Feller neuronal models. We assume that all three neuronal
models are restricted to the same diffusion interval I = [ν,+∞), having set r1 = ν.

t1(S|ρ) E(Tr) E(Tr) E(Tr) E(Tr)
σ2 pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99
10. 3.073451 E+2 6.294544 E+2 5.665090 E+3 5.098581 E+4 5.608439 E+5
20. 7.331871 E+1 9.425701 E+0 8.483131 E+1 7.634818 E+2 8.398300 E+3
30. 3.936016 E+1 2.021650 E+0 1.819485 E+1 1.637537 E+2 1.801290 E+3
40. 2.663797 E+1 8.663807 E−1 7.797426 E+0 7.017684 E+1 7.719452 E+2
50. 2.007160 E+1 4.966112 E−1 4.469501 E+0 4.022551 E+1 4.424806 E+2

100. 8.937578 E+0 1.281821 E−1 1.153639 E+0 1.038275 E+1 1.142103 E+2
200. 4.225259 E+0 4.617762 E−2 4.155986 E−1 3.740387 E+0 4.114426 E+1
300. 2.765483 E+0 2.760995 E−2 2.484895 E−1 2.236406 E+0 2.460046 E+1
400. 2.055224 E+0 1.961207 E−2 1.765086 E−1 1.588577 E+0 1.747435 E+1
500. 1.635207 E+0 1.518666 E−2 1.366799 E−1 1.230119 E+0 1.353131 E+1

Table 1: Wiener model with µ = −0.5 and σ2 = 10 · i, 100 · i (i = 1, 2, . . . , 5), restricted to

I = [ν,+∞) with ν = −80. In the second column we have listed the FPT mean t1(S|ρ) with

S = −50 and � = −70. Instead, in columns three, four, five and six we have respectively listed the

mean of refractoriness period for pR = 0.1, 0.5, 0.9, 0.99.

3.1 Wiener model The Wiener neuronal model is defined as the diffusion process X(t)
characterized by the following drift and infinitesimal variance:

A1(x) = µ A2(x) = σ2, (µ ∈ R, σ > 0),(30)

restricted to I = [ν,+∞), where on the regular boundary x = ν a reflecting condition is
imposed. For such process scale and speed functions are

h(x) = exp
{
−2µx

σ2

}
, k(x) =

2
σ2

exp
{2µx
σ2

}
.
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V (S|ρ) V (Tr) V (Tr) V (Tr) V (Tr)
σ2 pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99
10. 9.254218 E+4 7.681238 E+5 3.544044 E+7 2.629677 E+9 3.148772 E+11
20. 4.970295 E+3 1.310444 E+3 1.819075 E+4 6.818541 E+5 7.161989 E+7
30. 1.390880 E+3 1.385660 E+2 1.541363 E+3 3.770806 E+4 3.364468 E+6
40. 6.265060 E+2 3.874901 E+1 4.027854 E+2 8.002658 E+3 6.297560 E+5
50. 3.519348 E+2 1.638408 E+1 1.652135 E+2 2.925226 E+3 2.101676 E+5

100. 6.821593 E+1 1.804893 E+0 1.742704 E+1 2.526670 E+2 1.463751 E+4
200. 1.506377 E+1 3.008332 E−1 2.861029 E+0 3.818526 E+1 1.958992 E+3
300. 6.426684 E+0 1.168741 E−1 1.106754 E+0 1.440657 E+1 7.086384 E+2
400. 3.542131 E+0 6.147195 E−2 5.809411 E−1 7.471651 E+0 3.597818 E+2
500. 2.239493 E+0 3.778974 E−2 3.567134 E−1 4.555481 E+0 2.165615 E+2

Table 2: For the Wiener model and for the same choices of parameters of Table 1, in the second

column we have listed the FPT variance V (S|�) with S = −50 and � = −70, whereas in columns

three, four, five and six we have respectively listed the variance of refractoriness period for pR =

0.1, 0.5, 0.9, 0.99.

Furthermore, the mean of first passage time is

t1(S|x) =


(S − x) (S + x− 2 ν)

σ2
, µ = 0

S − x

µ
+

σ2

2µ2

[
exp

{
− 2µ (S − ν)

σ2

}
− exp

{
− 2µ (x− ν)

σ2

}]
, µ �= 0.

(31)

For the Wiener model (30) with µ = −0.5, σ2 = 10 · i, 100 · i (i = 1, 2, . . . , 5), restricted
to I = [ν,+∞) with r1 ≡ ν = −80, in the second column of Table 1 and of Table 2 we
have respectively listed the mean t1(S|
) and variance V (S|
), numerically obtained via
(7) with S = −50 and 
 = −70. Note that the FPT mean and variance decrease with
σ2. Being β/α = p

R
/(1 − p

R
), in Table 1 and in Table 2 we have respectively listed the

values of mean and variance of refractoriness period, numerically obtained via (28) for
p

R
= 0.1, 0.5, 0.9, 0.99. We observe that E(Tr) and V (Tr) increase with p

R
for any fixed

σ2.

t1(S|ρ) E(Tr) E(Tr) E(Tr) E(Tr)
σ2 pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99
10. 9.862135 E+3 9.901436 E+41 8.911293 E+42 8.020163 E+43 8.822180 E+44
20. 2.600359 E+2 3.452097 E+20 3.106887 E+21 2.796199 E+22 3.075818 E+23
30. 7.956655 E+1 2.140293 E+13 1.926264 E+14 1.733637 E+15 1.907001 E+16
40. 4.273886 E+1 4.978530 E+9 4.480677 E+10 4.032609 E+11 4.435870 E+12
50. 2.853092 E+1 3.149993 E+7 2.834994 E+8 2.551494 E+9 2.806644 E+10

100. 1.038152 E+1 1.006196 E+3 9.055763 E+3 8.150187 E+4 8.965206 E+5
200. 4.525217 E+0 4.073683 E+0 3.666314 E+1 3.299683 E+2 3.629651 E+3
300. 2.890905 E+0 5.465816 E−1 4.919234 E+0 4.427311 E+1 4.870042 E+2
400. 2.123662 E+0 1.839895 E−1 1.655905 E+0 1.490315 E+1 1.639346 E+2
500. 1.678216 E+0 9.103197 E−2 8.192877 E−1 7.373589 E+0 8.110948 E+1

Table 3: OU model with ϑ = 5, � = −70 and σ2 = 10 · i, 100 · i (i = 1, 2, . . . , 5), restricted to

I = [ν,+∞) with ν = −80. In the second column we have listed the FPT mean t1(S|ρ) with

S = −50, whereas in columns three, four, five and six we have respectively listed the mean of

refractoriness period for pR = 0.1, 0.5, 0.9, 0.99.
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V (S|ρ) V (Tr) V (Tr) V (Tr) V (Tr)
σ2 pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99
10. 9.713857 E+7 9.803844 E+83 7.941114 E+85 6.432302 E+87 7.783086 E+89
20. 6.554937 E+4 1.191697 E+41 9.652749 E+42 7.818727 E+44 9.460659 E+46
30. 5.898427 E+3 4.580854 E+26 3.710492 E+28 3.005498 E+30 3.636653 E+32
40. 1.654790 E+3 2.478576 E+19 2.007647 E+21 1.626194 E+23 1.967694 E+25
50. 7.239524 E+2 9.922473 E+14 8.037191 E+16 6.510124 E+18 7.877250 E+20

100. 9.240940 E+1 1.029849 E+6 8.216362 E+7 6.643966 E+9 8.037646 E+11
200. 1.728177 E+1 4.589508 E+1 1.607888 E+3 1.112524 E+5 1.320047 E+7
300. 7.020488 E+0 2.765114 E+0 4.639613 E+1 2.159884 E+3 2.393706 E+5
400. 3.780330 E+0 6.379705 E−1 8.179088 E+0 2.710374 E+2 2.741284 E+4
500. 2.357829 E+0 2.431146 E−1 2.784683 E+0 7.339088 E+1 6.787980 E+3

Table 4: For the OU model and for the same choices of parameters of Table 3 in the second

column we have listed the FPT variance V (S|�) with S = −50 and � = −70, whereas in columns

three, four, five and six we have respectively listed the variance of refractoriness period for pR =

0.1, 0.5, 0.9, 0.99.

3.2 OU model The OU neuronal model is defined as the diffusion process X(t) charac-
terized by the following drift and infinitesimal variance:

A1(x) = − 1
ϑ

(x− 
), A2 = σ2 (
 ∈ R, σ > 0, ϑ > 0),(32)

restricted to I = [ν,+∞), where on the regular boundary x = ν a reflecting condition is
imposed. For such process the scale and speed functions are

h(x) = exp
{ x2

ϑσ2
− 2 
 x
ϑσ2

}
, k(x) =

2
σ2

exp
{
− x2

ϑσ2
+

2 
 x
ϑσ2

}
.

Furthermore, the mean of first passage time is:

t1(S|x) = ϑ

+∞∑
k=0

2k

(k + 1) (2k + 1)!!

[(
S − 


σ
√
ϑ

)2k+2

−
(
x− 


σ
√
ϑ

)2k+2]

−2 ϑ exp
{
− (ν − 
)2

σ2ϑ

} +∞∑
k=0

2k

(2k + 1)!!

(
ν − 


σ
√
ϑ

)2k+1

×
+∞∑
k=0

1
(2k + 1) k!

[(
S − 


σ
√
ϑ

)2k+1

−
(
x− 


σ
√
ϑ

)2k+1]
.(33)

For the OU model (32) with ϑ = 5, 
 = −70, σ2 = 10 · i, 100 · i (i = 1, 2, . . . , 5), restricted
to I = [ν,+∞) with ν = −80, in the second column of Table 3 and of Table 4 we have
respectively listed the mean t1(S|
) and variance V (S|
), numerically obtained via (7) with
S = −50. Furthermore, in Table 3 and in Table 4 we have also listed the values of mean
and variance of refractoriness period for p

R
= 0.1, 0.5, 0.9, 0.99. Similarly to the case of the

Wiener model, for the OU model the FPT mean and variance decrease with σ2; furthermore,
E(Tr) and V (Tr) increase with p

R
for any fixed σ2.

3.3 Feller model The Feller neuronal model is defined as the diffusion process X(t)
characterized by the following drift and infinitesimal variance:

A1(x) = − 1
ϑ

(x− 
), A2(x) = 2 ξ (x− ν) (
, ν ∈ R, 
 > ν, ϑ > 0, ξ > 0).(34)
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t1(S|ρ) E(Tr) E(Tr) E(Tr) E(Tr)
ξ pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99

0.5 3.768002 E+2 4.103229 E+15 3.692906 E+16 3.323615 E+17 3.655977 E+18
1.0 8.029989 E+1 2.425535 E+7 2.182981 E+8 1.964683 E+9 2.161152 E+10
1.5 4.661249 E+1 4.020549 E+4 3.618494 E+5 3.256645 E+6 3.582309 E+7
2.0 3.470051 E+1 1.573636 E+3 1.416272 E+4 1.274645 E+5 1.402110 E+6
2.5 2.866867 E+1 2.204449 E+2 1.984004 E+3 1.785603 E+4 1.964164 E+5
3.0 2.502681 E+1 5.871921 E+1 5.284729 E+2 4.756256 E+3 5.231882 E+4
3.5 2.258692 E+1 2.264293 E+1 2.037863 E+2 1.834077 E+3 2.017485 E+4
4.0 2.083633 E+1 1.102071 E+1 9.918635 E+1 8.926772 E+2 9.819449 E+3
4.5 1.951789 E+1 6.271095 E+0 5.643986 E+1 5.079587 E+2 5.587546 E+3
5.0 1.848842 E+1 3.983514 E+0 3.585162 E+1 3.226646 E+2 3.549311 E+3

Table 5: Feller model with ϑ = 5, � = −70, ν = −80 and ξ = 0.5 · i (i = 1, 2, . . . , 10). In second

column we have listed the FPT mean t1(S|ρ) with S = −50, whereas in columns three, four, five

and six we have respectively listed the mean of refractoriness period for pR = 0.1, 0.5, 0.9, 0.99.

V (S|ρ) V (Tr) V (Tr) V (Tr) V (Tr)
ξ pR = 0.1 pR = 0.5 pR = 0.9 pR = 0.99

0.5 1.395404 E+5 1.683649 E+31 1.363755 E+33 1.104642 E+35 1.336617 E+37
1.0 6.372482 E+3 5.883257 E+14 4.765411 E+16 3.859980 E+18 4.670576 E+20
1.5 2.241795 E+3 1.620153 E+9 1.309681 E+11 1.060603 E+13 1.283297 E+15
2.0 1.304116 E+3 2.585121 E+6 2.015619 E+8 1.625601 E+10 1.966008 E+12
2.5 9.313963 E+2 6.143569 E+4 4.051826 E+6 3.198777 E+8 3.85908 E+10
3.0 7.390905 E+2 6.492913 E+3 3.066862 E+5 2.286843 E+7 2.739949 E+9
3.5 6.238662 E+2 1.592475 E+3 5.124507 E+4 3.451142 E+6 4.079672 E+8
4.0 5.478171 E+2 6.147816 E+2 1.427634 E+4 8.366949 E+5 9.684436 E+7
4.5 4.940875 E+2 3.064866 E+2 5.588538 E+3 2.795397 E+5 3.144373 E+7
5.0 4.541290 E+2 1.789263 E+2 2.751622 E+3 1.172086 E+5 1.272925 E+7

Table 6: For the Feller model and for the same choices of parameters of Table 5, in the second

column we have listed the FPT variance V (S|�) with S = −50 and � = −70, whereas in columns

three, four, five and six we have respectively listed the variance of refractoriness period for pR =

0.1, 0.5, 0.9, 0.99.

defined in I = [ν,+∞), where x = ν is regular if 
 − ν < ξ ϑ and entrance if 
 − ν ≥ ξ ϑ,
whereas the boundary +∞ is natural. For such process the scale and speed functions are:

h(x) = exp
{ x

ϑ ξ

}(
x− ν

)−(�−ν)/(ϑ ξ)
, k(x) =

1
ξ

exp
{
− x

ϑ ξ

} (
x− ν

)(�−ν)/(ϑ ξ)−1
.

The mean of the firing time can be calculated; for x < S one obtains

t1(S|x) =
ϑ


− ν

[
S − x+

∞∑
k=1

(
1
ϑ

)k (S − ν)k+1 − (x− ν)k+1

k + 1

{ k∏
i=1

(

− ν

ϑ
+ ξ i

)}−1]
.

(35)

For the Feller model (34) with ϑ = 5, 
 = −70, ν = −80, ξ = 0.5 · i (i = 1, 2, . . . , 10), in
the second column of Table 5 and of Table 6 we have respectively listed the mean t1(S|
)
and variance V (S|
), numerically obtained via (7) with S = −50. Note that the FPT mean
and variance decrease with ξ. Furthermore, in Table 5 and in Table 6 we have listed the
values of mean and variance of refractoriness period for p

R
= 0.1, 0.5, 0.9, 0.99. We note

that E(Tr) and V (Tr) increase with p
R

for any fixed ξ.
We conclude by pointing out that the purpose of the present note was to establish

the quantitative foundations to a viable way to include refractoriness in neuronal diffusion



418 A. BUONOCORE, G. ESPOSITO, V. GIORNO AND C. VALERIO

models. Implementation of our approach to data analysis will be the object of future
endeavors.
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cazioni, Università di Napoli Federico II, Via Cintia, Napoli I-80126, Italy
V. Giorno: Dipartimento di Matematica e Informatica, Università di Salerno,
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