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Abstract. A possible explanation for the frequent occurrence of power-law distribu-

tions in biology and elsewhere comes from an analysis of the interplay between random

time evolution and random observation or killing time. If the system population or its

topological parameters grow exponentially with time, and observations on the system

correspond to stopping the evolution at an exponentially distributed random time,

power-law behaviour in one or both tails of the distribution of observed quantities

may result.

We pursue this theme for two speci�c models. The �rst model is a randomly killed

birth-and-death process, with applications to the numbers of genes per gene family

and proteins per protein family, the distribution of taxonomic elements in live taxa,

and other areas. The second model is a randomly growing network, with the state of

a random node (which thus has a random age) observed. For the growing network, we

consider both tree-like networks, appropriate in biological applications, and networks

in which closed loops can appear, which model communication networks and networks

of human sexual interactions.

1 Introduction Distributions exhibiting power-law (or fractal) behaviour in one or both

tails are widespread in biology and elsewhere. Within biology these include various size dis-

tributions and the connectivities of nodes in various networks. Size distributions for which

power-law tail behaviour has been claimed include the numbers of genes per gene family and

proteins per protein family; the number of species per genus; areas burned in wild�res and

the length distribution of terrestial animal species. Some biological networks for which the

distribution of connectivities of nodes are claimed to exhibit power-law behaviour include

protein-protein interactions (proteins being connected if they bind together); food webs and

networks of human sexual contacts.

Other examples just outside the realm of biology are the size distribution of family name

clades1 and of language taxa; and the connectivities of words in languages (`word webs').

In the non-biological world some examples are the size distributions of cities, incomes, sand

particles and World Wide Web �le sizes along with the connectivities of World Wide Web

sites2.

An obvious question to ask is why these phenomena and many others share similarities

in their distributional form: one furthermore in which extremes of size, connectivity etc.

readily occur? For the widespread occurrence of the normal distribution in biology and

2000 Mathematics Subject Classi�cation. 62P10, 90B15, 92D10, 92D20.

Key words and phrases. power-law distributions, random networks, scale-free network.
1In view of this one might expect that the size distribution of haplogroups sharing the same mitochon-

drial DNA would also exhibit power-law behaviour, given that the mechanism through which mtDNA is
transmitted is similar to that through which family names are transmitted.

2Although these last two examples are from outside of biology, their similarity to biological pheneomena

is recognized in the name `internet ecology' used to describe the study of such phenomena.
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elsewhere there is a simple and elegant explanation, based on the de Moivre{Laplace central

limit theorem. It seems natural to ask whether there is a similar explanation for the

widespread occurrence of distributions with power-law tails. We have provided an answer

to this question elsewhere (Reed and Hughes 2002b). The purpose of this paper is to provide

an outline of the theory and to show how it can be applied to explain the phenomenon of

power-law behaviour in some examples from biology.

Put very simply the explanation is that if a process that is growing exponentially in

some loose sense is stopped, or observed after an exponentially distributed time, the state

of the process at the time of stopping or observation will exhibit power-law behaviour in one

or both tails. To illustrate consider the simplest case in which deterministic exponential

growth X(t) = X0e
�t is stopped after an exponentially distributed random time. The

stopped state is �X = X0e
�T where T has an exponential distribution, with parameter �

(say), that is, PrfT > tg = e��t. A simple calculation shows that �X has a density of the

form

f �X(x) = kx��=��1 for x > X0;

a Pareto distribution, exhibiting power-law behaviour over its full range. Reed and Hughes

(2002b) show how this result can be extended to include stochastic processes that are

growing exponentially or geometrically in expectation. Speci�cally in continuous time, if

either geometric Brownian motion or a homogeneous birth-and-death process are stopped

after an exponentially distributed time (i.e. with a constant stopping rate); or in discrete

time, if either a multiplicative process or a Galton{Watson branching process are stopped

after a geometrically distributed number of steps (i.e. with a constant stopping probability),

then the distribution of the resulting stopped state will exhibit power-law behaviour in one

or both tails.

In this article we shall concentrate on models of biological phenomena of the birth-and-

death process type, and show how they can be used to explain the observed power-law

behaviour in the size distributions of gene and protein families and of genera, and in the

distribution of connectivities of nodes in some biological networks.

2 A model for the size distribution of genera and gene and protein families

Consider a genus which begins with one species (or a gene or protein family which begins

with one gene or protein) at time t = 0. Suppose that in time (t; t+h) there is a probability

�h + o(h) that any given species may speciate, giving rise to a new species (or any gene

may mutate and create in addition to replicates of itself, a new gene in the family); and a

probability �h+o(h) that the individual species may go extinct (or a gene alone be selected

out of the genome). Suppose further that all speciations and extinctions are independent.

Under these assumptions, Nt, the number of species in the genus (genes in the family) in

existence at time t follows a homogeneous birth-and death process (see e.g. Bailey 1964)

for which the probability mass function (p.m.f.)

pn(t) = PrfNt = ng(1)

satis�es the di�erential-di�erence equation

d

dt
pn(t) = �(�+ �)npn(t) + �(n� 1)pn�1(t) + �(n+ 1)pn+1(t);(2)

with initial condition

pn(0) = 1 if n = 1; pn(0) = 0 otherwise:
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Now let

�(z; t) =

1X
n=0

pn(t)z
n(3)

be the generating function for Nt. Multiplying both sides of (2) by zn and summing over

n = 0; : : : ;1 yields the partial di�erential equation

�t = (�z � �)(z � 1)�z;(4)

with initial condition

�(z; 0) = z:(5)

This can readily be solved by the method of characteristics (see e.g. Bailey 1964) to yield

�(z; t) =

8>><
>>:

�(1 � z) � (�� �z) exp[�t(� � �)]

�(1 � z) � (�� �z) exp[�t(�� �)]
if � 6= �;

1� (1� z)=[1 + �t(1 � z)]�1 if � = �:

(6)

From this the well-known formulas for the p.m.f. of N(t) can be derived. In the case � 6= �

p0(t) =
�� �e�t(���)

�� �e�t(���)
;(7)

pn(t) =
(�� �)2e�t(���)

[�� �e�t(���)]2

�
�� �e�t(���)

� � �e�t(���)

�n�1

; n � 1:(8)

Since di�erent genera (gene families) will have originated at di�erent times, in order

to obtain the p.m.f. (or generating function) of the unconditional distribution of family

size �N say, the p.m.f. fpn(t)g or the generating function �(z; t) must be integrated with

respect to the distribution of t over genera (gene families). It seems reasonable to assume

that any genus (or gene family) originated when an individual species mutated to a form

so di�erent from others in the genus (gene family) that it could no longer be considered a

member of that genus (gene family). Let us suppose that such radical mutations can occur

in any existing genus (family) in a time interval of length h with probability �h + o(h).

This implies that the number of genera (gene families) follows a Yule process (Yule 1924),

and that the time in existence of any genus will follow a truncated exponential distribution,

the truncation time being the time since the establishment of the �rst genus in the family

(Feigin 1979). Since evolution has been happening for a very long time, this truncation

can essentially be ignored, so that the p.m.f. of the distribution of current genus (or gene

family) size, �N , is

qn = Pr( �N = n) =

Z
1

0

pn(t)�e
��tdt for n = 0; 1; : : :(9)

and its generating function is

��(z) =

Z
1

0

�(z; t)�e��tdt:(10)
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Neither of the integrals in (9) or (10) have simple closed-form expressions. However by

returning to the partial di�erential equation (4), multiplying throughout by �e��t and inte-

grating with respect to t between 0 and1, one arrives at the following ordinary di�erential

equation for ��(z):

(�z � �)(z � 1)
d��

dz
� ���(z) = ��z:(11)

While this can be solved in terms of Lerch's phi function (see Reed and Hughes 2002a),

the form is not particulary useful. However a series solution can be obtained by equating

coeÆcients of powers of z on both sides of (11), yielding the following recursion for the

p.m.f. fqng

(n � 1)�qn�1 � [n(�+ �) + �]qn + (n+ 1)�qn+1 = 0; for n � 2(12)

�(�+ �+ �)q1 + 2�q2 = ��(13)

��q0 + �q1 = 0:(14)

The p.m.f. f~qng of the size of a non-extinct gene family is obtained as

~qn =
qn

1� q0
; n = 1; 2; : : :(15)

2.1 Power-law behaviour in the genus (gene family) size distribution It is shown

in this section that in the case � > �, the distribution of genus size exhibits power-law

behaviour in the upper tail. Consider (from (9) and (8))

qn+1 =

Z
1

0

�e��t(� � �)2e�t(���)

[�� �e�t(���)]2

�
�� �e�t(���)

�� �e�t(���)

�n

dt:(16)

The factor in braces is strictly increasing in t from zero at t = 0, approaching unity as

t!1. E�ecting a change of variable from t to � with

t = (� � �)�1 log[n(1� �=�)=� ];(17)

gives for n!1, �
� � �e�t(���)

�� �e�t(���)

�n

�
n
1�

�

n

on
! e�� ;(18)

so that in (16)

qn+1 �
�

�

�
1�

�

�

�
��=(���)

n�1��=(���)
Z
1

0

e�� ��=(���)d�:(19)

The integral can be evaluated as a gamma function. The important conclusion is that for

large n, the p.m.f. exhibits power-law behaviour i.e.

qn � c1n
�(�=(���)+1);(20)

where

c1 =
�

�

�
1�

�

�

�
��=(���)

�(1 + �=(�� �)):(21)

Thus ~qn will also exhibit asymptotic power-law behaviour with exponent �(�=(� � �) + 1):

For � � �, it can be shown (Reed and Hughes 2002a) that qn does not exhibit exact

power-law behaviour, but rather behaves in a `stretched exponential' form.



POWER-LAW DISTRIBUTIONS FROM EXPONENTIAL PROCESSES 333

2.2 A special case: no extinctions If the extinction rate parameter � is set to zero,

the birth-and-death process reduces to the Yule process and the resulting size distribution

is the eponymous Yule distribution (e.g. Johnson et al. 1993, Sec. 6.10.3) with p.m.f.

qn =
� �
�

� �(�=� + 1)�(n)

�(�=� + n+ 1)
; for n = 1; 2; : : : :(22)

This exhibits power-law behaviour in the upper-tail with exponent �=� + 1 and indeed as

Yule showed, exhibits almost linear behaviour in the log-log plot, over the whole range.

3 Power-law behaviour in evolving biological networks We shall consider various

models for the evolution of a network, in which new nodes enter stochastically. The networks

considered will be what have been termed `scale-free' networks (see the reviews of Albert

and Barab�asi 2002 and Dorogovtsev and Mendes 2002). The basic idea of such networks

is that nodes that are well-connected are more likely to establish new connections than are

nodes that are less well connected. The typical example of such a network is the World-Wide

Web where, when new sites are added to the web, they are more likely to have links to sites

such as Google, Adobe etc. that are already well-connected, than to weakly connected sites.

Existing models of scale-free networks (see Albert and Barab�asi 2002) assume that a new

node is added to the network in each period and it connects to a �xed number of existing

nodes, with the probability of connection to any given existing node being proportional to

that node's current connectivity. We shall consider a model of this type later, but �rst

we consider a simple model, which possibly is more appropriate in biological applications,

which gives rise to a scale-free network with a tree structure. This model will then be

extended to allow for any network structure.

3.1 A model for an evolving tree-structured network Suppose when there are n

nodes in the network, with varying connectivities,3 any node can connect to an external

isolated node, thereby bringing it into the network, with well-connected nodes being more

likely to do this than less well-connected nodes. Speci�cally for a node in the network, with

connectivity ki at time time t, suppose that the probability of it bringing a new node into the

network in the in�nitesimal time interval (t; t + h] is �kih+ o(h). Thus the well-connected

nodes are much more likely to establish a new connection than the less well-connected

nodes. Now denote the number of nodes in the network at time t by N(t) and the number

connected to a speci�c node (call it node �) by K(t). Let pk;n(t) = PrfK(t) = k;N(t) = ng.
Then

pk;n(t + h) = pk�1;n�1(t)�(k � 1)h+ pk;n�1(t)�h
X
i6=�

ki

+pk;n(t)
�
1� �h

nX
i=1

ki

�
+ o(h):(23)

When N(t) = n, we know that
Pn

i=1 ki = 2n � 2, since the system evolves from one in

which
Pn

i=1 ki = 2 when n = 2, and the addition of each new node to the network increases

the sum over connectivities of all nodes by 2. In the limit h ! 0, the recurrence relation

(23) yields the di�erential-di�erence equation

d

dt
pk;n(t) = �(k � 1)pk�1;n�1(t) + �(2n� 4� k)pk;n�1(t) � �(2n� 2)pk;n(t):(24)

3By the `connectivity' of a node, we mean the number of other nodes that are directly linked to it. In

other contexts, this number is called the `valence', the `coordination number', or the `degree'.
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Summing this over n (from 1 to in�nity) yields a di�erential-di�erence equation for the

marginal distribution of K(t):

d

dt
pk(t) = �(k � 1)pk�1(t)� �kpk(t):(25)

This is the equation of a Yule process (Bailey, 1964, p.85) with parameter �. It follows from

standard results that K(t) has a negative binomial distribution with parameters k0 = K(0)

and e��t. In particular with k0 = 1 this reduces to a geometric distribution with

pk(t) = e��t(1� e��t)k�1; for k = 1; 2; : : :(26)

But the connectivities of nodes do not follow a geometric distribution, the reason being that

they will have been present in the network for di�erent lengths of time. To take this factor

into account the distribution (26) must be integrated with respect to the distribution of the

time t that nodes have been in existence.

One can determine this by �rst summing (24) from k from 1 in�nity, to yield an evolution

equation for the marginal distribution of N(t):

d

dt
pn(t) = 2�(n� 2)pn�1(t)� 2�(n � 1)pn(t):(27)

This is the equation of a non-homogeneous birth process with

Prfbirth in (t; t + h] j N(t) = n)g = 2�(n� 1):(28)

From this it follows that the number of new nodes, U(t) = N(t) � n0, connected in (0; t] is

a birth process with immigration and has a negative binomial distribution. Such a process

is an `order statistic' process (see e.g. Feigin 1979), which means that the times of births

since the start of the process have the same joint distribution as those of the order statistics

of a sample of independent identically distributed random variables: in this case of random

variables with a truncated exponential distribution, that is, with p.d.f.

f(t) =
2�e�2�t

1� e�2�T
(29)

where T is the elapsed time since the founding of the network (see Feigin 1979, p. 300). This

means that the time since the introduction of any existing node (say the speci�ed node �)
will have this distribution. Assuming the time T elapsed since the founding of the network,

is large, to a good approximation, the time since the introduction of node � will have an

exponential distribution with p.d.f. f(t) = 2�e�2�t on (0;1).

It follows that the distribution of the connectivity of node � at the current time, will be

given by the state of a Yule process (governed by (25)) after an exponentially distributed

time, that is, the state of an a process growing exponetially in expectation, after an expo-

nentially distributed time. It is not diÆcult to show (by integrating (26) with respect to

the exponential density that the p.m.f. of the connectivity K� of node � is

p�k =
2�(3)�(k)

�(k + 3)
=

4

k(k + 1)(k + 2)
;(30)

a Yule distribution which exhibits power-law behaviour with exponent �3. It is interesting
to note that unlike the Yule distribution in Sec. 2.2, this distribution does not depend on

any parameters. This is one way in which the network can be said to be scale-free.
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A second way of formulating a model for the evolution of a tree-structured network,

which gives the same result as above, is closer to the more familiar model of the evolution

of scale-free networks (Albert and Barab�asi, 2002). However rather than assuming a �xed

number of new nodes is added to the network in every period, assume instead that new

nodes are created in a Yule process at rate 2�, and that any new node will connect to

one of the existing nodes, with probabilities proportional to the current connectivities of

these existing nodes. After some steps this yields an ode for pk(t) the same as (25) and in

consequence a geometric distribution for K(t) the same as (26). Since the Yule process is an

order statistic process it follows that the time elapsed since the introduction of a speci�ed

node � will follow a truncated exponential distribution on (0; T ), again with parameter 2�,

and thence to a good approximation that the distribution of the current connectivity of

node � will follow the Yule distribution (30).

3.2 The evolution of networks where new internal links can be established We

now consider a model for the evolution of more complicated networks, in which any node

can establish a new connection with an exterior, isolated node, as before, and in addition

can establish a new connection with any existing node in the network. Let N(t) and K(t)

denote the number of nodes in the network and the connectivity of a speci�ed node �, say
at time t, as before. In addition let M(t) denote the total number of links in the network,

so that

K(t) +
X
i6=�

K(t) = 2M(t):(31)

A state of the system in which K(t) = k;M(t) = m;N(t) = n will be denoted by (k;m; n)

for brevity. In the in�nitesimal interval (t; t+ h] the following transitions that add one link

to the network can occur:

(k � 1;m� 1; n� 1) ! (k;m; n) [new link from � to external node]

(k;m� 1; n� 1) ! (k;m; n) [new link from node other than �
to external node]

(k � 1;m� 1; n) ! (k;m; n) [new link from � to an existing node]

(k;m� 1; n) ! (k;m; n) [new internal link not involving �]

As before, assume that in the in�nitesimal interval (t; t+h] any existing node i can establish

a new external link with probability �kih + o(h), so that the probabilities associated with

the �rst two transitions are �(k � 1)h+ o(h) and

�
�X
i6=�

ki

�
h+ o(h) = �[2(m� 1)� k)]h+ o(h);

respectively. Assume further that any existing node i can establish a new internal link

with probability �kih + o(h), so that for a transition of the third kind the probability is

�(k � 1)h+ o(h), and for a transition of the fourth kind the probability is

�
�X
i6=�

ki

�
h+ o(h) = �[2(m� 1)� k]h+ o(h):
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With these assumptions we deduce the evolution equation

d

dt
pk;m;n(t) = �(k � 1)pk�1;m�1;n�1(t) + �[2(m� 1)� k]pk;m�1;n�1(t)

+�(k � 1)pk�1;m�1;n(t) + �[2(m� 1)� k]pk;m�1;n(t)

�[�k + �(2m� k) + �k + �(2m� k)]pk;m;n(t):(32)

Summing this over n = 1; 2; : : : and m = 1; 2; : : : yields

d

dt
pk(t) = (� + �)(k � 1)pk�1(t) � (� + �)kpk(t);(33)

which is the same as (25) with � replaced by �+ �. Also summing over k = 1; 2; : : : yields

d

dt
pm;n(t) = 2�(m� 1)pm�1;n�1(t) + 2�(m� 1)pm�1;n(t) � 2(�+ �)mpm;n(t):(34)

The solution of (33) with k0 = 1 yields a geometric distribution for K(t) as before (equation

(26)), but with parameter e�(�+�)t rather than e��t.

To solve (34) de�ne the generating function

�(s; z; t) =

1X
m;n=1

pm;n(t)s
mzn:(35)

Multiplying (34) by smzn and summing overm and n yields the following partial di�erential

equation for �:

�t(s; z; t) = 2s[�sz + �s� (� + �)]�s(s; z; t):(36)

This equation can be solved (with initial condition M(0) =m0;N(0) = n0) by the method

of characteristics to yield

�(s; z; t) = zn0
�

s(� + �)

(� + �)e2(�+�)t + s(�z + �)(1� e2(�+�)t)

�m0

:(37)

It follows that both N(t) and M(t) have negative binomial distributions. In particular

U(t) = N(t) � n0; the number of new nodes established in (0; t] has a negative binomial

distribution with p.m.f.

PrfU(t) = ug =

�
m0 + u� 1

u

�
[p(t)]

m0 [q(t)]
u
; u = 0; 1; : : :(38)

where

p(t) =
�+ �

�e2(�+�)t + �
; q(t) = 1� p(t) =

�(e2(�+�)t � 1)

�e2(�+�)t + �
:(39)

As before it can be shown that U(t) is an order statistic process, in this case with

E(U(t)) =m0

�

� + �

�
e2(�+�)t � 1

�
:(40)

From this using the results of Feigin (1979) it follows that conditional on there being U(t) =

u new nodes established, the times elapsed since establishment of these nodes have the same
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joint distribution as a random sample of size u from the truncated exponential distribution

with p.d.f.

f(t) =
2(�+ �)e�2(�+�)t

1� e�2(�+�)T
;(41)

where T is the elapsed time since the founding of the network. Thus, assuming T large, we

can treat the distribution of the time since establishment of node � as being approximately

exponential with parameter 2(� + �).

As in the previous sub-section, the unconditional distribution of the number of connec-

tions at node � can be obtained by integrating the geometric distribution

pk(t) = e�(�+�)t(1� e�(�+�)t)k�1; for k = 1; 2; : : :(42)

with respect to the exponential density with parameter 2(�+�), yielding the identical Yule

distribution (30) with power-law behaviour with exponent �3. As in previous examples,

the power-law distribution arises as the state of a stochastic process (for K(t)) growing

exponentially in expectation (the Yule process) after an exponentially distributed time.

As in Sec. 3.2 the distribution of conectivities is scale-free. The distributions of the size

N(T ) and total connectivity M(T ) however do depend on model parameters. Speci�cally if

the intial network has n0 = 2 nodes with a single (m0 = 1) link, then N(T ) has a (shifted)

geometric distribution

Pr(N(T ) = n) = p(T )[q(T )]n�2; for n = 2; 3; : : : ;(43)

where p(T ) and q(T ) are given by (39); and M(T ) has a geometric distribution with pa-

rameter e�2(�+�)T , i.e. with p.m.f. (42) but with � + � replaced by 2(�+ �). Thus

E(N(T )) = 2 +
�

�+ �
(e2(�+�)T � 1) and E(M(T )) = e2(�+�)T :(44)

We have obtained similar results for the distribution of connectivities of nodes in the

models of Sec. 3.1 and 3.2. The latter model is more general and seems to provide a

reasonable description for the growth of a network of sexual partners. It may also be

reasonable for food webs and networks of interacting proteins. If so the exponents in the

empirical distributions of connectivities should be close to 3. Estimates cited by Albert and

Barab�asi (2002) are 3.4 for a network of sexual partners; 2.4 for the protein network of the

yeast Saccharomyces cerevisiae; and 1.05 and 1.13 for two food webs. The �rst two are not

too far from the value of 3 derived in the model. Those for the food webs however are very

di�erent, but it should be borne in mind that the food webs are rather small, the largest

having 186 nodes, so there is probably considerable sampling error in the estimates.

4 Other examples and conclusions In this article we have used stochastic models to

explain why certain distributions in biology exhibit power-law behaviour. The explanations

are in a sense special cases of a more general result which predicts power-law tails in distri-

butions which result from stopping an exponentially growing process after an exponentially

distributed time. Reed and Hughes (2002b) give other examples of distributions with power-

law tails which can be explained as the result of this mechanism. These include those of

incomes and human settlement sizes, which can be modelled as growing following geometric

Brownian motion. If the workforce is growing at a �xed rate, or if new settlements are

being created from old in a Yule process, then the time in the workforce of earners, or the

time in existence of settlements, should be approximately exponentially distributed, and
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the resulting distributions should follow power-laws in both tails, as indeed does occur for

empirical distributions of incomes and settlement sizes. Another example is that of internet

�le sizes. The evolution of �le sizes can be modelled as following a discrete multiplicative

process, and assuming the random creation of new �les from old, it can be shown that the

time in existence of �les should be approximately geomtrically distributed. This leads to

a distribution of �le sizes exhibiting power-law behaviour in one or both tails. Large data

sets on WWW �le sizes indicate power-law behaviour does occur at least in the upper tail.

Another example with potential application to biology is that of the distribution of the

size of family name clades. It is assumed that the number of males carrying a family name

follows a Galton{Watson branching process, and that new names arise either randomly

through immigration, or from the random splitting of existing names (e.g. through a spelling

change). With these assumptions it can be shown (Reed and Hughes 2003) that the current

distribution of the size of name clades should exhibit power-law behaviour in the upper tail.4

Indeed it seems that empirical distributions of names follow close to a power law over their

complete range of support. As pointed out in a footnote in the introduction, the mechanism

through which family names are passed on from generation to generation is very similar

to that for the transmisssion of mtDNA. Mutations in mtDNA could also be considered

similar to changes in spelling of names. This would suggest that the sizes of haplogroups

with common mtDNA should have a distribution exhibiting power-law behaviour, at least

in the upper tail. We are not familiar with data which could verify or refute this prediction.

For now we leave it as a prediction and hope that it will be con�rmed and our model

validated.

The authors have elsewhere considered the distribution of the number of taxon ele-

ments that have ever existed, including both currently live and extinct species (Hughes and

Reed 2002) in a model of evolution subject to catastrophic extinction events. Power law

distributions are again obtained.
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