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METHODS FOR NUMERICAL COMPUTATION OF CHARACTERISTIC
ROOTS FOR DELAY DIFFERENTIAL EQUATIONS: EXPERIMENTAL
COMPARISON.

D. BREDA
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ABSTRACT. This paper is a collection of tests about the numerical computation of
characteristic roots for linear delay differential equations (DDEs) with multiple discrete
and distributed delays. Two different approaches are tested, based on the discretization
of the infinitesimal generator of the solution operators semigroup associated to the
DDE and of the solution operator itself. These approaches are implemented using
different numerical techniques such as Runge-Kutta (RK), linear multistep (LMS) and
spectral methods.

1 Introduction Let us consider an m-dimensional linear (or linearized) DDE with mul-
tiple discrete and distributed delays:

—14

k —1s
(1) V(0 = Loylt) + Y Lt —m)+ [ M((e +)d6, ¢ 0
=1 "

where Lg,Ly,... , Ly € C™*™ 7 =7, > ... > 7171 > 79 = 0,1t >ty > 0 and M :
[—t1, —t2] = C™*™ ig a sufficiently smooth function. Without loss of generality we consider
the case where t; = 7, and ty = 7, for some l; and [y varying from 0 to k.

The characteristic equation associated with (1) is

(2) det(A(N) =0

where
k —ts

(3) AN := A — Lo — ZL;e’)‘” — / M(#)erag, N e C
=1 St

The asymptotic stability of the zero solution of (1) is determined by the rightmost root
of (2). In particular the zero solution is asymptotically stable iff this root has negative real
part.

The obvious choice to apply a root-finder for non-linear equations to (2) is not a suitable
one since the roots are very sensitive to perturbations in the coefficients of the characteristic
equation.

Engelborghs, Roose et al. proposed in [6], [7] and [8] a method to compute the rightmost
characteristic roots based on a LMS time integration of (1) in the case M = 0. This solution
operator approach avoids the use of the characteristic equation and compute approxima-
tions of the roots from a large, standard and sparse eigenvalue problem via a logarithmic
transformation.
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Breda, Maset and Vermiglio proposed in [2] and [3] other methods (in the case M # 0
too) which avoids the use of the characteristic equation and they are based on discretizing
the infinitesimal generator associated to the semigroup of solution operators for (1), by
using RK and LMS (backward differentiation formulae, BDF) methods, respectively. As
in [8] the approximations of the roots are eigenvalues of a large sparse matrix, but any
transformation is needed.

Moreover the infinitesimal generator approach is presented in [1] by using spectral tech-
niques and the solution operator approach implemented with RIC and BDF methods in the
single delay case is proposed in [4].

This work collects a number of numerical tests on several DDEs which permits a com-
parison of the performances and an experimental analysis of some computational aspects
of all the above algorithms implemented via MATLAB codes. To this aim, the paper is
not intended to give neither a detailed description (but only a brief-comprehensive one)
nor proofs of convergence of all the methods. For this we refer the interested reader to the
relative references.

The paper is organized as follows. Section 2 gives an introduction about the semigroup
of solution operators and its infinitesimal generator for (1). Section 3 and 4 briefly describe
the numerical methods in the single delay case and their extensions to the multiple and
distributed cases, respectively. Numerical results illustrate the comparison in section 5 and
we conclude in section 6.

2 Solution operator and infinitesimal generator approaches Let X := C' ([—7,0],C™)
equipped with the maximum norm

= ), ¢eX.
[l ll eglfgo]w( ), ¢

It is well-known that the family {T'(¢)}¢>0 of linear bounded operators on the Banach space
X defined by

(4) T(t)p =y, peX

is a Cy-semigroup (see Diekmann, van Gils, Verduyn Lunel and Walther [5]). Here y; is the
function

yi(0) =y (t+86), 6ec[-70]
where y is the solution of (1) with initial data
(5) y(t) = p(t), —r<t<0.

The infinitesimal generator A4 : D (A) — X of the semigroup is the unbounded closed
operator given by:

k
DA ={peX ¢ e Xande(0) = Lop(0)+ Y Lig(—m)+
=1

(6) + / o M(6)p(8)d6}

—t1

(7) Ap =¢', v € D(A)
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Since the characteristic roots of (1) constitute the spectrum o(A) of A, the infinitesimal
generator approach consists in approximating 4 by a matrix and then compute its eigenval-
ues. This is the approach proposed in [1], [2] and [3] using spectral, RK and BDF methods,
respectively.

On the other hand, the spectrum o (7' (t)) of the solution operator T (t) is given by

®) 7 (T (1) \ {0} = e

and so the characteristic roots can be approximated by computing the eigenvalues of a nu-
merical approximation of T'(¢) and then taking the logarithm. This is the solution operator
approach proposed in [4] and [8] using RK and BDF methods, respectively.

3 Single delay case Let us consider the system of DDEs (1) in the case of one fixed,
discrete delay 7:

(9) y'(t) = Loy(t) + Liy(t — 7).

3.1 The solution operator approach: BDF methods For fixed N, N positive inte-
ger, let us consider the constant stepsize mesh 2y on the interval [—7,0]:

Qy={6=—ih|i=0,..,N—1}
h=%

and replace the continuous space X by the discrete space Xy = (C™)9N = C™V,
Applying to (9) a general k-steps (k < N) BDF method we obtain an approximation of
Y1, (0) at time t,, = nh for n € N given by

k-1
Yp = — Z a;B(hLo)ynti—t + hBrB(hLo)L1yn—N

i=0
where
B(z) = (o — frz)
is the stability function of the BDF method. Now let us set for n € N
Yo = (ygay?;_l, .. ,y?;_N_H)T c gmN

as the vector of the approximations of y;, at the grid points of Qy, that is yn—; >~ y¢, (i),
1=0,...,N —1. We can thus write

(10) Y, =SyYno1, neN

where Sy is the mN x mN matrix

—(,l’kle(hL()) Tt —()foB(hL()) @ et @ hﬁkB(hLU)Ll
I, 0 0
SJV = @ T Im
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Applying (10) recursively we obtain
Yn = S]%Y()g neN

that is the discretization of (4) at time ¢ = t,,. Thus from (8), if ;1 € o(Sy) we get an
approximation A of the characteristic root \*

1
/\*:/\:Elnp.

3.2 The solution operator approach: RK methods For fixed N. N positive integer,
let us consider the constant stepsize mesh 25 on the interval [—7, 0]:

Qn :ngl{gn—l—c,‘h |i: 1,... ,S}
(11) 0 :T—nh, n=1,...,N
h:W

0<ep <eg <o <eg=1

and replace the continuous space X by the discrete space Xy = (C™)¥y = C™msN,
Applying to (9) an s-stage RK method (A, b, ¢) such that

e U<y <. ... <es =1,
e A is invertible;
. b:(asl,...,ass)T

(e.g. RADAU-ITA methods satisfy the above conditions) and taking the abscissae ¢y, ..., ¢s
of the RK method as points ¢q,...,¢s in (11) (past values are approximated by past stage
values) we obtain

(12) { Y(n+1) =1,® Un + hA © (Loy(n—H) 4 Lly(n+17N))

yn+1 — Yg(n+1)

T T T
where Y (k1) — (Y1(k+1) -/...,Yg(kﬂ) ) € C*™ is the stage vector at the k-th step and

1, =(1,1,...,1)T € R*. Combining equations (12) leads to:
YO+ = R(hLo)(1sel @ L)Y "™ + hR(hLo)(A @ Ly)y "+ =)

k)

where
R(Z) = (I, - A0 2)7
is the stability function of the RK method used and e; = (0,... ,0, 1)T € R®. Now setting
[y]n = (Y(")T,Y'("_I)T, e ,Y("'H_N)T)T eXn

we get
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where Sy is the msN x msN matrix:

P 0 0 @

Iom @ - (D

‘SN — ]sm (D
0 0 TIim 0

with P = R(hLo)(lsel @ I,,) and Q = hR(hLo)(A @ Ly).
The approximation of the characteristic roots are now obtained from the eigenvalues of
Sy in the same way as in the previous section.

3.3 The infinitesimal generator approach: BDF methods The basic idea is to
discretize (7) approximating the derivatives of the solution for a suitable choice of points
in [—7,0]. In order to do this, for fixed N, N positive integer, let us consider the following
constant stepsize mesh on the interval [—7,0]:

{ Ov={6i=—ith|i=0,... ,N}
h=%
and replace the continuous space X by the discrete space Xy = (C’”)QN = CcmU+N),

By using a k-steps (kK < N) BDF method and the initial condition outlined in (6) we
substitute the derivatives with

k , .
u(0) = Z aju(d — (k- z)h)’ 6cOn\ {60, Brr}

and
u;(e) = Lout(ﬁ) + Llut(ﬂ — JVh), 9 = 90

where u,(6) is the approximated solution at the gridpoints of Qx at time ¢. For the remain-
ing (k — 1) points of the mesh we set

k

1=0

where ~;; are suitable coeflicients determined by preserving the order %k of the method even
for the first (k — 1) points.
We can thus replace (7) by

ué = ANUt

where u; = (ut(HO)T, ut(ﬂl)T, . ,ut(eN)T>T € Xy and Ay is the approximated infinitesi-
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mal generator given by the m(1 + N) x m(1 + N) matrix

Lo 0 - - - - 0 Ly

v10lm yirdm L . YikIm 0
hBk hBL h B

Ye—10Lm . Ve—1kdm 0
— hB ’ hg

W ax=| d @
hﬁk h B

0 2olm cee e awlm
h Bk h Bk

The characteristic roots of (1) are directly approximated by the eigenvalues of Anp.

3.4 The infinitesimal generator approach: RK methods Following the same idea
as in the previous section, for fixed N, N positive integer, let us consider the mesh Qy on
the interval [—7,0]:

QN—{O}UU {9 —¢ch|i=1,...,s}
0, = —nh, n—O L, N -1

(14)

_W
O<er << - <ey=1

and replace the continuous space X by the discrete space Xy = (C™)%~ = Cm1+sN),

First to proceed further we establish some notations. For z € X let
e:= (el (2], [2]5)T e cmUFsN)
where
[2]nt1 := (x(@n — clh)T, coa(l, — csh)T)T eC™ n=0,..., N—-1

and xg = z(6y) € C™.
Moreover let us set

Tpg1 = 2(0y —csh) =2(0p41) € C™, n=0,... N -1

As a discretization of the operator A in (6) and (7) let us consider the m(1 4+ sN) x
m(1l 4+ sN) matrix

. (Lo O - 0 L
(10) AN o ( BN ® Im
where:
w W0 0
119 w W 0
B]V = - .
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is a sN x (14 sN) matrix with w := (wy,...ws)T € R®,
wll .. l”JlS
W = : : € R

Ws1 e Wss

and each w is aligned with the last column of W. The matrix Ay represents a linear
operator Xy — Xy given by

(16) (Anz)o = Loxo + L1y
and
1
(17) [ANZ]nt1 = 7 ((w@In;)xn + (W& ILn)xlnt1), n=0,... ,N—1

The equation (16) gives the derivative at the point #y = 0 and corresponds to the initial
condition outlined in (6). The equations (17) give approximations of the derivative at the
remaining gridpoints of the mesh (14) and correspond to (7). Schemes of discretization can
be obtained by s-stage RK methods of the class RADAU-IIA which satisfy the conditions
described in section 3.2. In this way we obtain w = A7 '1, and W = —A~! where 1, =
(1,..., )T e R".

Again the characteristic roots of (1) are directly approximated by the eigenvalues of Ax.
3.5 The infinitesimal generator approach: spectral methods For fixed N, N pos-
itive integer, let us consider on the interval [—7,0] a mesh Qx = {6;, 7 =10,... ,N} of

distinet points and replace the continuous space X by the discrete space Xy = (C™) =
Cm(1+N).

Let p be the Lagrange interpolant of degree < N of ¢ € X on the mesh Qn:
N
p(8) = 1;(6)¢(6;).
7=0

We substitute the exact derivatives in (7) with the derivatives of the interpolant p on

Qv \ {6}
N
o' (6;) ~ Zz;(e)gp(ej), i=1,...,N

and the exact derivative in 0 by the discretized initial condition outlined in (6)
#'(0) = Lop(0) + Lip(—7).

Thus the discretized infinitesimal generator Ay € C™HNIXmU+N) poqdg

Lo 0 0 Ly
a8) A = lé(?l) li(?l) 15\7—1.(91) le(.Hl)
B6w) BB o Ty(By) Iy(By)
in the simple case we choose g = 0 and 5 = —7.

Once more the eigenvalues of Ay are direct approximations of the characteristic roots

of (1).
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4 Extension to the multiple and distributed delay cases The infinitesimal gener-
ator approach has been extended to the general case (1) for all the methods following the
same approach, i.e. applying an opportune quadrature rule to the distributed terms (e.g.
compsite Newton-Cotes formulae for BDF methods, RK-based formulae for RK methods
and Clenshaw-Curtis formulae for spectral methods) which modifies only the first block-
row of (13), (15) and (18) and repeating the single delay approximant matrix for each delay
interval [—7;, —7—1], { = 1,... , k, in a sparse block-diagonal matrix. Moreover the spectral
approach can be alternatively extended approximating the values at the discrete delays and
at the quadrature nodes by the same Lagrange interpolant used in section 3.5 on a unique
mesh on the whole delay interval [—7,0]. Differently from the previous extension, this one
leads to a non-sparse matrix. See [3], [2] and [1] for details.

The solution operator approach has not been extended yet to the general case (1).

We remark that for the implementation of the spectral methods we tested both Cheby-
shev (extremal points) and equispaced meshes.

5 Numerical results Table 1 resumes the relevant characteristics of the MATLAB codes
which implement all the methods presented in this work.

MATLAB code SBDF.m ABDF.m
theoretical approach solution operator | infinitesimal generator
numerical method BDF (order 5) BDF (order 5)
eigenvalue solver sparse sparse
DDE class single delay general case
quadrature - Newton-Cotes
MATLAB code SRK.m ARK.m
theoretical approach solution operator | infinitesimal generator
numerical method RK (order 5) RK (order 5)
eigenvalue solver sparse sparse
DDE class single delay general case
quadrature - RK based
MATILAB code ASPEQ.m ASPCC.m NASPCC.m
theoretical approach infinitesimal generator | infinitesimal generator | infinitesimal generator
numerical method spectral spectral piecewise-spectral
eigenvalue solver standard standard sparse
DDE class general case general case general case
quadrature Clenshaw-Curtis Clenshaw-Curtis Clenshaw-Curtis
mesh type equispaced Chebyshew Chebyshew

In this section we present results about the following DDEs:
(19) y'(t) = (2 — e ")y(t) +y(t—1)
with exact rightmost root A = 2,

{ y1(t) = —0.5y1(t) — tanh(y1 (t — 1.57)) + tanh(y2(t — 0.2))

(20) yh(t) = —0.5y2(t) + 2.34tanh(y1(t — 0.2)) — tanh(y2(t — 1.57)).

linearized around the steady state solution (y¥,y5) = (0,0), taken from [7], with rightmost
root A = 0.347481725726297 computed with a tolerance of 10715 and

: ’ -3 1 1 0
@) v = (—24.646 —35.43()) y(t)+(2.356 —2.004)”“1)+

0% 72 25 10
* ./71 (0 0'5> yt(a)dﬁ—l—./fo.:s <0 1> yt(a)da.

taken from [9], with rightmost root A = —1.246238124592043 computed with a tolerance of
10712,
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A first comparison of the algorithms is carried out in Figure 1 for the computation of the
rightmost root of the single delay equation (19). On the left figure, BDF and RK methods
show linear convergence (i.e. err = O(N?) with p = 5 the oder of the method) of the
computed root to the exact one, while spectral methods show superlinear convergence (i.e.
err = O(N~N)). Convergence is proved also for equispaced grids (see [1]). In fact, we
are approximating the spectrum of eigenvalues (i.e. the exponential function) and not the
solution of the equation. Anyway the test clears out the presence of numerical instability
(typical of equispaced mesh), in particular the right figure shows how the (numerically
estimated) conditioning number condo(A, N) relative to the computation of the rightmost
eigenvalue of the approximant matrix grows very rapidly for N > 10. Thus, as well-known
in many other numerical applications, equispaced grids are to be avoided while Chebyshev
grids are the best-performing (see for example Trefethen, [10]).

—— AsPCC

log, (err)

Figure 1: rightmost root error err and conditioning number conds (A, N) of the rightmost
eigenvalue of the approximant matrix vs N for system (19).

A deeper comparison is carried out in Figure 2 and 3 for system (20). The infinitesimal
generator approach with spectral methods requires the least computational time to match
a desired tolerance on the rightmost root (Figure 2, 2nd column). The other approaches are
still competitive for lower tolerances. Same conclusions hold in terms of discretization index
and approximant matrix dimension (Figure 2, 3rd and 4th columns). The error increases
with the modulus of the computed root when more than one root is required (Figure 3,
1st column: the curves correspond in ascending order to A ~ —0.081167, A\ ~ 0.34748,
A~ —0.43412 + 1.6275¢ and A ~ —0.82062 + 5.1118¢) and this accentuates the lag of
performance between ASPCC.m, NASPCC.m and the other algorithms.

Figure 4 analyzes system (21) which involves two distributed terms. Tests on the com-
putation of the rightmost root confirm the results obtained for system (20) apart from
ASPCC.m for which the presence of integral terms, and consequently the use of a quadra-
ture rule, heavily increases the computational time required to match a given tolerance
(Figure 4, 2nd column). This is due to computation of the Lagrange coefficients at the
quadrature nodes since these are not necessarily included in the mesh. This is overcame
with NASPCC.m by using independent mesh and Lagrange interpolant for each delay
interval (i.e. piecewise interpolation): in this way quadrature nodes and gridpoints always
coincide and any Lagrange coefficient has to be computed.

6 Conclusions In this paper we presented a collection of numerical tests on the compu-
tation of characteristic roots for system of DDEs. In particular we briefly described, in the
single delay case, two different theoretical approaches (the solution operator integration and
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ASPCC ARK
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—15

Figure 3: first 6 rightmost roots computation analysis for system (20).
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Figure 2: rightmost root computation analysis for system (20).
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Figure 4: rightmost root computation analysis for system (21).

the infinitesimal generator approximation) implemented by different numerical techniques,
namely BDF, RK and spectral methods.

ent

All the resulting algorithms are proved to be convergent via the tests carried out on differ-

systems of DDEs. The codes used in MATLAB exploits, wherever possible, the sparse-

ness of the approximant matrices, thus to sensibly reduce the computational time. The
results seem to privilege the infinitesimal generator approach implemented with piecewise-
spectral methods on Chebyshev points even if BDF and RK methods are still competitive
in terms of computational time for low tolerances.

Future work concerning the extensions to neutral DDEs and PDEs with delay will thus

focus on the use of spectral methods more than other techniques.
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