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NON-ABSOLUTE MULTIPLE INTEGRAL DEFINED CONSTRUCTIVELY
ON THE EUCLIDEAN SPACE AND ITERATED INTEGRAL
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Abstract. In this paper, we propose a non-absolute multiple integration in Euclidean
spaces defined constructively, and show that the integral is obtained as the iterated
integral of one-dimensional integral. The integral is defined as an extension of the
special Denjoy integral to higher dimensions.

In [1], 1955, we have published a few constructive definitions which characterize the spe-
cial Denjoy integral to investigate multidimensional generalizations of the special Denjoy
integral (cf. [2]). In this paper, we propose a non-absolute multiple integration in mul-
tidimensional Euclidean spaces. The integral is defined as an extension of one definition
chosen from among some other definitions for the spacial Denjoy integral shown in [1]([1,
Theorems 3 and 4]) to higher dimensions. In this paper, we shall show that the multiple
integral is obtained as the iterated integral of one dimensional integral which is equivalent
to the special Denjoy integral.

Let En be the n-dimensional Euclidean space. Given a system of 2n real numbers
a1, b1; a2, b2; . . . ; an, bn with ai < bi for i = 1, 2, . . . , n, the set {(x1, x2, . . . , xn) :
ai ≤ xi ≤ bi for i = 1, 2, . . . , n} is called an interval in En. A finite system of intervals
Ii (i = 1, 2, . . . , i0) in En is called an elementary system if Ii ∩ Ii0 = ∅ for i 6= i0,
sometimes it is denoted by S : {Ii(i = 1, 2, . . . , i0)}. µn denoted the Lebesgue measure
on En. Sometimes, the Lebesgue measure of an interval I in En is denoted by |I| and for
an elementary system S : {Ii(i = 1, 2, . . . , i0)}, S denotes the set ∪i0i=1Ii, |S| denotes
the measure

Pi0
i=1 |Ii|, and when F (I) is a finitely additive interval function on an interval

in En containing S : {Ii(i = 1, 2, . . . , i0)}, F (S) denotes
Pi0

i=1 F (Ii). N denotes the set
{1, 2, . . . }. Measure means Lebesgue measure. The Lebesgue integral of a function f(p)
on a set E in En is denoted by (L)

R
E f(p)dp or (L)

RR
. . .

R
E f(x1, . . . , xn)d(x1, . . . , xn).

We refer to S.Saks [4] for the terminology and the propositions concerning points of
density for a set etc.
For a set A ⊂ En, A denotes the closure of A in En, and A

◦ the interior of A in En.
Sometimes, for an elementary S : {Ii(i = 1, 2, . . . , i0)}, the interior of the set ∪i0i=1Ii is
denoted by S◦.

Definition 1. Let R0 be an interval in the n0-dimensional Euclidean space En and f(p)
a measureable function defined on R0. The function f(p) is said to be (D0) integrable on
R0 if there exist a finitely additive interval function F (I) defined on R0, a nondecreasing
sequence of measureable sets Mn (n = 1, 2, . . . ) such that Mn ⊂ R0 and ∪∞n=1Mn = R0,
and a nondecreasing sequence of closed sets Fn (n = 1, 2, . . . ) such that Fn ⊂ Mn and
µn0(R0 − ∪∞n=1Fn) = 0, satisfying the following conditions (1) and (2):
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(1) f(p) is Lebesgue integrable on Fn for each n ∈ N ;
(2) Given any n ∈ N and a number ε > 0, there exists a number δ(n, ε) > 0 for which

the following holds: if Ii (n = 1, 2, . . . , i0) is an elementary system in R0 such that

(2.1) Ii ∩Mn 6= ∅ for i = 1, 2, . . . , i0;
(2.2) µn0(∪i0i=1Ii −Mn) < δ(n, ε),

then the following inequality holds:¯̄̄̄
¯
i0X
i=1

F (Ii)−
i0X
i=1

(L)

Z
Ii∩Fn

f(p)dp

¯̄̄̄
¯ < ε.

In this case, F (R0) is called the (D0) integral of f(p) onR0, and it is denoted by (D0)
R
R0
f(p)dp

or (D0)
RR
. . .

R
R0
f(x1, . . . , xn0)d(x1, . . . , xn0). Further, the sequenceMn(n = 1, 2, . . . )

is called a characteristic sequence of the (D0) integral and the sequence Fn (n = 1, 2, . . . )
is called a fundamental sequence of the (D0) integral.
We remark that in Definition 1 we can suppose that δ(n, ε) has the following property:

δ(n, ε) ≥ δ(m, ε) for m > n and δ(n, ε) ≥ δ(n, ε0) for ε > ε0.

The following Propositions 1-3 follow immediately from the definition of (D0) integral.

Proposition 1. If a function f(p) is (D0) integrable on an interval R0 in En0 , then
f(p) is (D0) integrable on any sub-interval R of R0, and if F (I) is the interval function
indicated in the definition of (D0) integral of f(p), F (R) is the (D0) integral of f(p) on R.

Proposition 2. When f(p) and f∗(p) are functions defined on an interval R0 in En0
such that f(p) = f∗(p) almost everywhere on R0, f(p) is (D0) integrable on R0 if and only
if f∗(p) is (D0) integrable on R0, and the (D0) integrals of f(p) and f∗(p) on R0 coincide.

Proposition 3. If f(p) and g(p) are (D0) integrable functions on an interval R0 in En0 ,
then the function αf(p)+βg(p), where α, β are real numbers, is (D0) integrable on R0 and
(D0)

R
R0
(αf(p) + βg(p))dp = α(D0)

R
R0
f(p)dp+ β(D0)

R
R0
g(p)dp.

Proposition 4. When f(p) is a function defined on an interval I0 in the one-dimensional
Euclidean space, the function f(p) is (D0) integrable on I0 if and only if it is special Denjoy
integrable on I0, and both integrals on I0 coincide.

Proof. This follows from Theorems 3 and 4 in [1, pp. 82-83].

Proposition 5. Let f(p) be a (D0) integrable function on an interval R0 in En0 , and
let F (I) = (D0)

R
I
f(p)dp for an interval I in R0. Then, if Ij(j = 1, 2, . . . ) is a decreasing

sequence of intervals in R0 such that limj→∞ µn0(Ij) = 0, then limj→∞ F (Ij) = 0.
This follows from that there exist a point p ∈ ∩∞j=1Ij and an n ∈ N such that p ∈ Mn,

as an immediate consequence of the definition of (D0) integral.

Throughout this paper, R0 denotes an interval in the n0-dimensional Euclidean space
En0 . When f(p) is a (D0) integrable function on R0, F (I) denotes the interval function
indicated in the definition of (D0) integral of f(p) in R0, Mn (n = 1, 2, . . . ) and Fn (n =
1, 2, . . . ) denote the characteristic and fundamental sequences of (D0)-integral for f(p)
in R0, respectively, and δ(n, ε) denotes the positive number indicated in the definition of
(D0)-integral of f(p) in R0, corresponding to n ∈ N and ε > 0.

Lemma 1. Let R0 be an interval in En0 and f(p) a (D0) integrable function on R0.
Then, given any n ∈ N and a number ε > 0, if Ii (i = 1, 2, . . . , i0) is an elementary
system in R0 such that
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(2.1∗) Ii ∩Mn 6= ∅ for i = 1, 2, . . . , i0;
(2.2∗) µn0(∪i0i=1Ii) < δ(n, ε),

then the following inequality holds:¯̄̄̄
¯
i0X
i=1

F (Ii)−
i0X
i=1

(L)

Z
Ii∩Fn

f(p)dp

¯̄̄̄
¯ < λn0ε,

where λn0 is a positive number depending only on the dimension of the space En0 . In
particular λ2 = 4.
The proof follows easily from the definition of (D0) integral.

For sets A and B such that A ⊂ En1 and B ⊂ En2 , A × B denotes the product set of
A and B. When the space En is the product space En = En1 ×En2 of En1 and En2 and A
is a sub-set of En, proj

En1

x(A) denotes the projection of the set A on En1 and proj
En2

y(A) the

projection of the set A on En2 . In particular, when n = 2 and n1 = n2 = 1, proj
En1

x(A) is

denoted by projx(A), and proj
En2

y(A) is denoted by projy(A). When A ⊂ En, we denote: for
a point p ∈ En1 , the set {(p, q) : (p, q) ∈ A, q ∈ En2} by Ap; for a point q ∈ En2 , the set
{(p, q) : (p, q) ∈ A, p ∈ En1} by Aq.
An elementary system S : Ii (i = 1, 2, . . . , i0) in En is called a (*)-elementary system

if

proj
En−1

y(I1) = proj
En−1

y(I2) = . . . = proj
En−1

y(Ii0).

An elementary system S is called a (**)-elementary system if it is composed of finite (*)-
elementary systems Sl (l = 1, 2, . . . , l0) such that

proj
En−1

y(Sl) ∩ proj
En−1

y(Sl0) = ∅ for l 6= l0.

Let f(p) be a (D0) integrable function on an interval R0 in En0 . For n ∈ N and ε > 0,
let η(n, ε) be a positive number such that

if µn0(E) < η(n, ε), then (L)

Z
E∩Fn

|f(p)|dp < ε. (1◦)

Without loss of generality, we can suppose that

η(n, ε) ≥ η(m, ε) for m > n and η(n, ε) ≥ η(n, ε0) for ε > ε0.

Throughout this paper, let εn (n = 1, 2, . . . ) be a sequence of positive numbers such
that

εn ↓ 0 and
∞X

m=n+1

εm ≤ εn for each n ∈ N, (2◦)

and let ε∗n (n = 1, 2, . . . ) be the nonincreasing sequence defined by
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ε∗n = min(δ(n, εn/2
n+5), η(n, εn/2

n+5)) for each n ∈ N. (3◦)

Without loss of generality, we can suppose that ε∗n ↓ 0.
Let J be an interval in the one-dimensional Eucidean space E1 and An (n = 1, 2, . . . )

a nondecreasing sequence of closed sets in E1 such that ∪∞n=1An = J. Then, we say that
a non-empty closed set Fnm in E1, where n < m, has the property (B1) for n < m in J
associated with An (n = 1, 2, . . . ) and ε∗n (n = 1, 2, . . . ) if it has the following property
(B1):
(B1): (1) Fnm ⊂ J and Fnm ⊂ Am;
(2) Denote the sequence of intervals contiguous to the set consisting of the set Fnm and

the both end-points of J by Jj (j = 1, 2, . . . ). Then, Jj (j = 1, 2, . . . ) are classified
into m − n + 1 parts written Jkj (j = 1, 2, . . . )(possibly empty or finite), where k =
n, n+ 1, n+ 2, . . . , m, so that

1)
P∞

j=1 |Jkj | < ε∗k;

2) (Jkj)
◦ ∩ Ak = ∅ for every j ∈ N ;

3) one at least of the end-points of the interval Jkj belongs to Ak for each j ∈ N.

In this case, the point taken as one at least of the end-points of Jkj in 3) is called the
characteristic point of Jkj and the number k is called the characteristic number of Jkj .

First let us apply Lemma 2 in [1, p. 72; 3, p. 2] for the interval R0 in En0 (n0 > 1),
the sequence of closed sets Mn (n = 1, 2, . . . ) and the sequence of positive numbers
ε∗n (n = 1, 2, . . . ). Then, the following statement (I) holds.
(I) There exist two increasing sequences of positive integers

ni and mi (i = 1, 2, . . . ) such that i < ni and ni < mi < ni+1 (4◦)

and a nondecreasing sequence of non-empty closed sets

Fnimi (i = 1, 2, . . . )

having the following properties (1) and (2):

(1) Fnimi
⊂ R0 and Fnimi

⊂Mmi
for every i ∈ N ;

(2) Let us put

Y = ∪∞i=1 proj
En0−1

y(Fnimi) and Z = proj
En0−1

y(R0)− Y. (5◦)

Then

(a) µn0−1(Z) = 0;
(b) for each q ∈ Y and i ∈ N, if (Fnimi)

q 6= ∅, then the closed set (Fnimi)
q has the

property (B1) for ni < mi in (R0)
q associated with (Mn)

q (n = 1, 2, . . . ) and ε∗n (n =
1, 2, . . . ); and

(c) ∪∞i=1(Fnimi)
q = (R0)

q holds for each q ∈ Y.
Next, corresponding to each point
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q ∈ Z(= proj
En0−1

y(R0)− ∪∞i=1 proj
En0−1

y(Fnimi
)),

let us apply Lemma 1 in [1, p. 72; 3, p. 2] for the interval (R0)
q, the sequence of closed sets

(Mn)
q (n = 1, 2, . . . ) and the sequence ε∗n (n = 1, 2, . . . ). Then, the following statement

(II) holds.
(II) There exist two increasing sequences of positive integers
ni(q) and mi(q)(i = 1, 2, . . . ) such that i < ni(q) and ni(q) < mi(q) < ni+1(q)

and a nondecreasing sequence of non-empty closed sets

Fni(q)mi(q) (i = 1, 2, . . . )

such that:

(1) Each Fni(q)mi(q) has the property (B1) for ni(q) < mi(q) in (R0)
q associated with

(Mn)
q (n = 1, 2, . . . ) and ε∗n (n = 1, 2, . . . ); and

(2) ∪∞i=1Fni(q)mi(q) = (R0)
q holds.

We remark that, in what follows, an empty set is considered as a closed set.

Lemma 2. If f(p) is a (D0) integrable function on an interval R0 in En0 (n0 > 1), then
there exists a nondecreasing sequence of measureable sets Bh (h = 1, 2, . . . )(the first finite
sets may be empty) such that

(1) Bh ↑ R0; and
(2) for every h ∈ N, the set (Bh)q is a closed set for each q ∈ proj

En0−1
y(Bh),

in such a way that the following statement holds:

Corresponding to h, ε with h ∈ N and ε > 0, there exists a number ρ(h, ε) > 0 such
that:
Given a number ε > 0, suppose that, for some h ∈ N, a (**)-elementary system S

consisting of (*)-elementary systems Sl (l = 1, 2, . . . , l0), where for each l

Sl is a (*)-elementary system consisting of intervals written

Ilj (j = 1, 2, . . . , j0(l)),

satisfies the following conditions:

(a) For each l ∈ {1, 2, . . . , l0}, there exists a ql ∈ proj
En0−1

y(Sl) ∩ proj
En0−1

y(Bh) such that

(Ilj)
ql ∩ (Bh)ql 6= ∅ for every j ∈ {1, 2, . . . , j0(l)};
(b) | proj

En0−1
y(S)| < ρ(h, ε).

Then, the following inequality holds:

|F (S)| < ε.

Proof. For simplicity, we prove only for the case of n0 = 2 and R0 = [0, 1; 0, 1]. Denote
ql taken in the assumption (a) of the lemma by yl.

Let
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ni, mi and Fnimi (i = 1, 2, . . . )

be the two sequences of positive integers and the sequence of non-empty closed sets indicated
in (I) above.

Corresponding to each h ∈ N, if there exists an mi with mi ≤ h, denote

by i(h) the greatest integer i for which mi ≤ h. (6◦)

Given k ∈ N, since mi ≤ mk for i ≤ k, we have i(mk) = k by (4
◦). So

Fnkmk
= Fni(mk)

mi(mk)
. (7◦)

Put, as in (I)

Z = proj y(R0)− ∪∞i=1 proj y(Fnimi
).

For every y ∈ Z, let ni(y), mi(y) and Fni(y)mi(y) (i = 1, 2, . . . ) be the two sequences
of positive integers and the sequence of non-empty closed sets indicated in (II) above.
Corresponding to h ∈ N, if there exists an mi(y) with mi(y) ≤ h, denote

by i(y, h) the greatest integer i for which mi(y) ≤ h. (8◦)

As easily seen, i(h) ≤ i(h+ 1) and i(y, h) ≤ i(y, h+ 1).
Given an h ∈ N, put
Bh = Fni(h)mi(h)

∪ (∪∗y∈ZFni(y,h)(y)mi(y,h)(y)) when i(h) is definable;

Bh = ∪∗y∈ZFni(y,h)(y)mi(y,h)(y) for the other case, (9◦)

where the union ∪∗y∈Z is over all y ∈ Z for which i(y, h) is definable. Then, Bh (h =
1, 2, . . . ) is a nondecreasing sequence of measurable sets (the first finite sets may be
empty) whose union is R0 and (Bh)

y is a closed set for every y ∈ projy(Bh).
Now, put for h ∈ N and ε > 0

ρ(h, ε) = min(δ(h, ε/23), η(h, ε/2)). (10◦)

Then

ρ(h, ε) ≥ ρ(k, ε) if k > h and ρ(h, ε) ≥ ρ(k, ε0) if ε > ε0.

Given an ε > 0, for some h ∈ N let S be a (**)-elementary system satisfying the
conditions (a) and (b) of the lemma for Bh and ρ(h, ε) defined above. For each pair l, j
with l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)}, by (a) we have Ilj ∩Bh 6= ∅. Further, by
(1) of (I) and (II), Mmi(h)

∪ ∪yMmi(y,h)(y) ⊃ Bh. Hence, by mi(h) ≤ h and mi(y,h)(y) ≤ h,
we have Mh ⊃ Bh. Therefore, Ilj ∩Mh 6= ∅. Further, since | projy(S)| < ρ(h, ε) by (b)

l0X
l=1

j0(l)X
j=1

|Ilj | < ρ(h, ε) ≤ δ(h, ε/23), and
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l0X
l=1

j0(l)X
j=1

|Ilj | < ρ(h, ε) ≤ η(h, ε/2).

Therefore, by Lemma 1¯̄̄̄
¯̄ l0X
l=1

j0(l)X
j=1

F (Ilj)−
l0X
l=1

j0(l)X
j=1

(L)

Z
Ilj∩Fh

f(p)dp

¯̄̄̄
¯̄ < 4(ε/23) = ε/2,

and so, by (1◦)

|F (S)| =
¯̄̄̄
¯̄ l0X
l=1

j0(l)X
j=1

F (Ilj)

¯̄̄̄
¯̄

<

¯̄̄̄
¯̄ l0X
l=1

j0(l)X
j=1

(L)

Z
Ilj∩Fh

f(p)dp

¯̄̄̄
¯̄+ ε/2 < ε/2 + ε/2 = ε.

For an interval I = [a1, b1 ; a2, b2 ; . . . ; an, bn] in En, we denote by Rm(I) the family
of intervals [a1 + (k1(b1 − a1))/m, a1 + ((k1 + 1)(b1 − a1))/m; a2 + (k2(b2 − a2))/m, a2 +
((k2 + 1)(b2 − a2))/m; . . . ; an + (kn(bn − an))/m, an + ((kn + 1)(bn − an))/m], where ki
is an integer with 0 ≤ ki ≤ m − 1 for i = 1, 2, . . . , n; by Hm(I) the family of intervals
[a1, b1 ; a2+(k2(b2−a2))/m, a2+((k2+1)(b2−a2))/m; . . . ; an+(kn(bn−an))/m, an+
((kn + 1)(bn − an))/m], where ki is an integer with 0 ≤ ki ≤ m− 1 for i = 2, . . . , n. We
call an interval belonging to Rm(I) a cell.

Lemma 3. Let f(p) be a (D0) integrable function on an interval R0 in the n0-
demensional Euclidean space En0 (n0 > 1). Given a sequence of positive numbers εn (n =
1, 2, . . . ) such that εn ↓ 0 and

P∞
m=n+1 εm < εn for every n ∈ N, there exist:

nondecreasing sequences of closed sets Ai (i = 1, 2, . . . ) and Di (i = 1, 2, . . . ) such
that

(1) µn0(R0 − ∪∞i=1Ai) = 0 and µn0(R0 − ∪∞i=1Di) = 0;
(2) Ai ⊃ Di for every i ∈ N ;
(3) f(p) is Lebesgue integrable on Di for every i ∈ N,
and a nonincreasing sequence of positive numbers κ∗i (i = 1, 2, . . . ),

in such a way that the following statement (4) holds:

(4) For each i ∈ N the following holds. If S is a (**)-elementary system in R0 consisting
of (*)-elementary systems Sl (l = 1, 2, . . . , l0), where for each l

Sl is a (*)-elementary system consisting of intervals written

Ilj (j = 1, 2, . . . , j0(l)),

for which there exists a non-empty measurable set Y in proj
En0−1

y(R0) such that:

(4.1) Y ⊂ proj
En0−1

y(S
◦) ∩ proj

En0−1
y(Ai);

(4.2) µn0−1

Ã
proj
En0−1

y(S)− Y
!
< κ∗i ;
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(4.3) Y ∩ proj
En0−1

y((Sl)
◦) 6= ∅ for every l ∈ {1, 2, . . . , l0};

(4.4) for each l ∈ {1, 2, . . . , l0}, if q ∈ Y ∩ proj
En0−1

y((Sl)
◦), then

(Ilj)
q ∩ (Ai)q 6= ∅ for every j ∈ {1, 2, . . . , j0(l)},

then the following inequality holds:¯̄̄̄
F (S)− (L)

Z
S∩Di

f(p)dp

¯̄̄̄
< εi.

We remark that, by the assumption (1), we have

µn0−1

Ã
proj
En0−1

y(R0)− ∪∞i=1 proj
En0−1

y(Di)

!
= 0. (11◦)

Proof of Lemma 3. For simplicity, we prove only for the case of n0 = 2 and R0 =
[0, 1; 0, 1]. For the given sequence εn(n = 1, 2, . . . ), we define ε

∗
n(n = 1, 2, . . . ) as in (3

◦).
Let ni,mi and Fnimi (i = 1, 2, . . . ) be the sequences of integers and the sequence of closed
sets indicated in (I) above associated with R0,Mn (n = 1, 2, . . . ) and ε

∗
n(n = 1, 2, . . . ).

Put

κi = (1/2)ρ(mi, εi/2
4) for each i ∈ N,

where ρ(h, ε) is the number indicated in (10◦). Then, κi (i = 1, 2, . . . ) is a nonincreasing
sequence.

For each i ∈ N, take an h(i) ∈ N so that

h(i) > i, h(j) > h(i) for j > i and µ2(Fnimi − Fmh(i)
) < κi. (12◦)

Put

Ai = Fnimi and Di = Fnimi ∩ Fmh(i)
for each i ∈ N. (13◦)

Then

Ai ⊃ Di and µ2(Ai −Di) < κi for each i ∈ N.

Put

κ∗i = (1/2)min(κi, η(mh(i), εh(i)/2
5)) for each i ∈ N. (14◦)

It is clear that Di (i = 1, 2, . . . ) and Ai (i = 1, 2, . . . ) are nondecreasing sequences of
closed sets satisfying (1), (2) and (3) of the lemma, and κ∗i (i = 1, 2, . . . ) is a nonincreasing
sequence. Next, we shall prove that the statement (4) holds for them. The proof requires
three steps.

Take an i ∈ N and fix. Under the assumption of (4) of the lemma:

(i) The case when µ1(Y ∩ projy((Sl)◦)) > 0 for l = 1, 2, . . . , l0; Since, by (4.3) and
(4.4), Ilj ∩ Ai is a non-empty closed set for each pair l, j with l ∈ {1, 2, . . . , l0} and
j ∈ {1, 2, . . . , j0(l)}, there exists an m0(i) with
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m0(i) > mi

such that: for each pair l, j with l ∈ {1, 2, . . . , l0} and j ∈ {1, 2, . . . , j0(l)}, there
exists a non-empty family of cells belonging to Rm0(i)(Ilj), denoted by

Rljs (s = 1, 2, . . . , s0(l, j)),

such that:

1) Rljs ∩Ai 6= ∅ for s = 1, 2, . . . , s0(l, j);
2) R ∩Ai = ∅ for the other cells R belonging to Rm0(i)(Ilj);

3) µ2(∪s0(l,j)s=1 Rljs −Ai) < κh(i)/
Pl0

l=1 j0(l);

and, further, when we denote the family of Rljs for which

Rljs ∩Di 6= ∅, where s ∈ {1, 2, . . . , s0(l, j)},

by Rljs(s = 1, 2, . . . , s1(l, j))(possibly empty), where s1(l, j) ≤ s0(l, j) (without loss of
generality, such expression is possible), we have

4) µ2(∪s1(l,j)s=1 Rljs −Di) < κh(i)/
Pl0

l=1 j0(l).

In this case, ∪s0(l,j)s=1 Rljs ⊃ Ilj ∩Ai and ∪s1(l,j)s=1 Rljs ⊃ Ilj ∩Di.
Denote, by Elj , the set ∪(projy(R) − projy(R◦)), where the union ∪ is over all cells

R belonging to Rm0(i)(Ilj). Then, Elj = Elj0 for j, j
0 ∈ {1, 2, . . . , j0(l)}. Denote the

common set by El.

Fix an l ∈ {1, 2, . . . , l0} :
(i,a) Let y ∈ (Y −El)∩projy((Sl)◦) for which there exist a j ∈ {1, 2, . . . , j0(l)} and a

cell R ∈ Rm0(i)(Ilj) such that y ∈ projy(R) and (R)y ∩ (Ai)y = ∅. For each such y, consider
the family of cells

{R : R ∈ ∪j0(l)j=1 Rm0(i)(Ilj), y ∈ proj y(R) and (R)y ∩ (Ai)y = ∅},

and denote the family by Qlk(y)(k = 1, 2, . . . , k0(l, y)). In this case, projy(Qlk(y))(k =
1, 2, , . . . , k0(l, y)) are equal. Next,consider the family of intervals, written Glt(y)(t =
1, 2, . . . , t0(l, y)), taken nuiquely to be that: they are mutually disjoint; the union is equal

to ∪k0(l,y)k=1 Qlk(y); and projy(Glt(y)) = projy(Glt0(y)) (which is equal to projy Qlk(y)) for ev-
ery pair t, t0 with t, t0 ∈ {1, 2, . . . , t0(l, y)}. Put glt(y) = (Glt(y))y for t = 1, 2, . . . , t0(l, y).
Clearly we have glt(y) ∩ Ai = ∅. Since glt(y) and Ai are closed and y /∈ El, there exist two
dimensional intervals Klt(y)(t = 1, 2, . . . , t0(l, y)) such that:

(Klt(y))
y = glt(y) and Klt(y) ∩ Ai = ∅;

proj y(Klt(y)) = proj y(Klt0(y)) for every pair t, t
0 with t, t0 ∈ {1, 2, . . . , t0(l, y)};

y ∈ proj y((Klt(y))
◦) ⊂ proj y(I◦)(⊂ proj y((Sl)◦)),

where I is an interval belonging to Hm0(i)(Ilj) such that y ∈ proj y(I). Associsted with y,
take a one-dimensional interval J∗(y) for which
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y ∈ (J∗(y))◦ ⊂ proj y((Klt(y))
◦) ⊂ proj y(I◦) for t ∈ {1, 2, . . . , t0(l, y)}. (15◦)

(i, b) Let y ∈ (Y − El) ∩ proj y((Sl)◦) for which (R)y ∩ (Ai)y 6= ∅ for every cell R ∈
∪j0(l)j=1 Rm0(i)(Ilj) with y ∈ proj y(R). For each such y, take a one-dimensional interval J∗(y)
so that

y ∈ (J∗(y))◦ ⊂ proj y(I◦)(⊂ proj y((Sl)◦)), (16◦)

where I is an interval belonging to Hm0(i)(Ilj) such that y ∈ proj y(I).
Now put Yl = (Y − El) ∩ projy((Sl)◦). We remark that

Yl ∩ Yl0 = ∅ for l, l0 ∈ {1, 2, . . . , l0} with l 6= l0;

∪l0l=1Yl ⊂ Y ; and µ1(Y − ∪l0l=1Yl) = 0.

For every point y of density for Yl with y ∈ Yl, take a sequence Jλ(y)(λ = 1, 2, . . . )
of one-dimensional intervals tending to y such that J∗(y) ⊃ Jλ(y), y ∈ (Jλ(y))◦ and the
both end-points of Jλ(y) belong to Yl. Then, the family of intervals {Jλ(y) : y ∈ Yl, y is
a point of density for Yl and λ = 1, 2, . . . } covers almost all points of Yl in the sense of
Vitai. Hence, by virtue of Vitali’s covering theorem, for Yl there exists a finite sequence of
intervals in projy(R0) :

Jλ(l,v)(y
l
v), simply written J(y

l
v), v = 1, 2, . . . , v0(l),

having the following properties:

1∗)ylv ∈ Yl and ylv is a point of density for Yl;
2∗)ylv ∈ (J(ylv))◦;
3∗) ∪v0(l)v=1 J(y

l
v) ⊂ proj y((Sl)◦);

4∗)µ1(Yl − ∪v0(l)v=1 J(y
l
v)) < κ∗i /l0;

5∗)J(ylv) ∩ J(ylv0) = ∅ for v 6= v0;
6∗) the both end-points of J(ylv) belong to Yl.

(Refer to Remark 1, (1) below for the case of n0 − 1 ≥ 2.)
Next, put

I lv = proj x(R0)× J(ylv) for v = 1, 2, . . . , v0(l).

For each pair l, v with l ∈ {1, 2, . . . , l0} and v ∈ {1, 2, . . . , v0(l)}, consider the family
of intervals:

{I lv ∩Rljs : (Rljs)y
l
v ∩ (Ai)ylv 6= ∅, where j = 1, 2, . . . , j0(l) and s = 1, 2, . . . , s0(l, j)},

(17◦)

which is a non-empty family. Then, by (15◦) and (16◦) for each I lv ∩Rljs belonging to the
family, we have proj y(I

l
v ∩Rljs) = J(ylv). Put
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I lvj = proj x(Ilj)× J(ylv) for j = 1, 2, . . . , j0(l).

Next, for l = 1, 2, . . . , l0, v = 1, 2, . . . , v0(l) and j = 1, 2, . . . , j0(l), denote by

Llvjz (z = 1, 2, . . . , z0(l, v, j))

the family of two-dimensional intervals contained in I lvj , contiguous to the closed set con-

sisting of the set ∪(Rljs ∩ I lv), where the union ∪ is over all Rljs, s = 1, 2. . . . , s0(l, j),

with (Rljs)
ylv ∩ (Ai)ylv 6= ∅, and the sides parallel to y-axis of two-dimensional interval I lvj .

Denote, simply, for each pair l, v with l ∈ {1, 2, . . . , l0} and v ∈ {1, 2, . . . , v0(l)} the
family

Llvjz (j = 1, 2, . . . , j0(l), z = 1, 2, . . . , z0(l, v, j))

by

Llvw (w = 1, 2, . . . , w0(l, v)).

By considering the definition of J∗(y) in (15◦) and (16◦) and the definition of J(ylv), we
have

Llvw ∩ Ai = ∅ for w = 1, 2, . . . , w0(l, v). (18◦)

And Llvw (l = 1, 2, . . . , l0, v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w0(l, v)) are mutually
disjoint.

Next, for each l ∈ {1, 2, . . . , l0}, denote the family of intervals contiguous to the closed
set consisting of ∪v0(l)v=1 J(y

l
v) and the both end-points of projy(Sl) by

J∗lu (u = 1, 2, . . . , u0(l)).

(Refer to Remark 1, (2) below for the case of n0 − 1 ≥ 2.)
Put

I∗lu = proj x(R0)× J∗lu for u = 1, 2, . . . , u0(l),

and put, for l = 1, 2, . . . , l0 and u = 1, 2, . . . , u0(l)

I∗luj = I
∗l
u ∩ Ilj for j = 1, 2, . . . , j0(l). (19◦)

(i,1) For Llvw (v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w0(l, v)) : Corresponding to each two-
dimensional interval Llvw, consider the one-dimensional interval, named J

l
vw, determined

uniquely by the following four conditions, in virtue of the assumption of (4,4) of the lemma:

1◦) J lvw is contained in an interval, say J
∗, which is one of the intervals contiguous to

the closed set consisting of the set (Ai)
ylv , i.e., (Fnimi

)y
l
v and the both end-points of the

interval (R0)
ylv . In this case, an end-point of J∗ is the point called the characteristic point

of J∗ as in the property (B1);

2◦) one end-point of J lvw is one of the end-points of (L
l
vw)

ylv ;
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3◦) the other end-point of J lvw is the characteristic point of J
∗, named plvw;

4◦) J lvw ⊃ (Llvw)y
l
v .

In this case, J lvw (w = 1, 2, . . . , w0(l, v)) are classified into two parts: J
l1
vw (w =

1, 2, . . . , w1(l, v)) and J
l2
vw (w = 1, 2, . . . , w2(l, v)) so that each family consists of

mutually disjoint intervals. Denote the characteristic point and number associated with
J l1vw by p

l1
vw and h

l1
vw, and the characteristic point and number associated with J

l2
vw by p

l2
vw

and hl2vw, respectively.

Put

H l1
vw = J

l1
vw × J(ylv) for v = 1, 2, . . . , v0(l) and w = 1, 2, . . . , w1(l, v).

For each k ∈ N with ni ≤ k ≤ mi, denote by

J l1kvw (w = 1, 2, . . . , w1 (l, v, k)) and H
l1k
vw (w = 1, 2, . . . , w1 (l, v, k))

the families of all J l1vw and H
l1
vw for which the characteristic number h

l1
vw of J

l1
vw is k, respec-

tively. Then, H l1k
vw (l = 1, 2, . . . , l0, v = 1, 2, . . . , v0(l), w = 1, 2, . . . , w1(l, v, k)) is

an elementary system in R0 such that:

(1) H l1k
vw ∩Mk 6= ∅;

(2) µ2(∪l0l=1 ∪v0(l)v=1 ∪w1(l,v,k)w=1 H l1k
vw ) =

Pl0
l=1

Pv0(l)
v=1

³Pw1(l,v,k)
w=1 |J l1kvw | × |J(ylv)|

´
< ε∗k ×

³Pl0
l=1

Pv0(l)
v=1 |J(ylv)|

´
≤ ε∗k × | proj y(R0)| = ε∗k ≤ δ(k, εk/2

k+5),

where the first inequality follows from the fact that, by (b) of (I), the set (Fnimi)
ylv has the

property (B1) for ni < mi associated with (Mn)
ylv(n = 1, 2, . . . ) and ε∗n (n = 1, 2, . . . ).

Hence, by Lemma 1 we have:¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v,k)X
w=1

F (H l1k
vw )−

l0X
l=1

v0(l)X
v=1

w1(l,v,k)X
w=1

(L)

ZZ
Hl1k
vw ∩Fk

f(x, y)d(x, y)

¯̄̄̄
¯̄

< 4(εk/2
k+5) = εk/2

k+3.

Further, since µ2(∪l0l=1 ∪v0(l)v=1 ∪w1(l,v,k)w=1 H l1k
vw ) < ε∗k ≤ η(k, εk/2

k+5) by (3◦),¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v,k)X
w=1

(L)

ZZ
Hl1k
vw ∩Fk

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εk/2

k+5.

Therefore
¯̄̄Pl0

l=1

Pv0(l)
v=1

Pw1(l,v,k)
w=1 F (H l1k

vw )
¯̄̄
< εk/2

k+2, and so¯̄̄̄
¯̄ miX
k=ni

l0X
l=1

v0(l)X
v=1

w1(l,v,k)X
w=1

F (H l1k
vw )

¯̄̄̄
¯̄ < miX

k=ni

εk/2
k+2 ≤ εni/8 ≤ εi/8.

Hence ¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v)X
w=1

F (H l1
vw)

¯̄̄̄
¯̄ < εi/8.



NON-ABSOLUTE MULTIPLE INTEGRAL 261

Similarly ¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v)X
w=1

F (H l1
vw − Ll1vw)

¯̄̄̄
¯̄ < εi/8,

where possibly the set H l1
vw − Ll1vw is empty. Hence¯̄̄̄

¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v)X
w=1

F (Ll1vw)

¯̄̄̄
¯̄ < εi/4.

On the other hand, since Ll1vw ∩ Ai = ∅ by (18◦) and so Ll1vw ∩Di = ∅. Thus¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w1(l,v)X
w=1

(F (Ll1vw)− (L)
ZZ

Ll1vw∩Di

f(x, y)d(x, y))

¯̄̄̄
¯̄ < εi/4.

Similarly ¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w2(l,v)X
w=1

(F (Ll2vw)− (L)
ZZ

Ll2vw∩Di

f(x, y)d(x, y))

¯̄̄̄
¯̄ < εi/4.

Therefore ¯̄̄̄
¯̄ l0X
l=1

v0(l)X
v=1

w0(l,v)X
w=1

(F (Llvw)− (L)
ZZ

Llvw∩Di

f(x, y)d(x, y))

¯̄̄̄
¯̄ < εi/2.

(i, 2) Denote the family of intervals

{I lv ∩Rljs : (Rljs)y
l
v ∩ (Ai)ylv 6= ∅, l ∈ {1, 2, . . . , l0}, v ∈ {1, 2, . . . , v0(l)},

j ∈ {1, 2, . . . , j0(l)} and s ∈ {1, 2, . . . , s0(l, j)}}

considered in (17◦) by Rs(s = 1, 2, . . . , s0). In this case, without loss of generality we can
suppose that

Rs ∩Di 6= ∅ for s ∈ {1, 2, . . . , s1}; and Rs ∩Di = ∅ for s ∈ {s1 + 1, . . . , s0},

where 0 ≤ s1 ≤ s0 (if s1 = 0, then the former is empty; if s1 = s0, then the latter is empty).
We remark that Rs ∩Ai 6= ∅ for s = 1, 2, . . . , s0.
First, consider for Rs(s = 1, 2, . . . , s1). Then, we have:

(1) Rs ∩Mmh(i)
6= ∅ for s = 1, 2, . . . , s1. Because, Rs ∩Di 6= ∅, and so Rs ∩Fmh(i)

6= ∅
by (13◦), and moreover Mmh(i)

⊃ Fmh(i)
;

(2)µ2(∪s1s=1Rs−Mmh(i)
) < δ(mh(i), εh(i)/2

7). Because, µ2(∪s1s=1Rs−Mmh(i)
) ≤ µ2(∪s1s=1Rs−

Fmh(i)
) ≤ µ2(∪s1s=1Rs − Di). Since, further, ∪s1s=1Rs is contained in the union of Rlsj for

which we have Rlsj ∩Di 6= ∅, by 4) above
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µ2(∪s1s=1Rs −Di) <
Ã
κh(i)/

l0X
l=1

j0(l)

!
×

l0X
l=1

j0(l) = κh(i) < δ(mh(i), εh(i)/2
7).

Hence, by the definition of (D0) integral¯̄̄̄
¯
s1X
s=1

F (Rs)−
s1X
s=1

(L)

ZZ
Rs∩Fmh(i)

f(x, y)d(x, y)

¯̄̄̄
¯ < εh(i)/2

7.

On the other hand, we have

µ2(∪s1s=1Rs ∩ (Fmh(i)
−Di)) ≤ µ2(∪s1s=1Rs −Di) < κh(i) < η(mh(i), εh(i)/2

5).

Hence ¯̄̄̄
¯
s1X
s=1

(L)

ZZ
Rs∩

³
Fmh(i)

−Di

´ f(x, y)d(x, y)

¯̄̄̄
¯ < εh(i)/2

5.

Therefore

¯̄̄̄
¯
s1X
s=1

F (Rs)−
s1X
s=1

(L)

ZZ
Rs∩Di

f(x, y)d(x, y)

¯̄̄̄
¯ < εh(i)/2

7 + εh(i)/2
5 ≤ εi/2

7 + εi/2
5.

Next, consider for Rs (s = s1 + 1, . . . , s0). Then, we have:
(1) Rs ∩ Ai 6= ∅ for s = s1 + 1, . . . , s0. Hence, Rs ∩ Fnimi 6= ∅, and so Rs ∩Mmi 6= ∅

for s = s1 + 1, . . . , s0.

(2)µ2(∪s0s=s1+1Rs) = µ2(∪s0s=s1+1Rs − Ai) + µ2(∪s0s=s1+1Rs ∩ Ai). On the other hand,
(∪s0s=s1+1Rs)∩Di = ∅, and so ∪s0s=s1+1Rs ∩Ai = (∪s0s=s1+1Rs)∩ (Ai−Di) ⊂ Ai−Di. Hence

µ2(∪s0s=s1+1Rs) ≤ µ2(∪s0s=s1+1Rs −Ai) + µ2(Ai −Di).

Further, since ∪s0s=s1+1Rs is contained in the union ofRljs with Rljs∩Ai 6= ∅, µ2(∪s0s=s1+1Rs−
Ai) < κh(i) by 3) above, and µ2(Ai −Di) < κi by (12

◦) and (13◦), and so

µ2(∪s0s=s1+1Rs) < 2κi ≤ δ(mi, εi/2
7).

Hence, by Lemma 1 we have¯̄̄̄
¯

s0X
s=s1+1

F (Rs)−
s0X

s=s1+1

(L)

ZZ
Rs∩Fmi

f(x, y)d(x, y)

¯̄̄̄
¯ < 4εi/27 = εi/2

5.

On the other hand, µ2(∪s0s=s1+1Rs) < 2κi ≤ η(mi, εi/2
5). So¯̄̄̄

¯
s0X

s=s1+1

F (Rs)

¯̄̄̄
¯ < εi/2

5 + εi/2
5.
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Further, since Rs ∩Di = ∅ for s = s1 + 1, . . . , s0¯̄̄̄
¯

s0X
s=s1+1

F (Rs)−
s0X

s=s1+1

(L)

ZZ
Rs∩Di

f(x, y)d(x, y)

¯̄̄̄
¯ < εi/2

5 + εi/2
5.

Consequently¯̄̄̄
¯
s0X
s=1

F (Rs)−
s0X
s=1

(L)

ZZ
Rs∩Di

f(x, y)d(x, y)

¯̄̄̄
¯ < εi/2

7 + 3εi/2
5.

(i,3): For I∗luj (l = 1, 2, . . . , l0, u = 1, 2, . . . , u0(l) and j = 1, 2, . . . , j0(l))
indicated in (19◦): For each pair l, u with l ∈ {1, 2, . . . , l0} and u ∈ {1, 2, . . . , u0(l)},
denote by Slu the (*)-elementary system:

I∗luj (j = 1, 2, . . . , j0(l)),

and consider the (**)-elementary system consisting of (*)-elementary systems

Slu (l = 1, 2, . . . , l0, u = 1, 2, . . . , u0(l)).

(Refer to Remark 1, (3) below for the case of n0 − 1 ≥ 2.)
For each pair l, u with l ∈ {1, 2, . . . , l0} and u ∈ {1, 2, . . . , u0(l)}, by 6∗) above

and the definition of J∗lu , there exists a ylu ∈ Yl ∩ J∗lu . Since then ylu ∈ Yl and so ylu ∈
Y ∩proj y((Sl)◦), by (4,4) (Ilj)ylu ∩ (Fnimi)

ylu 6= ∅ for j = 1, 2, . . . , j0(l). Moreover, since
ylu ∈ J∗lu , (I∗luj)ylu = (Ilj)ylu by (19◦). Hence (I∗luj)ylu ∩ (Fnimi)

ylu 6= ∅, and so, since Bmi ⊃
Fni(mi)

mi(mi)
= Fnimi by (9

◦) and (7◦), (I∗luj)
ylu ∩ (Bmi)

ylu 6= ∅ for j = 1, 2, . . . , j0(l).

Needless to say, ylu ∈ proj y(Slu) ∩ proj y(Bmi
). Further

l0X
l=1

u0(l)X
u=1

| proj y(Slu)|

= µ1(proj y(S)− ∪l0l=1 ∪v0(l)v=1 J(y
l
v))

= µ1((proj y(S)− Y ) ∪ Y )− ∪l0l=1 ∪v0(l)v=1 J(y
l
v))

≤ µ1((proj y(S)− Y ) ∪ (Y − ∪l0l=1 ∪v0(l)v=1 J(y
l
v)))

≤ µ1(proj y(S)−Y )+µ1(∪l0l=1Yl−∪l0l=1∪v0(l)v=1 J(y
l
v)) < κ∗i+κ

∗
i ≤ κi (by (4.2) and 4

∗))

< ρ(mi, εi/2
4).

Therefore, by Lemma 2¯̄̄̄
¯̄ l0X
l=1

u0(l)X
u=1

j0(l)X
j=1

F (I∗luj)

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ l0X
l=1

u0(l)X
u=1

F (Slu)

¯̄̄̄
¯̄ < εi/2

4.
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On the other hand, since
Pl0

l=1

Pu0(l)
u=1

Pj0(l)
j=1 |I∗luj | ≤

Pl0
l=1

Pu0(l)
u=1 | proj y(Slu)| < 2κ∗i ≤

η(mh(i), εh(i)/2
5) and Di ⊂ Fmh(i)

, we have¯̄̄̄
¯̄ l0X
l=1

u0(l)X
u=1

j0(l)X
j=1

(L)

ZZ
I∗luj∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εh(i)/2

5 ≤ εi/2
5 by h(i) > i.

Hence

¯̄̄̄
¯̄ l0X
l=1

u0(l)X
u=1

j0(l)X
j=1

F (I∗luj)−
l0X
l=1

u0(l)X
u=1

j0(l)X
j=1

(L)

ZZ
I∗luj∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi/2

4 + εi/2
5.

By (i,1), (i,2) and (i,3)

¯̄̄̄
F (S)− (L)

ZZ
S∩Di

f(x, y)d(x, y)

¯̄̄̄
< εi/2 + εi/2

7 + 3εi/2
5 + εi/2

4 + εi/2
5.

(ii) The case when µ1(Y ∩ proj y((Sl)◦)) = 0 for l = 1, 2, . . . , l0 : For every l ∈
{1, 2, . . . , l0}, by (4,3) and (4,4) there exists a yl such that

yl ∈ Y ∩ proj y((Sl)◦) and (Ilj)yl ∩ (Fnimi)
yl 6= ∅ for j = 1, 2, . . . , j0(l).

Therefore, since Bmi
⊃ Fnimi

, (Ilj)
yl ∩ (Bmi

)yl 6= ∅ for j = 1, 2, . . . , j0(l). Needless to
say, yl ∈ proj y(Sl) ∩ proj y(Bmi

). Further

l0X
l=1

| proj y(Sl)| = µ1(proj y(S))

= µ1(proj y(S)− Y ) + µ1(Y )

< κ∗i +
l0X
l=1

µ1(Y ∩ proj y((Sl)◦)) (by (4.2) and (4.1))

= κ∗i < κi < ρ(mi, εi/2
4).

Hence, by Lemma 2 ¯̄̄̄
¯
l0X
l=1

F (Sl)

¯̄̄̄
¯ < εi/2

4.

Since µ2(S) ≤ µ1(proj y(S)) < κ∗i < η(mh(i), εh(i)/2
5) and Di ⊂ Fmh(i)

¯̄̄̄
¯
l0X
l=1

ZZ
Sl∩Di

f(x, y)d(x, y)

¯̄̄̄
¯ ≤ (L)

ZZ
S∩Fmh(i)

|f(x, y)|d(x, y) < εh(i)/2
5 ≤ εi/2

5.

Therefore
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¯̄̄̄
¯
l0X
l=1

F (Sl)−
l0X
l=1

(L)

ZZ
Sl∩Di

f(x, y)d(x, y)

¯̄̄̄
¯ < εi/2

4 + εi/2
5.

(iii) The case when µ1(Y ∩ proj y((Sl)◦)) > 0 for some l ∈ {1, 2, . . . , l0} and µ1(Y ∩
proj y((Sl)

◦)) = 0 for some l ∈ {1, 2, . . . , l0} : This case follows from the results for the
cases (i) and (ii).

By (i), (ii) and (iii), the proof is complete.

Remark 1. (1): In general, for the case when n0 − 1 ≥ 2, by the density theorem
there exists a sub-set Xl of Yl with µn0−1(Xl) = 0 such that the set Yl −Xl is all points
of density for Yl in Yl. Further, since a point p ∈ Yl − Xl is a density point for Yl, there
exists a regular sequence of intervals Ij(p) (j = 1, 2, . . . ) in proj

En0−1
y(R0) tending to p

such that for every j ∈ N, p ∈ (Ij)◦ and every vertex of the interval Ij(p) belongs to
Yl. Since then the family {Ij(p); p ∈ Yl − Xl and j ∈ N} covers the set Yl − Xl in the
sense of Vitali, there exists, by Vitali’s covering theorem, a finite sequence of intervals in
proj
En0−1

y(R0) : J(p
l
v)(v = 1, 2, . . . , v0(l)) satisfying the following condition 6

∗∗) in addition

to the conditions 1∗)- 5∗) replaced ylv with p
l
v:

6∗∗) Every vertex of interval J(plv) belongs to Yl for v = 1, 2, . . . , v0(l).

(2): By virtue of 6∗∗), for each l ∈ {1, 2, . . . , l0} the complement of the set ∪v0(l)v=1 J(y
l
v)

for proj
En0−1

y(Sl) is covered by finite intervals J
∗l
u (u = 1, 2, . . . , u0(l)) such that

1) J∗lu ∩ Yl 6= ∅ for every u ∈ {1, 2, . . . , u0(l)};
2) (J∗lu )

◦ ∩ (J∗lu0)◦ = ∅ for every pair u 6= u0 with u, u0 ∈ {1, 2, . . . , u0(l)}.
(3): We can classify the intervals J∗lu (l = 1, 2, . . . , l0, u = 1, 2, . . . , u0(l)) into

2n0−1 parts at most to be that the intervals belonging to each part are mutually disjoint.

Lemma 4. Let I0 be an interval in the one-dimensional Euclidean space E1 andDn (n =
1, 2, . . . ) a nondecreasing sequence of non-empty measurable sets contained in I0 such that
µ1(I0−∪∞n=1Dn) = 0. Let f(x) be a function defined on I0 which is Lebesgue integrable on
Dn for each n ∈ N. Suppose that the function f(x) has the following property (*):
(*): there exists an interval I ⊂ I0 for which the limit limn→∞(L)

R
I∩Dn

f(x)dx does
not exist.
Then, there exist a number h0 > 0 and a sub-sequence mi (i = 1, 2, . . . ) of {1, 2, . . . }
having the following property(**):

(**) Given a number η > 0, for each i ∈ N there exist an elementary system Ij (j =
1, 2, . . . , j0) and an integer m

∗
i with m

∗
i > mi such that:

1) the both end-points of the interval Ij are rational points for j = 1, 2, . . . , j0;

2) Ij ∩Dmi 6= ∅ for j = 1, 2, . . . , j0;
3)

¯̄̄̄Pj0
j=1 (L)

R
Ij∩(Dm∗i −Dmi

)
f(x)dx

¯̄̄̄
> h0;

4)
¯̄̄Pj0

j=1 (L)
R
Ij∩Dmi

f(x)dx
¯̄̄
< η.

Proof. By the assumption of the lemma, there exists an interval I ⊂ I0 for which
limn→∞(L)

R
I∩Dn

f(x)dx does not exist. Hence, there exist an h0 > 0 and a positive
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integer m0 such that: I ∩ Dm0
6= ∅ and for every integer m > m0 there exists an integer

m∗ with m∗ > m such that ¯̄̄̄
¯(L)

Z
I∩(Dm∗−Dm)

f(x)dx

¯̄̄̄
¯ > h0.

Put
¯̄̄
(L)

R
I∩(Dm∗−Dm)

f(x)dx
¯̄̄
= α(m). Take an ε > 0 with ε < min(η,α(m)− h0), where

η is the positive number given in (**). Since f(x) is Lebesgue integrable on Dm∗ , there
exists a number π(ε,m∗) > 0 such that

(L)

Z
E∩Dm∗

|f(x)|dx < ε/3 for any set E ⊂ I0 with µ1(E) < π(ε,m∗).

In the interval I, by Vitali’s covering theorem there exist mutually disjoint intervals
Jj (j = 1, 2, . . . , j0 − 1) such that Jj ⊂ I◦, the both end-points of Jj belong to
Dm, µ1(∪j0−1j=1 Jj − (I ∩Dm)) < π(ε,m∗) and µ1((I ∩Dm)− ∪j0−1j=1 Jj) < π(ε,m∗).

Let I∗j (j = 1, 2, . . . , j0) be the intervals contiguous to the closed set consisting of

the set ∪j0−1j=1 Jj and the both end-points of I. Associated with these intervals I
∗
j , take an

elementary system Ij (j = 1, 2, . . . , j0) whose end-points are rational points and such
that:

Ij ⊃ I∗j for j = 1, 2, . . . , j0;
j0X
j=1

µ1(Ij − I∗j ) < π(ε,m∗) and µ1(∪j0j=1 Ij − I) < π(ε,m∗).

Then, Ij (j = 1, 2, . . . , j0) has the properties desired in (**) for h0 taken above and
m∗ > m. Indeed, we first have Ij ∩Dm 6= ∅ for j = 1, 2, . . . , j0. Next, since
∪j0j=1 Ij = (I − (∪j0−1j=1 Jj − ∪j0j=1 Ij)) ∪ (∪j0j=1 Ij − I);
(∪j0−1j=1 Jj − ∪j0j=1 Ij) ∩ (Dm∗ −Dm) ⊂ (∪j0−1j=1 Jj) ∩ (I −Dm) = (∪j0−1j=1 Jj)− (I ∩Dm)

and so µ1((∪j0−1j=1 Jj − ∪j0j=1 Ij) ∩ (Dm∗ −Dm)) < π(ε,m∗); and

µ1(∪j0j=1 Ij − I) < π(ε,m∗),

we have¯̄̄̄
¯̄ j0X
j=1

(L)

Z
Ij∩(Dm∗−Dm)

f(x)dx

¯̄̄̄
¯̄

≥
¯̄̄̄
¯(L)

Z
I∩(Dm∗−Dm)

f(x)dx

¯̄̄̄
¯−

¯̄̄̄
¯(L)

Z
(∪j0−1j=1 Jj−∪j0j=1Ij)∩(Dm∗−Dm)

f(x)dx

¯̄̄̄
¯

−
¯̄̄̄
¯(L)

Z
(∪j0j=1Ij−I)∩(Dm∗−Dm)

f(x)dx

¯̄̄̄
¯

> α(m)− ε/3− ε/3 > h0.
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Further, since

∪j0j=1 Ij = (∪j0j=1 I∗j ) ∪ (∪j0−1j=1 Jj ∩ ∪j0j=1 Ij) ∪ (∪j0j=1 Ij − I);
µ1((∪j0j=1 I∗j ) ∩Dm) = µ1((I − ∪j0−1j=1 Jj) ∩Dm) = µ1((I ∩Dm)− ∪j0−1j=1 Jj) and so

µ1((∪j0j=1 I∗j ) ∩Dm) < π(ε,m∗);

µ1((∪j0−1j=1 Jj)∩(∪j0j=1 Ij)) ≤ µ1(∪j0j=1 (Ij−I∗j )) and so µ1(∪j0−1j=1 Jj∩∪j0j=1 Ij) < π(ε,m∗);

µ1(∪j0j=1 Ij − I) < π(ε,m∗); and Dm ⊂ Dm∗ ,
we have

¯̄̄̄
¯̄ j0X
j=1

(L)

Z
Ij∩Dm

f(x)dx

¯̄̄̄
¯̄ ≤

¯̄̄̄
¯(L)

Z
(∪j0j=1I∗j )∩Dm

f(x)dx

¯̄̄̄
¯+

¯̄̄̄
¯(L)

Z
((∪j0−1j=1 Jj)∩(∪j0j=1Ij))∩Dm

f(x)dx

¯̄̄̄
¯

+

¯̄̄̄
¯(L)

Z
(∪j0j=1Ij−I)∩Dm

f(x)dx

¯̄̄̄
¯

< ε/3 + ε/3 + ε/3 = ε < η.

Thus, we obtain the desired result by putting mi = m0 + i and m
∗
i = (m0 + i)

∗ for
i = 1, 2, . . . .

Lemma 5. Let I0 be an interval in the one-dimensional Euclidean space E1, An (n =
1, 2, . . . ) a nondecreasing sequence of non-empty measurable sets such that ∪∞n=1 An = I0,
and Dn (n = 1, 2, . . . ) a nondecreasing sequence of non-empty closed sets such that
Dn ⊂ An for each n ∈ N and µ1(I0 − ∪∞n=1Dn) = 0. Let f(x) be a function defined on I0
which is Lebesgue integrable on Dn for each n ∈ N. Suppose that the function f(x) has the
following property (*):

(*):(1) limn→∞(L)
R
I∩Dn

f(x)dx exists for every interval I ⊂ I0;
but the following statement (2) does not hold.

(2) Put F (I) = limn→∞(L)
R
I∩Dn

f(x)dx for every interval I ⊂ I0. Then, given
εn ↓ 0, for every n ∈ N there exists an integer m ≥ n such that if Ij (j = 1,
2 , . . . , j0) is an elementary system in I0 such that Ij ∩Am 6= ∅ for j = 1,
2, . . . , j0, then¯̄̄̄

¯̄ j0X
j=1

F (Ij)−
j0X
j=1

(L)

Z
Ij∩Dm

f(x)dx

¯̄̄̄
¯̄ < εn.

Then, there exist a number h0 > 0 and a sub-sequence mi (i = 1, 2, . . . ) of {1, 2, . . . }
having the following property (**):

(**) Given a number η > 0, for each i ∈ N there exist an elementary system Ij (j =
1, 2, . . . , j0) and an integer m

∗
i with m

∗
i > mi such that:

1) the both end-points of the interval Ij are rational points for j = 1, 2, . . . , j0;

2) Ij ∩ Ami 6= ∅ for j = 1, 2, . . . , j0;
3)

¯̄̄̄Pj0
j=1 (L)

R
Ij∩(Dm∗i −Dmi

) f(x)dx

¯̄̄̄
> h0;
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4)
¯̄̄Pj0

j=1 (L)
R
Ij∩Dmi

f(x)dx
¯̄̄
< η.

Proof. By the assumption of the lemma there exists an n0 such that for every integer
m ≥ n0 there exists an elementary system Ij (j = 1, 2, . . . , j0) in I0 depending on m,
such that:

a) Ij ∩ Am 6= ∅ for every j = 1, 2, . . . , j0; but
b)

¯̄̄Pj0
j=1 F (Ij)−

Pj0
j=1 (L)

R
Ij∩Dm

f(x)dx
¯̄̄
> εn0 .

In this case, since F (Ij) = limn→∞(L)
R
Ij∩Dn

f(x)dx, for every m ≥ n0 there exists an

integer m∗ with m∗ > m such that

c)
¯̄̄Pj0

j=1 (L)
R
Ij∩(Dm∗−Dm)

f(x)dx
¯̄̄
> εn0 .

Put h0 = εn0/2. We now remark that the intervals Ij (j = 1, 2, . . . , j0) obtained
above are classified into the two parts so that: one part is, for every interval Ij belonging
to the part, we have Ij ∩ Dm = ∅; and the other is, for every interval Ij belonging to the
part, we have Ij ∩Dm 6= ∅. Then, for one part at least of these we have

c∗)
¯̄̄P

j (L)
R
Ij∩(Dm∗−Dm)

f(x)dx
¯̄̄
> h0,

where
P

j is over the part chosen.

Hence, without loss of generality we can suppose that one at least of the following
statements (†) and (††) holds.
(†) There exists a sub-sequence mi (i = 1, 2, . . . ) of the sequence {n0, n0 + 1, . . . }

such that, for each i ∈ N, there exist an elementary system Ij (j = 1, 2, . . . , j0) and an
integer m∗i with m

∗
i > mi such that

a∗)Ij ∩ Ami 6= ∅ for j = 1, 2, . . . , j0;

c∗)
¯̄̄̄Pj0

j=1 (L)
R
Ij∩(Dm∗

i
−Dmi)

f(x)dx

¯̄̄̄
> h0; and

d∗)Ij ∩Dmi
= ∅ for j = 1, 2, . . . , j0.

(††) There exists a sub-sequence mi (i = 1, 2, . . . ) of the sequence {n0, n0 + 1, . . . }
such that, for each i ∈ N, there exist an elementary system Ij (j = 1, 2, . . . , j0) and an
integer m∗i with m

∗
i > mi such that, in addition to a

∗) and c∗) above, the following holds:

e∗)Ij ∩Dmi
6= ∅ for j = 1, 2, . . . , j0.

For the case of (†): 2), 3) and 4) in (**) of the lemma clearly hold. In this case, as
easily seen, since Dmi is a closed set, we can choose Ij (j = 1, 2, . . . , j0) so that the both
end-points of Ij are rational for j = 1, 2, . . . , j0.

Next, for the case of (††) : Given η > 0, for each i ∈ N let Ij (j = 1, 2, . . . , j0), mi

and m∗i be the elementary system and the integers indicated in (††). Putting¯̄̄̄
¯̄ j0X
j=1

(L)

Z
Ij∩(Dm∗

i
−Dmi)

f(x)dx

¯̄̄̄
¯̄ = α(mi),

take an ε > 0 with ε < min(η,α(mi)− h0). This is possible by c∗). Since f(x) is Lebesgue
integrable on Dm∗i , there exists a number π(ε,m

∗
i ) > 0 such that
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(L)

Z
E∩Dm∗

i

|f(x)|dx < ε/3 for every set E with µ1(E) < π(ε,m∗i ).

In Ij (j ∈ {1, 2, . . . , j0}), by Vitali’s covering theorem there exist mutually disjoint

intervals Jjk (k = 1, 2, . . . , k0(j) − 1) such that: Jjk ⊂ (Ij)◦, the both end-ponts of Jjk
belong to Dmi , µ1(∪j0j=1∪k0(j)−1k=1 Jjk− (∪j0j=1Ij ∩Dmi)) < π(ε,m∗i ), and µ1((∪j0j=1Ij ∩Dmi)−
∪j0j=1 ∪k0(j)−1k=1 Jjk) < π(ε,m∗i ).

For each j ∈ {1, 2, . . . , j0}, let Ij∗k (k = 1, 2, . . . , k0(j)) be the intervals contiguous

to the closed set consisting of the set ∪k0(j)−1k=1 Jjk and the both end-points of Ij . Associated

with these intervals Ij∗k (j = 1, 2, . . . , j0, k = 1, 2, . . . , k0(j)), take an elementary

system Ijk (j = 1, 2, . . . , j0, k = 1, 2, . . . , k0(j)) whose end-points are rational points
and such that:

Ijk ⊃ Ij∗k for j = 1, 2, . . . , j0 and k = 1, , 2 , . . . , k0(j);

j0X
j=1

k0(j)X
k=1

µ1(I
j
k − Ij∗k ) < π(ε,m∗i ); and

j0X
j=1

µ1(∪k0(j)k=1 I
j
k − Ij) < π(ε,m∗i ).

Then, the family Ijk (j = 1, 2, . . . , j0, k = 1, 2, . . . , k0(j)) has the properties desired in
(**) for h0 taken above and m

∗
i > mi. Indeed :

Ijk ∩Ami 6= ∅ for j = 1, 2, . . . , j0 and k = 1, 2, . . . , k0(j), because Ijk ∩Dmi 6= ∅ and
Dmi ⊂ Ami ; by the consideration similar to the case of Lemma 4, we have:¯̄̄̄

¯̄ j0X
j=1

k0(j)X
k=1

(L)

Z
Ijk∩(Dm∗

i
−Dmi

)

f(x)dx

¯̄̄̄
¯̄

≥
¯̄̄̄
¯(L)

Z
∪j0j=1Ij∩(Dm∗i −Dmi

)

f(x)dx

¯̄̄̄
¯−

¯̄̄̄
¯(L)

Z
(∪j0j=1∪

k0(j)−1
k=1 Jj

k
−∪j0j=1∪

k0(j)

k=1 Ij
k
)∩(Dm∗i −Dmi

)

f(x)dx

¯̄̄̄
¯

−
¯̄̄̄
¯(L)

Z
(∪j0j=1(∪

k0(j)
k=1 Ijk−Ij))∩(Dm∗i −Dmi

)

f(x)dx

¯̄̄̄
¯ ≥ α(mi)− ε/3− ε/3 > h0;

¯̄̄̄
¯̄ j0X
j=1

k0(j)X
k=1

(L)

Z
Ijk∩Dmi

f(x)dx

¯̄̄̄
¯̄

≤
¯̄̄̄
¯(L)

Z
(∪j0j=1∪

k0(j)

k=1 Ij
∗
k )∩Dmi

f(x)dx

¯̄̄̄
¯+

¯̄̄̄
¯(L)

Z
(∪j0j=1∪

k0(j)−1
k=1 Jjk∩∪

j0
j=1∪

k0(j)

k=1 Ijk)∩Dmi

f(x)dx

¯̄̄̄
¯

+

¯̄̄̄
¯(L)

Z
(∪j0j=1(∪

k0(j)

k=1 Ijk−Ij))∩Dmi

f(x)dx

¯̄̄̄
¯ < ε/3 + ε/3 + ε/3 = ε < η.
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Thus, Jjk (j = 1, 2, . . . , j0, k = 1, 2, , . . . , k0(j)) is an elementary system desired in
(**).
The proof is complete.

Remark 2. Let An (n = 1, 2, . . . ) and Dn (n = 1, 2, . . . ) be the sequences of sets
given in Lemma 5. In this case, for the function f(x) on I0 given in Lemma 5, if the state-
ments (1) and (2) in Lemma 5 hold, then, when we put F (I) = limn→∞(L)

R
I∩Dn

f(x)dx

for every interval I ⊂ I0, the function F (I) is a finitely additive interval function on I0, and
further:

Given εn ↓ 0, there exists a sub-sequence mn (n = 1, 2, . . . ) of {1, 2, . . . } such
that if Ij (j = 1, 2, . . . , j0) is an elementary system in I0 such that Ij ∩ Amn

6= ∅ for
j = 1, 2, . . . , j0, then¯̄̄̄

¯̄ j0X
j=1

F (Ij)−
j0X
j=1

(L)

Z
Ij∩Dmn

f(x)dx

¯̄̄̄
¯̄ < εn.

Hence, by [1, Theorem 5, p. 84] (or [2, Main Theorem, p. 229]) if, for the function f(x)
given in Lemma 5, the statements (1) and (2) in Lemma 5 are true, then the function f(x)
is special Denjoy integrable on I0, and so by Proposition 4, it is (D0) integrable on I0. In
this case, F (I0) is the (D0) integral of f(x) on I0.

Theorem 1. Let f(x1, x2, . . . , xn0) be a (D0) integrable function on an interval
R0 = [a1, b1; a2, b2; . . . ; an0 , bn0 ] in the n0-dimensional Euclidean space En0 . Then, the
following two statements hold.

(1) Given any n ∈ {1, 2, . . . , n0}, for almost all (x1, x2, . . . , xn−1, xn+1, . . . , xn0) in
the (n0−1)-dimensional interval [a1, b1; a2, b2; . . . ; an−1, bn−1; an+1, bn+1; . . . ; an0 , bn0 ]
the function f(x1, x2, . . . , xn0) considered as a function of xn in the one-dimensional in-
terval [an, bn] is (D0) integrable on [an, bn].

(2) Corresponding to each n ∈ {1, 2, . . . , n0}, there exists a nondecreasing sequence
of closed sets Di (i = 1, 2, . . . ) in R0 such that µn0 (R0 − ∪∞i=1 Di) = 0 and

(D0)

Z bn

an

f(x1, x2, . . . , xn, . . . , xn0)dxn

= lim
i→∞

(L)

Z
(Di)q

f(x1, x2, . . . , xn, . . . , xn0)dxn

for almost all q = (x1, x2, . . . , xn−1, xn+1, . . . , xn0) in the (n0−1)-dimensional interval
[a1, b1; a2, b2; . . . ; an−1, bn−1; an+1, bn+1; . . . ; an0 , bn0 ].

Proof. For simplicity, we prove only for the case of n0 = 2 and R0 = [0, 1; 0, 1]. Let
εn (n = 1, 2, . . . ) be the sequence of positive numbers given in (2

◦) such that εn ↓ 0 andP∞
m=n+1 εm < εn for every n ∈ N. For the sequence, let

Ai = Fnimi and Di = Fnimi ∩ Fmh(i)
(i = 1, 2, . . . )

be the nondecreasing sequences of closed sets defined as in (13◦) and κ∗i (i = 1, 2, . . . )
the nonincreasing sequence of positive numbers defined as in (14◦). Let Z = proj y(R0) −
∪∞i=1 proj y(Fnimi) as in (I), defined in (5

◦).

Then, as seen in (c) of (I), for every y ∈ proj y(R0)− Z we have:
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(a) (Ai)
y (i = 1, 2, . . . ) is a nondecreasing sequence of closed sets whose union is (R0)

y.

Since, further in the definition of (D0) integral for f(x, y), Fn ↑, µ2(R0 − ∪∞n=1 Fn) = 0
and f(x, y) is Lebesgue integrable on Fn for every n ∈ N, there exists a set

X0 ⊂ proj y(R0) (20◦)

such that X0 ⊃ Z, µ1(X0) = 0, and for every y ∈ proj y(R0)−X0
(b) (Di)

y(i = 1, 2, . . . ) is a nondecreasing sequence of closed sets such that (Di)
y ⊂

(Ai)
y, µ1((R0)

y−∪∞i=1(Di)y) = 0, and f(x, y) is Lebesgue integrable on (Di)y as a function
of x for every i ∈ N.
Hence, for every y ∈ proj y(R0) −X0, (a) and (b) hold. Therefore, by Remark 2 above in
order that the function f(x, y) is (D0) integrable on [0, 1] as a function of x for almost all y ∈
proj y(R0)−X0, it suffices to prove that: when we denote the set of all y ∈ proj y(R0)−X0
for which one at least of the statements (1) and (2) in Lemma 5 is not true by Y ∗, we have
µ1(Y

∗) = 0. We have Y ∗ ⊂ proj y(R0)−X0. By Lemmas 4 and 5, we know that if y ∈ Y ∗,
then the following statement (*) holds.

(*) There exist a number h0(y) > 0 and a sub-sequence ij(y)(j = 1, 2, . . . ) of
{1, 2, . . . } for which the following statement (**) holds:
(**) Given a number η > 0, for each j ∈ N there exist a one-dimensional elementary

system Jt(y)(= Jt(j, η, y))(t = 1, 2, , . . . , t0(y)(= t0(j, η, y))) on proj x(R0) and an integer
i0j(y)(= i

0
j(η, y)) with i

0
j(y) > ij(y)(≥ j) such that:

1) the both end-points of Jt(y) are rational points for t = 1, 2, . . . , t0(y);

2) (Jt(y)× {y}) ∩ (Aij(y))y 6= ∅ for t = 1, 2, . . . , t0(y);

3)

¯̄̄̄Pt0(y)
t=1 (L)

R
(Jt(y)×{y})∩((Di0j(y)

)y−(Dij(y)
)y)

f(x, y)dx

¯̄̄̄
> h0(y);

4)
¯̄̄Pt0(y)

t=1 (L)
R
(Jt(y)×{y})∩(Dij(y)

)y
f(x, y)dx

¯̄̄
< η.

Suppose that the outer measure of Y ∗ is positive, we shall lead a contradition. Take
an h0 > 0 so that the one-dimensional outer measure of the set Y ∗∗ consisting of all
y ∈ Y ∗ for which h0(y) ≥ h0 is 2k0 for some k0 > 0. Take indices i0, i1 and i2 so that
εi0 + εi1 < (h0, k0)/8, εi1 < εi0 and

P∞
i=i2

εi < εi0 .

Let us consider the statement (**) above for η = εi1/2 and j = i2. Then, for every
y ∈ Y ∗∗ there exist a one-dimensional elementary system Jt(y)(t = 1, 2, . . . , t0(y)) and
i(y) and i0(y) with i0(y) > i(y) ≥ i2 such that:

α) the both end-points of Jt(y) are rational points for t = 1, 2, . . . , t0(y);

β) (Jt(y)× {y}) ∩ (Ai(y))y 6= ∅ for t = 1, 2, . . . , t0(y);
γ)

¯̄̄Pt0(y)
t=1 (L)

R
(Jt(y)×{y})∩((Di0(y))y−(Di(y))y)

f(x, y)dx
¯̄̄
> h0;

δ)
¯̄̄Pt0(y)

t=1 (L)
R
(Jt(y)×{y})∩(Di(y))y

f(x, y)dx
¯̄̄
< εi1/2.

In this case, we suppose that there exists a subset Y 0 of Y ∗∗whose outer measure is ≥ k0
and such that for every y ∈ Y 0 we have

γ0)
Pt0(y)

t=1 (L)
R
(Jt(y)×{y})∩((Di0(y))y−(Di(y))y)

f(x, y)dx > h0
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instead of γ). Because, for the opposite case:
Pt0(y)

t=1 (L)
R
(Jt(y)×{y})∩((Di0(y))y−(Di(y))y)

f(x, y)dx <

−h0 it is sufficient to consider the function −f(x, y) by Proposition 3.
Now, for every integer i∗ with i∗ > i2, denote by Yi∗ the set of all y ∈ (proj y(R0)−X0)

for which there exist

a one-dimensional elementary system Jt (t = 1, 2, . . . , t0) on proj y(R0) and

i0 and i with i∗ ≥ i0 > i ≥ i2,

satisfying the following α∗), β∗), γ∗) and δ∗) :

α∗) the both end-points of Jt are rational points for t = 1, 2, . . . , t0;
β∗) (Jt × {y}) ∩ (Ai)y 6= ∅ for t = 1, 2, . . . , t0;
γ∗)

Pt0
t=1 (L)

R
(Jt×{y})∩((Di0)y−(Di)y)

f(x, y)dx > h0;

δ∗)
¯̄̄Pt0(y)

t=1 (L)
R
(Jt×{y})∩(Di)y

f(x, y)dx
¯̄̄
< εi1/2.

Then, we have

∪∞i∗=i2+1Yi∗ ⊃ Y 0, each Yi∗ is measurable and Yi∗ ↑ as i∗ →∞.

Hence, there exists an integer i∗ > i2 such that

µ1(Yi∗) > (3/4)k0. (21◦)

Fix such an i∗.

Next, we consider the set of all combinations (S, i0, i) such that S is a one-dimensional
elementary system on projx(R0) consisting of intervals whose end-points are rational; and
i0, i ∈ N with i∗ ≥ i0 > i ≥ i2. Then, the set is countable. Therefore, we can denote the set
by

Cs = (Ss, i
0(s), i(s)) (s ∈ N),

where Ss is a one-dimensional elementary system on proj x(R0) written

Ss : {Jsj (j = 1, 2, . . . , j0(s))} and

i∗ ≥ i0(s) > i(s) ≥ i2.

In this case, needless to say

α∗∗) the both end-points of Jsj are rational points for j = 1, 2, . . . , j0(s).

Associate with each Cs(s ∈ N), denote by Y 0s the set of all y ∈ Yi∗ satisfying the following :
β∗∗) (Jsj × {y}) ∩ (Ai(s))y 6= ∅ for j = 1, 2, . . . , j0(s);
γ∗∗)

Pj0(s)
j=1 (L)

R
(Jsj×{y})∩((Di0(s))y−(Di(s))y)

f(x, y)dx > h0;

δ∗∗)
¯̄̄Pj0(s)

j=1 (L)
R
(Jsj×{y})∩(Di(s))y

f(x, y)dx
¯̄̄
< εi1/2.



NON-ABSOLUTE MULTIPLE INTEGRAL 273

Then, Y 0s is measurable. Put

Z1 = Y
0
1 , Zs = Y

0
s − ∪s−1t=1Y

0
t (possible empty) for s = 2, 3, . . . .

Clearly, Yi∗ = ∪∞s=1Zs and Zs(s = 1, 2, . . . ) are measurable and mutually disjoint. Now,
we take an s0 so that

s0X
s=1

µ1(Zs) > (3/4)k0 (22◦)

and fix. In what follows, s ∈∗ {1, 2, . . . , s0} means that s ∈ {1, 2, . . . , s0} and
µ1(Zs) 6= 0. For each Zs, where s ∈∗ {1, 2, . . . , s0}, consider a one-dimensional elementary
system Ks

l (l = 1, 2, . . . , l0(s)) on proj y(R0) such that

(Ks
l )
◦ ∩ Zs 6= ∅ for l = 1, 2, . . . , l0(s); (23◦)

µ1(Zs − ∪l0(s)l=1 K
s
l ) < k0/2s0 and µ1(∪l0(s)l=1 K

s
l − Zs) < (1/s0)(min(δ,κ∗i0(s))), (24◦)

where δ is a positive number such that if µ2(E) < δ, then (L)
RR

E∩Di∗
|f(x, y)|d(x, y) <

εi1/2. The existence of such elementary system {Ks
l } follows from Vitali’s covering theorem.

(See Remark 3 below.) As easily seen, we can choose Ks
l (s ∈∗ {1, 2, . . . , s0} and l ∈

{1, 2, . . . , l0(s)}) to be Ks
l ∩ Ks0

l0 = ∅ for s 6= s0, l ∈ {1, 2, . . . , l0(s)} and l0 ∈
{1, 2, . . . , l0(s0)}. Put

Islj = J
s
j ×Ks

l

for s ∈∗ {1, 2, . . . , s0}, l ∈ {1, 2, . . . , l0(s)} and j ∈ {1, 2, . . . , j0(s)}. Consider,
for each pair s, l with s ∈∗ {1, 2, . . . , s0} and l ∈ {1, 2, . . . , l0(s)}, a two-dimensional
(*)-elemetary system

Ssl : {Islj(j = 1, 2, . . . , j0(s))}.

In this case, proj y(S
s
l ) = K

s
l and

proj y(∪l0(s)l=1 (S
s
l )) ∩ proj y(∪l0(s

0)
l=1 (Ss

0
l )) = ∅ for s 6= s0. (25◦)

For each s ∈∗ {1, 2, . . . , s0}, put

Y ∗s = proj y(∪l0(s)l=1 (S
s
l )
◦) ∩ Zs = ∪l0(s)l=1 (K

s
l )
◦ ∩ Zs. (26◦)

Then

Y ∗s ⊂ Zs ⊂ Y 0s and Y ∗s ∩ Y ∗s0 = ∅ for s 6= s0.

Now, we consider the two-dimensional (**)-elementary system S consisting of two-
dimensional (*)-elementary systems

{Ssl : s ∈∗ {1, 2, . . . , s0} and l ∈ {1, 2, . . . , l0(s)}}.
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For the consideration,

(A) first, we consider an i with i∗ > i ≥ i2. Put

4i = {s : s ∈∗ {1, 2, . . . , s0} and i(s) = i},

and we consider the two-dimensional (**)-elementary system associated with 4i :

{Ssl : l ∈ {1, 2, . . . , l0(s)}, where s is taken over 4i}.

In this case

∪i2≤i<i∗4i = {s : s ∈∗ {1, 2, . . . , s0}} and 4i (i2 ≤ i < i∗) are mutually disjoint.

Put

Y ∗4i
= ∪s∈4iY

∗
s .

Then, for s ∈∗ {1, 2, . . . , s0} Y ∗s ⊂ Y 0s , so by β∗∗)Y ∗s ⊂ projy(Ai(s)). Further, Y
∗
s ⊂

projy(∪l0(s)l=1 (S
s
l )
◦) by (26◦). Hence, Y ∗s ⊂ projy(∪l0(s)l=1 (S

s
l )
◦) ∩ projy(Ai(s)). Therefore, for

each s ∈ 4i we have Y
∗
s ⊂ projy(∪l0(s)l=1 (S

s
l )
◦) ∩ projy(Ai), and so

(4.1) Y ∗4i
⊂ projy(∪s∈4i ∪l0(s)l=1 (S

s
l )
◦) ∩ projy(Ai).

Further, by (26◦) and (24◦), for each s ∈ 4i

µ1(proj y(∪l0(s)l=1 S
s
l )− Y ∗s ) = µ1(∪l0(s)l=1 K

s
l − Zs) < (1/s0)(min(δ, κ∗i0(s)))

≤ (1/s0)(min(δ,κ∗i(s))) = (1/s0)(min(δ,κ∗i ))

and so, by (25◦) and (26◦)

(4.2) µ1(proj y(∪s∈4i ∪l0(s)l=1 S
s
l )− Y ∗4i

) < (1/s0)(min(δ, κ
∗
i ))× s0 ≤ κ∗i .

By (25◦), (26◦) and (23◦), we have:

(4.3) for l ∈ {1, 2, . . . , l0(s)}, where s ∈ 4i, Y
∗
4i
∩ projy((Ssl )◦) = Y ∗s ∩ (Ks

l )
◦ =

((∪l0(s)l0=1 (K
s
l0)
◦ ∩ Zs) ∩ (Ks

l )
◦ = Zs ∩ (Ks

l )
◦ 6= ∅; and

(4.4) for l ∈ {1, 2, . . . , l0(s)}, where s ∈ 4i, if y ∈ Y ∗4i
∩ projy((Ssl )◦), then y ∈

projy((S
s
l )
◦), so (Islj)

y = Jsj × {y} for j = 1, 2, . . . , j0(s). Further, by (25
◦) and (26◦)

y ∈ Y ∗s and so y ∈ Y 0s . Hence, for l ∈ {1, 2, . . . , l0(s)}}, where s ∈ 4i, by β
∗∗)

(Islj)
y ∩ (Ai)y = (Jsj × {y}) ∩ (Ai(s))y 6= ∅ for j = 1, , 2 . . . , j0(s).

Consequently, by Lemma 3 for the (**)-elementary system {Ssl : l ∈ {1, 2, . . . , l0(s)},
where s is taken over 4i}, the following inequality holds:¯̄̄̄

¯̄ X
s∈4i

l0(s)X
l=1

F (Ssl )− (L)
ZZ

(∪s∈4i
∪l0(s)l=1 Ssl )∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi.

Since the above inequality holds for every integer i with i∗ > i ≥ i2
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¯̄̄̄
¯̄i
∗−1X
i=i2

X
s∈4i

l0(s)X
l=1

F (Ssl )−
i∗−1X
i=i2

X
s∈4i

l0(s)X
l=1

(L)

ZZ
Ss
l
∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < i∗−1X

i=i2

εi < εi0 .

Thus ¯̄̄̄
¯̄F (S)− X

s∈∗{1, 2, ... , s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi0 ,

and so

|F (S)| < εi0 +

¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ . (27◦)

Further, since, for s ∈∗ {1, 2, . . . , s0},

Ssl = ∪j0(s)j=1 J
s
j ×Ks

l and Y
∗
s ⊂ ∪l0(s)l=1 K

s
l by (22

◦
),

¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄

≤
¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×(∪

l0(s)

l=1 Ks
l −Y ∗s ))∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ .

Since Y ∗s ⊂ Y 0s and Y ∗s ∩ Y ∗s0 = ∅ for s 6= s0, by δ∗∗)¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi1/2.

By (25◦), (26◦) and (24◦),
P

s∈∗{1,2,... ,s0} µ1(∪
l0(s)
l=1 K

s
l −Y ∗s ) <

P
s∈∗{1,2,... ,s0}(1/s0)(min(δ,κ

∗
i0(s))) ≤

δ, and further, since i(s) < i∗, Di(s) ⊂ Di∗ . Hence, by the definition of δ¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×(∪

l0(s)

l=1 Ks
l −Y ∗s ))∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi/2.

Thus
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¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi1/2 + εi1/2.

Consequently

|F (S)| < εi0 + εi1 , and so |F (S)| < (h0 k0)/8. (28◦)

(B) In a quite similar way as in the case of i(s), for the case of i0(s) we obtain¯̄̄̄
¯̄F (S)− s0X

s=1

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di0(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi0 .

Indeed, first consider an i with i∗ ≥ i > i2. Put

Λi = {s : s ∈∗ {1, 2, . . . , s0} and i0(s) = i}.

Fix an i with i∗ ≥ i > i2. Next, consider the two-dimensional (**)-elementary system
associated with Λi :

{Ssl : l ∈ {1, 2, . . . , l0(s)}, where s is taken over Λi}.

Then, the (**)-elemetary system has the following properties as in the case (A), putting
Y ∗Λi = ∪s∈ΛiY ∗s .
First, for each s ∈ Λi, since i0(s) > i(s), Ai0(s) ⊃ Ai(s), and so, as in the case of (A),

Y ∗s ⊂ projy(∪l0(s)l=1 (S
s
l )
◦) ∩ projy(Ai0(s)) = projy(∪l0(s)l=1 (S

s
l )
◦) ∩ projy(Ai). Hence

(4.1) Y ∗Λi ⊂ projy(∪s∈Λi ∪
l0(s)
l=1 (S

s
l )
◦) ∩ projy(Ai).

Since, for each s ∈ Λi, µ1(projy(∪l0(s)l=1 S
s
l )−Y ∗s ) < (1/s0)(min(δ,κ∗i0(s))) = (1/s0)(min(δ,κ∗i )),

we have

(4.2) µ1(projy(∪s∈Λi ∪l0(s)l=1 S
s
l )− Y ∗Λi) < κ∗i .

Further, as in the case of (A), we obtain:

(4.3) For l = 1, , 2, . . . , l0(s), where s ∈ Λi, Y ∗Λi ∩projy((Ssl )◦) = Zs ∩ (Ks
l )
◦ 6= ∅; and,

since Ai0(s) ⊃ Ai(s),
(4.4) for l = 1, , 2, . . . , l0(s), where s ∈ Λi, if y ∈ Y ∗Λi ∩ projy((Ssl )◦), then

(Islj)
y ∩ (Ai)y = (Jsj × {y}) ∩ (Ai0(s))y 6= ∅ for j = 1, 2, . . . , j0(s).

Consequently, by Lemma 3 for the (**)-elementary system {Ssl : l = 1, 2, . . . , l0(s),
where s is taken over Λi}¯̄̄̄

¯̄ X
s∈Λi

l0(s)X
l=1

F (Ssl )− (L)
ZZ

(∪s∈Λi∪
l0(s)

l=1 Ssl )∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi.
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Since the above inequality holds for every i with i∗ ≥ i > i2
¯̄̄̄
¯̄ i∗X
i=i2+1

X
s∈Λi

l0(s)X
l=1

F (Ssl )−
i∗X

i=i2+1

X
s∈Λi

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di

f(x, y)d(x, y)

¯̄̄̄
¯̄ < i∗X

i=i2+1

εi < εi0 .

Therefore ¯̄̄̄
¯̄F (S)− X

s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di0(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi0 .

From this inequality, it follows that

|F (S)| >
X

s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ssl ∩Di0(s)

f(x, y)d(x, y)− εi0 .

Furthermore

X
s∈∗{1,2,... ,s0}

l0(s)X
l=1

(L)

ZZ
Ss
l
∩Di0(s)

f(x, y)d(x, y)

≥
X

s∈∗{1,2,... ,s0}
(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩(Di0(s)−Di(s))

f(x, y)d(x, y)

−
¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄

−
¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×(∪

l0(s)

l=1 Ks
l −Y ∗s ))∩Di0(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄

> (h0 k0)/4− εi1/2− εi1/2 = (h0 k0)/4− εi1 .

Because, we first have, by (24◦)X
s∈∗{1,2,... ,s0}

µ1(Zs − ∪l0(s)l=1 K
s
l ) < (k0/2s0)× s0 = k0/2.

Hence, by (26◦) and (22◦)

X
s∈∗{1,2,... ,s0}

µ1(Y
∗
s ) =

X
s=∈∗{1,2,... ,s0}

µ1(Zs)−
X

s=∈∗{1,2,... ,s0}
µ1(Zs − ∪l0(s)l=1 K

s
l )

>

s0X
s=1

µ1(Zs)− k0/2 > (3/4)k0 − k0/2 = k0/4.
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Further, for every y ∈ Y ∗s (s ∈∗ {1, 2, . . . , s0}), we have, by Y ∗s ⊂ Y 0s and γ∗∗),

(L)

Z
((∪j0(s)j=1 Jsj )×{y})∩((Di0(s))y−(Di(s))y)

f(x, y)dx > h0,

and Y ∗s ∩ Y ∗s0 = ∅ for s 6= s0. HenceX
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩(Di0(s)−Di(s))

f(x, y)d(x, y) > (h0, k0)/4.

Further, by δ∗∗)¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×Y ∗s )∩Di(s)

f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi1/2.

Finally, since, by (26◦), µ1(∪l0(s)l=1 K
s
l − Y ∗s ) = µ1(∪l0(s)l=1 K

s
l − Zs),X

s∈∗{1,2,... ,s0}
µ1(∪l0(s)l=1 K

s
l − Y ∗s ) < (1/s0)(min(δ,κ∗i0(s)))× s0 ≤ δ.

And further i0(s) ≤ i∗. Hence, by the definition of δ¯̄̄̄
¯̄ X
s∈∗{1,2,... ,s0}

(L)

ZZ
((∪j0(s)j=1 Jsj )×(∪

l0(s)
l=1 Ks

l −Y ∗s ))∩Di0(s)
f(x, y)d(x, y)

¯̄̄̄
¯̄ < εi1/2.

Consequently

|F (S)| > (h0 k0)/4− (εi1 + εi0) > (h0 k0)/4− (h0 k0)/8 = (h0 k0)/8,

which contradicts |F (S)| < (h0 k0)/8 shown in (28◦).
Consequently, the outer measure of the set Y ∗ must be zero.
Now, put

W0 = X0 ∪ Y ∗. (29◦)

Then, µ1(W0) = 0, and for every y ∈ projy(R0)−W0, f(x, y) is (D0) integrable as a function
of x and the limit

lim
n→∞(L)

Z
(Dn)y

f(x, y)dx

exists, and the limit coincides with the (D0) integral of f(x, y) considered as a function of
x on projy(R0). Thus, the proof of Theorem 1 is complete.

Remark 3. The family of intervals in proj
En0−1

y(R0) covers the set Zs in the sense of

Vitali. Hence, there exists an elementary system in proj
En0−1

y(R0) : K
s
l (l = 1, 2, . . . , l0(s))
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satisfying (24◦) and such that Ks
l ∩Zs 6= ∅ for l = 1, 2, . . . , l0(s). By a slight modification,

we can obtain Ks
l (l = 1, 2, . . . , l0(s)) to satisfy (23

◦) and (24◦).

The result of Theorem 1 leads us to the following theorem.

Theorem 2. Let f(x1, x2, . . . , xn0) be a (D0) integrable function on an interval
R0 = [a1, b1;a2, b2; . . . ; an0 , bn0 ] in the n0-dimensional Euclidean space En0 . Then

(1) for each n ∈ {1, 2, . . . , n0}, the function (D0)
R bn
an
f(x1, x2, . . . , xn0)dxn defined

for almost all (x1, x2, . . . , xn−1, xn+1, . . . , xn0) in the (n0 − 1)-dimensional interval
Rn0−1 = [a1, b1; a2, b2; . . . ; an−1, bn−1;an+1, bn+1; . . . ; an0 , bn0 ] is (D0) integrable on the
interval Rn0−1,
and the following equalities hold:

(2) (D0)
RR
. . .

R
R0
f(x1, x2, . . . , xn0)d(x1, x2, . . . , xn0)

= (D0)
RR
. . .

R
Rn0−1

³
(D0)

R bn
an
f(x1, x2, . . . , xn0)dxn

´
d(x1, x2, . . . , xn−1, xn+1, . . . , xn0);

(3) (D0)
RR
. . .

R
R0
f(x1, x2, . . . , xn0)d(x1, x2, . . . , xn0)

= (D0)
R bn0
an0

³
. . .

³
(D0)

R bn2
an2

³
(D0)

R bn1
an1

f(x1, x2, . . . , xn0)dxn1

´
dxn2

´
. . .

´
dxnn0

for every sequence n1, n2, . . . , nn0 consisting of 1, 2, . . . , n0.

Proof. For simplicity, we prove only for the case when n0 = 2 and R0 = [0, 1; 0, 1]. We
first prove (1) and (2) for the case when xn = x, putting x1 = x and x2 = y. We will omit
the proof of the other case, because the proof is similar. Put

fi(y) = (L)

Z
(Di)y

f(x, y)dx for every y ∈ proj y(R0)−W0, and

= 0 for every y ∈W0;

f(y) = (D0)

Z l

0

f(x, y)dx for every y ∈ proj y(R0)−W0, and

= 0 for every y ∈W0,

where Di(i = 1, 2, . . . ) is the sequence of closed sets indicated in (2) of Theorem 1, and
W0 is the set of µ1-measure zero defined in (29

◦).

Since then f(y) = limi→∞ fi(y) on projy(R0) by Theorem 1 and fi(y) is measurable for
each i ∈ N, by the Egoroff’s theorem there exists a sequence of measurable sets M∗k (k =
0, 1, . . . ) on projy(R0) such that: ∪∞k=0M∗k = projy(R0); µ1(M

∗
0 ) = 0; and for each

k ∈ N, M∗k ∩M∗0 = ∅, M∗k+1 ⊃ M∗k , M∗k is a closed set, and fi(y) converges uniformly to
f(y) onM∗k . In this case, since fi(y) is Lebesgue integrable on projy(R0) for each i ∈ N, f(y)
is Lebesgue integrable on M∗k .

Let Bk(k = 1, 2, . . . ) be the sequence of measurable sets indicated in Lemma 2, defined
in (9◦). Put
Z0 = projy(R0)− ∪∞k=1 projy(Dk);
Lk = ((projy(Bk) ∩ Z0) ∪ projy(Dk)) ∩ (M∗0 ∪M∗k ) for k = 1, 2, . . . ;
Nk = projy(Dk) ∩M∗k for k = 1, 2, . . . .
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Then, µ1(Z0) = 0 by (11
◦), Lk(k = 1, 2, . . . ) is a nondecreasing sequence of measurable sets

whose union is projy(R0) and Nk(k = 1, 2, . . . ) is a nondecreasing sequence of closed sets
such that Lk ⊃ Nk and µ1(projy(R0)− ∪∞k=1Nk) = 0. Further, f(y) is Lebesgue integrable
on Nk for each k ∈ N.
Let εi(i = 1, 2, . . . ) be the sequence of positive numbers given in (2◦). Given a

k ∈ N and a number ε > 0, take an i0(k, ε) so that i0(k, ε) ≥ k, εi0(k,ε) < ε/7 and
|f(y) − fi0(k,ε)(y)| < ε/7 for every y ∈ M∗k . Let λ(k, ε) be a positive number such that
if µ2(E) < λ(k, ε), then

¯̄̄
(L)

RR
E∩Di0(k,ε)

f(x, y)d(x, y)
¯̄̄
< ε/7. Let λ∗(k, ε) be a positive

number such that if µ1(E) < λ∗(k, ε), then
¯̄̄
(L)

R
E∩Nk

f(y)dy
¯̄̄
< ε. Put

δ∗(k, ε) = (1/2)min(κ∗i0(k,ε), ρ(k, ε/7),λ(k, ε),λ
∗(k, ε/7)).

Put E∗ = projx(R0)× E for a set E ⊂ projy(R0).
Now, in order to prove (1) and (2) of the theorem it suffices to prove that:
Let It(t = 1, 2, . . . , t0) be an elementary system in projy(R0) such that It ∩ Lk 6= ∅

for t = 1, 2, . . . , t0 and µ1(∪t0t=1It − Lk) < δ∗(k, ε). Then¯̄̄̄
¯
t0X
t=1

G(It)−
t0X
t=1

(L)

Z
It∩Nk

f(y)dy

¯̄̄̄
¯ < ε,

where G(I) = F (I∗) for an interval I in projy(R0).

Denote by I1t(t = 1, 2, . . . , t1) the family of all intervals It for which It∩projy(Dk) 6= ∅,
where t = 1, 2, . . . , t0; and by I2t(t = 1, 2, . . . , t2) the others. Then, I2t∩projy(Dk) = ∅
for t = 1, 2, . . . , t2.

(i) For I1t(t = 1, 2, . . . , t1) : By Proposition 5, there exists an elementary system
H1t(t = 1, 2, . . . , t1) such that (H1t)

◦ ⊃ I1t for t = 1, 2, . . . , t1;µ1(∪t1t=1H1t−∪t1t=1I1t) <
δ∗(k, ε); and¯̄̄̄

¯
t1X
t=1

G(H1t)−
t1X
t=1

G(I1t)

¯̄̄̄
¯ =

¯̄̄̄
¯
t1X
t=1

F ((H1t)
∗)−

t1X
t=1

F ((I1t)
∗)

¯̄̄̄
¯ < ε/7.

For H1t(t = 1, 2, . . . , t1), we have:¯̄̄̄
¯
t1X
t=1

G(H1t)−
t1X
t=1

(L)

Z
H1t∩Nk

f(y)dy

¯̄̄̄
¯

≤
¯̄̄̄
¯
t1X
t=1

G(H1t)−
t1X
t=1

(L)

Z
H1t

fi0(k,ε)(y)dy

¯̄̄̄
¯ +

¯̄̄̄
¯
t1X
t=1

(L)

Z
H1t∩Nk

(f(y)− fi0(k,ε)(y))dy
¯̄̄̄
¯

+

¯̄̄̄
¯
t1X
t=1

(L)

Z
H1t−Nk

fi0(k,ε)(y)dy

¯̄̄̄
¯ .

Since i0(k, ε) ≥ k and Ak ⊃ Dk, we have Ai0(k,ε) ⊃ Dk. Further, since (H1t)◦∩projy(Dk) ⊃
I1t ∩ projy(Dk) 6= ∅, we have (H1t)◦ ∩ projy(Ai0(k,ε)) 6= ∅ for t = 1, 2, . . . , t1; and
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µ1(∪t1t=1H1t − (∪t1t=1(H1t)◦ ∩ proj y(Ai0(k,ε))))

≤ µ1(∪t1t=1H1t − (∪t1t=1I1t ∩ proj y(Dk)))

≤ µ1(∪t1t=1H1t − ∪t1t=1I1t) + µ1(∪t1t=1I1t − (∪t1t=1I1t ∩ proj y(Dk)))

≤ δ∗(k, ε) + µ1(∪t1t=1I1t − Lk) < 2δ∗(k, ε) ≤ κ∗i0(k,ε).

Hence, by Lemma 3¯̄̄̄
¯
t1X
t=1

F ((H1t)
∗)−

t1X
t=1

(L)

ZZ
(H1t)∗∩Di0(k,ε)

f(x, y)d(x, y)

¯̄̄̄
¯ < εi0(k,ε) < ε/7.

And so ¯̄̄̄
¯
t1X
t=1

G(H1t)−
t1X
t=1

(L)

Z
H1t

fi0(k,ε)(y)dy

¯̄̄̄
¯ < ε/7.

Further, since |f(y)− fi0(k,ε)(y)| < ε/7 for every y ∈ Nk¯̄̄̄
¯
t1X
t=1

(L)

Z
H1t∩Nk

(f(y)− fi0(k,ε)(y))dy
¯̄̄̄
¯ < ε/7.

Finally, since µ2(∪t1t=1(H1t)∗− (Nk)∗) = µ2(∪t1t=1(H1t)∗− (Lk)∗) ≤ µ1(∪t1t=1H1t−∪t1t=1I1t)+
µ1(∪t1t=1I1t − Lk) < 2δ∗(k, ε) ≤ λ(k, ε),

¯̄̄̄
¯
t1X
t=1

(L)

Z
H1t−Nk

fi0(k,ε)(y)dy

¯̄̄̄
¯ =

¯̄̄̄
¯
t1X
t=1

(L)

ZZ
(H1t−Nk)∗∩Di0(k,ε)

f(x, y)d(x, y)

¯̄̄̄
¯ < ε/7.

Therefore ¯̄̄̄
¯
t1X
t=1

G(H1t)−
t1X
t=1

(L)

Z
H1t∩Nk

f(y)dy

¯̄̄̄
¯ < 3(ε/7).

Consequently, since µ1(∪t1t=1H1t − ∪t1t=1I1t) < δ∗(k, ε) < λ∗(k, ε/7),¯̄̄̄
¯
t1X
t=1

G(I1t)−
t1X
t=1

(L)

Z
I1t∩Nk

f(y)dy

¯̄̄̄
¯ ≤

¯̄̄̄
¯
t1X
t=1

G(I1t)−
t1X
t=1

G(H1t)

¯̄̄̄
¯

+

¯̄̄̄
¯
t1X
t=1

G(H1t)−
t1X
t=1

(L)

Z
H1t∩Nk

f(y)dy

¯̄̄̄
¯+

¯̄̄̄
¯
t1X
t=1

(L)

Z
(H1t−I1t)∩Nk

f(y)dy

¯̄̄̄
¯

< ε/7 + 3(ε/7) + ε/7 = 5ε/7.
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(ii) For I2t(t = 1, 2, . . . , t2): Since I2t ∩ Lk 6= ∅ and I2t ∩ projy(Dk) = ∅, we
have I2t ∩ projy(Bk) 6= ∅, and so (I2t)∗ ∩ Bk 6= ∅ for t = 1, 2, . . . , t2. Further, since
µ1((projy(Bk) ∩ Z0) ∩ (M∗0 ∪M∗k )) = 0 and I2t ∩ projy(Dk) = ∅ for t = 1, 2, . . . , t2, we
have µ1(projy(∪t2t=1(I2t)∗)) = µ1(∪t2t=1I2t) = µ1(∪t2t=1I2t− (projy(Bk)∩Z0)∩ (M∗0 ∪M∗k )) =
µ1(∪t2t=1I2t − Lk) < δ∗(k, ε) < ρ(k, ε/7). Hence, by Lemma 2¯̄̄̄

¯
t2X
t=1

G(I2t)

¯̄̄̄
¯ =

¯̄̄̄
¯
t2X
t=1

(F (I2t)
∗)

¯̄̄̄
¯ < ε/7.

Further, since µ1(∪t2t=1I2t) < δ∗(k, ε) < λ∗(k, ε/7)¯̄̄̄
¯
t2X
t=1

(L)

Z
I2t∩Nk

f(y)dy

¯̄̄̄
¯ < ε/7.

Therefore ¯̄̄̄
¯
t2X
t=1

G(I2t)−
t2X
t=1

(L)

Z
I2t∩Nk

f(y)dy

¯̄̄̄
¯ < 2(ε/7) = 2ε/7.

Thus, by (i) and (ii) ¯̄̄̄
¯
t0X
t=1

G(It)−
t0X
t=1

(L)

Z
It∩Nk

f(y)dy

¯̄̄̄
¯ < ε.

(3) of the theorem is an immediate consequence of (1) and (2) of the theorem.
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