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ABSTRACT. Suppose that X=]], ., Xa,if each space []; ., X, is d6-refinable (i.e., sub-
metalindelof), is X also §f-refinable? K.Chiba asked in [1]. This paper first show that
an inverse limit theorem for §@-refinable spaces. Using this, we obtain the result: Let
X=Tl,erXo be |Al- paracompact, X is §0-refinable iff [, o zXo is 60-refinable for each
FE[A]<“. Then, the above problem is answered positively. Next, we show that there
are similar results on hereditarily §¢-refinable spaces.

In the paper [1], K.Chiba asked:Suppose that X=]], . X,,if each space [],., X, is 66-
refinable (i.e., submetalindelof), is X also d6-refinable? This paper first prove respectively
the following:

Theorem 1. Let X be the inverse limit of an inverse system {XQ7W§7A\} and let the
projection 7, be an open and onto map for each a € A. If X is |A|-paracompact and each
X4 18 d6-refinable, then X is §f-refinable.

Theorem 2. Let X be the inverse limit of an inverse system {XQ7W§7A} and let the
projection 7, be an open and onto map for each o € A. If X is hereditarily |A|-paracompact
and each X, is hereditarily §6-refinable, then X is also hereditarily §f-refinable.

Using the aboves, we obtain the results:

Theorem 3. Let X=[] ., Xa be |A|-paracompact (resp. hereditarily |A|-paracompact), X
is §6-refinable (resp. hereditarily df-refinable) iff [ | o » X is 66-refinable (resp. hereditarily
§6-refinable) for each FE[A]<¥.

Therefore, the following holds trivially:

Theorem 4. Let X=][,. X is countable paracompact (resp. hereditarily countable para-
compact), then the following are equivalent:

(1) X is é6-refinable (resp. hereditarily d6-refinable).

(2) [1;c#Xi is d6-refinable (resp. hereditarily d6-refinable) for each F € [Z]<¥.

(3) I[;<,X; is 66-refinable (resp. hereditarily §6-refinable) for each ne w.

(3)=(1) in Theorem 4 is a positively answer of Problem 5 in [1].

We use that Ny (x) denotes the neighourhood system of a point x of a subspace Y of a
space X. Espectly, N(x) denotes Ny (x) when Y=X; |A|, clA, IntA and A° denote respectively
the cardinality, the closure, the interior and the complementary set of a set A; (U),, (U)|a
and A\, cp Hn denote respectively {Uc U : = €U}, {UNA:Ue U} and {(, c pHpn: Hy € Ha )
w and [X]<¢ denote, respectively, the first infinite ordinal number and the collection of all
non-empty finite subsets of a non-empty set X. And assume that all spaces are Hausdoff
spaces throughout this paper.

Definition 1. Let « be a cardinal number, A space is k-paracompact iff its every open
cover U of cardinal [Uf| < k has a locally finite open refinement; A space is |X|-paracompact
iff it is k- paracompact, where k=|X|.
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Definition 2B, A space X is said to be §6-refinable (submetalindelof) if its every open
cover U has a sequence (Gp)new of open refinements such that for every x€X there is a
n€ w with ord(x,G,) < w; A space X is said to be weakly §6-refinable if its every open cover
U has an open refinement G=(J, o, Gn such that for every x€X there is a n€ w such that
1<ord(x,Gy) < w.

Lemma 121, Let ) be a cardinal number. Suppose X is A-paracompact, A is a directed
set with |[A] = XA and H = {Hs : « € A} is an open cover of X such that H, CHp for each
a, B € A satisfying o < 3. Then there is an open cover K = {K, : a € A} of X such that
clKy CH, for each oo € A and K, CKjy for each a, § € A satisfying o < 3.

Lemma 2. A space X is hereditarily d6-refinable (resp. hereditarily weakly §6-refinable)
iff each open subspace of X is é6-refinable (resp.weakly §6-refinable).

This lemma is a direct result of Definition 2. Now we prove main theorems of this paper.
Proof of Theorem 1. Let & = {U;: £ € =} be an arbitrary open cover of X. For each
a € A and each € € =, let us put

Vae=U{V: Visin X, and 7;1(V)CU¢}
and put Vo = (J{Vae : £ € £}, then

(1) U{m5 ' (Va)ia € A}=X, and 7' (Va) C 75 (V) if a < 3.

Since X is |A|-paracompact, there is an open cover {W, : a € A} of X such that

(2) W, C 7' (Va) for each a € A, and W, CWy if o < .

For each a € A, let us put T,=X, — mo(X—clW,), then T, is closed in X, because 7,
is an open map. Again let C,=Int T, for each o € A, then

(3) {Cq:c € A} is an open cover of X.

In fact, for each x€X there is @ € A such that xéW,. There are some § € A and
some open set V in Xg such that xe& 775_1 (V)CW,, since W,is open in X. We choose a
v € A satisfying v > a and v > (3, then x€C, because 77[;1 (V)c =7'(T4). To show
this, let y=(ys5)sea € ng(\f)fﬁgl(Tﬁ/), then ys €V and y, € 74(X—clW,). Le., there
is an element z=(zs)sen €X—clW, such that z, = 7,(z)=y,, y5 = ﬂ'g(zﬁ,)év, z€ 7!';1
(V)=r 1 (73) " (V)CWa, then z€W,. This is a contradiction.

By |A|-paracompactness of X, there is a locally finite open cover {O,, : @ € A} of X such
that O, CCq for each o € A. Since Ty CVy = [J{Vae : € € =} and T, is closed in X,
then there is a sequence (G, (a))new of open sets of X, satisfying

(4) Each Gn(«) is a part refinement of {V.e : € € 2} and T C |JGn(a) for each n € w.

(5) For each x€T,, there is a n€ w such that ord(x,Gp(a)) < w, and G1 (G2 € Gu(a) if
Gla GZ € gn(Q)

For each n € w, let H,, = {7 (G)N0a:GE G,(a) and o € A}, then

(6) H, is an open refinement of U for each n € w.

In fact, for each © €X, there is @ € A such that + €0, CC, C WJI(TQ) and there is
Ge Gn(a) such that 2 € 7' (G)(Og, i.e., Hy is a cover of X. Again since for each a € A
and each G€ G,,(a) there is some {(G) € = such that GCV,¢(q), then 7' (G)NO0y C 77"
(G)C 7\';1(\7Q£(G))CU£(G). So, (6) is true.

For each F € [w]<¥, let us put Hp=/, .y Hn, then

(7) Each Hp is an open refinement of U.

Finally, we prove:

(8) For each x €X, there is a F € [w]<“ such that ord(z,Hr)< w.

Let z €X, since {O4 : o € A} is a locally open cover of X, A={a € Az €0,} is a
nonempty finite set. And foreach o € A, sincex €0, C 7, ' (T4 ), there is some n, € w such
that ord(ma (2).Gn., (@) <w. Put F = {nq : @ € A} andlet G ' (o)={r " (G):Ge Gn, ()},
then

(Hr)z C {Gm[maeA'Oa]: Ge /\aeA’(g;al (a))e and A" € [A]<}
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Therefore, ord(z,Hp)< w. O

Proof of Theorem 2. Let ¢/ = {Us: £ € =} be an open cover of open subspace Y of
X. For each a € A and each ¢ € Z, we put Voe={J{V: Vis in X, and n;'(V)CU¢} and
Vo =U{Vae : £ € Z}, then

(1) {77 (Va):a € A} is an open cover of Y and 7' (Vo) C 75" (V) if o < 3.

Since X is hereditarily |A|-paracompact, the open cover {r (V4 ):a € A} of the subspace
Y of X has an open refinement {W, : a € A} such that

(2) dW, C 71 (Vy) for each o € A, and W, CWy if o < 5.

For each o € A, put E,=J{E:E is open in X, and 7 *ra YE)CW,}, then

(3) 7 1 (E )CVV for each o € A and 7 1(E,)C L YEg) if a < 3.

Now, we assert that:

(4) {771 (Es):a € A} is an open cover of Y.

In fact, for each x€Y there is a o € A such that xéW,. There are some € A and some
open set V in Xg such that x& 77_1 (V)CW by [4,Theorem 2.5. 5} Let us put v € A such
that both v > «a and v > f3, then XE€ 7y V)= (mgmy)™ Y(V)=r} (/\g)_l(V:)CVVCY W,
then x€ ﬂ;l(EN’).

Put Fo=cl(E4)N[cl(Va)-Vo] for each o € A, we assert that

(5) 77 (Fa)(1Y=0

In fact, if there is some @ = (24)aea € 7, (Fa))Y, then 24 €Fy Ccl(Vy)-Va, @ &
71';1 (Vo) since x4 €V4. Next, we have Gclyﬂ’gl(EQ). To prove this, let us put HENy (),
then there are some € A and some open set V in X such that « € ng(\/’)CH. Pick v > o
v > and let V'=(x})"1(V), then

r € (V) =5 () (V)=(rjm) (V) =r3 (V)CH.

Since 2o €Fq Ccl(Eq) and zy € €V’ then 7 J(VHNEq # ¢. Let us put be #7(V')(\Ea,
then there is c€V’ such that x7(c)=b. There is y=(ys)sea) €X such that y, = =, (y)=c
Le., yo = 7)(yy) = wl(c)=b,

ye r (V)N 73 ma(VINES] C 77t (V)N 70 (Ba) CHO 75" (Ea),
Le., HN 7, Y(Ea)# &, thus xecly n, ' (Eo)C 7,1 (Vo). This contradicts to x¢ 7,1 (Vq).

(6) (Xa-Fa)NUEa)CVa = U{Vae : £ € Z} for each o € A.

In fact, for each t€(Xq-Fo)(cl(Eq), we have t&F, and tecl(E,). Since t&cl(Vqy)-V,
and E, CV,, then teV,.

By d6-refinableness of X4-Fq, there is a sequence (Gn(a))new of open covers of (Xq-
Fo)Ncl(Eq) such that

(7) Each G,(«) is part refinement of {Vye : € € =} and G1 (G2 € Gu(a) it Gy, Gy €
Gn(a)

(8) For each x€(Xo-Fo)[(cl(Ey) there is a n€ w such that ord(x,G,(a))< w.

Next, since X is hereditarily |A|-paracompact, the open cover {r;! (E,):a € A} of the
subspace Y has a locally finite open refinement {O, : a € A} such that O, C 7;1(E,) for
each a € A

Define H,, = {Oa (7, (G): G Gu(a), a € A} and let Hp=A, . Hn for cach F €
[w]<¥, then

(9) Each Hp is an open refinement of .

In fact, for each x €Y and each n€ w, there is some « € A such that x€Q,, C ’/T(;I(Ea),
then x, (A Fo)el(Ey). There is Ge gn( ) such that x, EG x€0, N7 (G), i.e., Hy
is an open cover of Y. Since for each G€ G, («) there is £ € = such that GCVe, then

O N7 G)C 77 (G)C 75 (Vae)CUg, hence Hp is an open refinement of U for each
F c [w]<w
Finally, we assert that

(10) For each » €X, there is some F € [w]<¥ such that ord(z,Hp)< w
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Let # €Y, A={a € A:z €0,} is an nonempty finite set. For each o € A, z €0, C
7o (Eq), we have 24 € (Xo-Fo)\Ea by (5), there is some n, € w such that ord(z,G,_ (o)) <
w. Put F ={ny:ae A}, then

(Hp)e € {GNINaea Oclt GE Aqea(Ga (@), and A’ € [A]),
Le., ord(2z,Hp)< w.

So, X is a hereditarily d6-refine space. O

Now, we discuss Tychonoff products of infinite factors about both §f-refinable spaces

and hereditarily §8-refinable spaces.
Proof of Theorem 3. (<) When |A| < w, it is obvious that X=]] o) Xa is §6-refinable
since F=A €[A]<¥. Without the loss of generality, we suppose |A| > w. Define the relation
<: F<E if and only if FCE for each F,E €[A]<“. Then [A]<“ is a directed set on the
relation <. Put Xp=[],cpXq for each F €[A]<* and define the projection:

WI?:XE —Xr when F < E, where W?(X):(XQ)QeF €Xp for each x=(xXq )acE €XE.

It is easy to prove that 7% is an open and onto map, {Xg, 7%, [A]<%} is an inverse
system of spaces X with bounding maps ﬂ'g: Xrp —-Xp when E > F.

Let X' is the inverse limit of the inverse system {Xp, 7E [A]<“}, by [4, 2.5.3 Example],
X' is homeomorphic to X=[laecrXo-

In other respects, since each Xp=]] ¢ pXq is d6-refinable (resp. hereditarily 66-refinable),
the inverse system {Xg, 7%, [A]<“} satisfies the condition of Theorem 1. X' is f-refinable
(resp. hereditarily §6-refinable). Therefore, so is X=]] c, Xq also.

(<) Assume that the product X=]],c X is d0-refinable (resp. hereditarily 6¢-refinable).
For every FE[A]<¥] let us put a point x, €X, when o € A-F, then the closed subspace
Yr=[l,erXa X [Toca_pla} of X is §6-refinable (resp. hereditarily §6-refinable). Thus,
Xr=[l,epXa is also df-refinable (resp. hereditarily ¢6-refinable). O
Proof of Theorem 4. The equivalence of both (1) and (2) is direct by Theorem 3. (2)=-(3)
hold obviously. Now, we prove (3)=-(2). In fact, for each F € [A]<¥, let m=maxF since F#
¢. We pick a fixed xo €X, when o € {0,1,...,m}—F, then HaEF Xg X Hae{o,l,...,m}—F{Ia}
is a closed set of [[,., Xi. So, [[;c,Xi is d0-refinable (resp. hereditarily §6-refinable). O

Finally, we point out that there are similar results about both weakly §6 -refinable spaces
and hereditarily weakly §6-refinable spaces
Corollary 1. Let X be the inverse limit of an inverse system {Xa.jrg,/\} and let the
projection 7, is an open and onto map for each a € A. If X is |A|-paracompact (resp.
hereditarily |A|- paracompact) and each X,, is weakly d6-refinable (resp. hereditarily weakly
df-refinable), then X is weakly §6-refinable (resp. hereditarily weackly d6-refinable).
Proof. We only prove the situation of weakly é8-refinable spaces, the Proof of hereditarily
weakly é6-refinable spaces is similar to Theorem 2.

Let U = {Ug: € € =} be an arbitrary open cover of X. For each o € A and each £ € =,
the following are the same as the symbols in the proof of the above theorem: Vae, Vo, Wa,
Ta, Co and Oy. And there are the results which are same as (1)-(3) in Theorem 1.

Since Ty CVo={J{Vae:€ € =}, there is an open cover Unew Gn(a) of T4 such that

(4') For each GE |, ¢, Gn(a), there is some { € = such that GCVe, and Gi (1G2 €
Gn(a) for each Gy, Gq € G, ()

(5") For each x€T,, there is a n, € w such that 1<ord(x,Gp(e)) < w.

For each n € w and each F € [w]<¥, let us put H,, = {7;'(G)0:G€ G,(a) and
a € A} and HF:/\neF/Hna then

(6") Each Hp is an open part refinement of i.

Finally, we prove:

(7") For each © €X, there is some F € [w]<¥ such that ord(z,Hp)< w.
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Let  €X, since {O4 : @ € A} is a locally open cover of X, A={a € A:xz €0,} is an
nonempty finite set. And for each o € A, since v €0, C 7, '(T,), then z, €T,. There is
some n, € w such that 1<ord(2,Gy () <w. Put F = {ny : a € A}, then

6 # (Hr)s © {GMINocaOal GE Apear(Gr) (), and A € [A]<},
So, 1<ord(z,Hp)< w. O
Corollary 2. Let X=[],c,X0o be |Al-paracompact, X is ¢6-refinable (resp. weakly §6-
refinable) iff [ . zXa is 66-refinable (resp. weakly d6-refinable) for each Fe[S]<~.
Corollary 3. Let X=]],.X; is countable paracompact, then the following are equivalent:

(1) X is weakly d6-refinable (resp. hereditarily weakly é6-refinable).

(2) [liepXi is weakly éf-refinable (resp. hereditarily weakly é6-refinable) for each
F e [Z]<~.

(3) ;< Xi is weakly §6-refinable (resp. hereditarily weakly d6-refinable) for each ne w.
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