INFINITE PRODUCT PROBLEMS ON $\delta\theta$ -REFINABLE SPACES

ZHU PEIYONG AND SUN SHIXIN

Received December 23, 2002

ABSTRACT. Suppose that $X=\prod_{n<\omega} X_n$, if each space $\prod_{i< n} X_n$ is $\delta\theta$ -refinable (i.e., submetalindelof), is X also $\delta\theta$ -refinable? K.Chiba asked in [1]. This paper first show that an inverse limit theorem for $\delta\theta$ -refinable spaces. Using this, we obtain the result: Let $X=\prod_{\alpha\in\Lambda} X_\alpha$ be $|\Lambda|$ - paracompact, X is $\delta\theta$ -refinable iff $\prod_{\alpha\in F} X_\alpha$ is $\delta\theta$ -refinable for each $F\in[\Lambda]^{<\omega}$. Then, the above problem is answered positively. Next, we show that there are similar results on hereditarily $\delta\theta$ -refinable spaces.

In the paper [1], K.Chiba asked:Suppose that $X = \prod_{n < \omega} X_n$, if each space $\prod_{i \leq n} X_n$ is $\delta\theta$ -refinable (i.e., submetalindelof), is X also $\delta\theta$ -refinable? This paper first prove respectively the following:

Theorem 1. Let X be the inverse limit of an inverse system $\{X_{\alpha}, \pi_{\beta}^{\alpha}, \Lambda\}$ and let the projection π_{α} be an open and onto map for each $\alpha \in \Lambda$. If X is $|\Lambda|$ -paracompact and each X_{α} is $\delta\theta$ -refinable, then X is $\delta\theta$ -refinable.

Theorem 2. Let X be the inverse limit of an inverse system $\{X_{\alpha}, \pi_{\beta}^{\alpha}, \Lambda\}$ and let the projection π_{α} be an open and onto map for each $\alpha \in \Lambda$. If X is hereditarily $|\Lambda|$ -paracompact and each X_{α} is hereditarily $\delta\theta$ -refinable, then X is also hereditarily $\delta\theta$ -refinable.

Using the aboves, we obtain the results:

Theorem 3. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ be $|\Lambda|$ -paracompact (resp. hereditarily $|\Lambda|$ -paracompact), X is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable) iff $\prod_{\alpha \in F} X_{\alpha}$ is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable) for each $F \in [\Lambda]^{<\omega}$.

Therefore, the following holds trivially:

Theorem 4. Let $X = \prod_{i \in \omega} X_i$ is countable paracompact (resp. hereditarily countable paracompact), then the following are equivalent:

(1) X is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable).

(2) $\prod_{i \in F} X_i$ is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable) for each $F \in [\Sigma]^{<\omega}$.

(3) $\prod_{i \leq n} X_i$ is $\delta \theta$ -refinable (resp. hereditarily $\delta \theta$ -refinable) for each $n \in \omega$.

 $(3) \Rightarrow (1)$ in Theorem 4 is a positively answer of Problem 5 in [1].

We use that $N_Y(x)$ denotes the neighburhood system of a point x of a subspace Y of a space X. Espectly, N(x) denotes $N_Y(x)$ when Y=X; |A|, clA, IntA and A^c denote respectively the cardinality, the closure, the interior and the complementary set of a set A; $(\mathcal{U})_x$, $(\mathcal{U})|_A$ and $\bigwedge_{n \in F} \mathcal{H}_n$ denote respectively $\{U \in \mathcal{U} : x \in U\}$, $\{U \cap A: U \in \mathcal{U}\}$ and $\{\bigcap_{n \in F} H_n: H_n \in \mathcal{H}_n\}$; ω and $[\Sigma]^{<\omega}$ denote, respectively, the first infinite ordinal number and the collection of all non-empty finite subsets of a non-empty set Σ . And assume that all spaces are Hausdoff spaces throughout this paper.

Definition 1. Let κ be a cardinal number, A space is κ -paracompact iff its every open cover \mathcal{U} of cardinal $|\mathcal{U}| \leq \kappa$ has a locally finite open refinement; A space is $|\Sigma|$ -paracompact iff it is κ -paracompact, where $\kappa = |\Sigma|$.

²⁰⁰⁰ Mathematics Subject Classification. 54B10,54E18.

Key words and phrases. $\delta\theta$ -refinable, weakly $\delta\theta$ -refinable, inverse limit, $|\Sigma|$ -paracompact, countable paracompact.

Definition 2^[3]. A space X is said to be $\delta\theta$ -refinable (submetalindelof) if its every open cover \mathcal{U} has a sequence $\langle \mathcal{G}_n \rangle_{n \in \omega}$ of open refinements such that for every $x \in X$ there is a $n \in \omega$ with $\operatorname{ord}(x, \mathcal{G}_n) \leq \omega$; A space X is said to be weakly $\delta\theta$ -refinable if its every open cover \mathcal{U} has an open refinement $\mathcal{G} = \bigcup_{n \in \omega} \mathcal{G}_n$ such that for every $x \in X$ there is a $n \in \omega$ such that $1 \leq \operatorname{ord}(x, \mathcal{G}_n) \leq \omega$.

Lemma 1^[2]. Let λ be a cardinal number. Suppose X is λ -paracompact, Λ is a directed set with $|\Lambda| = \lambda$ and $\mathcal{H} = \{H_{\alpha} : \alpha \in \Lambda\}$ is an open cover of X such that $H_{\alpha} \subset H_{\beta}$ for each $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$. Then there is an open cover $\mathcal{K} = \{K_{\alpha} : \alpha \in \Lambda\}$ of X such that $\operatorname{clk}_{\alpha} \subset H_{\alpha}$ for each $\alpha \in \Lambda$ and $K_{\alpha} \subset K_{\beta}$ for each $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$.

Lemma 2. A space X is hereditarily $\delta\theta$ -refinable (resp. hereditarily weakly $\delta\theta$ -refinable) iff each open subspace of X is $\delta\theta$ -refinable (resp. weakly $\delta\theta$ -refinable).

This lemma is a direct result of Definition 2. Now we prove main theorems of this paper. **Proof of Theorem 1.** Let $\mathcal{U} = \{ U_{\xi} : \xi \in \Xi \}$ be an arbitrary open cover of X. For each $\alpha \in \Lambda$ and each $\xi \in \Xi$, let us put

$$V_{\alpha\xi} = \bigcup \{ V: V \text{ is in } X_{\alpha} \text{ and } \pi_{\alpha}^{-1}(V) \subset U_{\xi} \}$$

and put $V_{\alpha} = \bigcup \{ V_{\alpha\xi} : \xi \in \Xi \}$, then

(1) $\bigcup \{\pi_{\alpha}^{-1}(V_{\alpha}) : \alpha \in \Lambda\} = X$, and $\pi_{\alpha}^{-1}(V_{\alpha}) \subset \pi_{\beta}^{-1}(V_{\beta})$ if $\alpha \leq \beta$.

Since X is $|\Lambda|$ -paracompact, there is an open cover $\{W_{\alpha} : \alpha \in \Lambda\}$ of X such that

(2) $\operatorname{clW}_{\alpha} \subset \pi_{\alpha}^{-1}(V_{\alpha})$ for each $\alpha \in \Lambda$, and $W_{\alpha} \subset W_{\beta}$ if $\alpha \leq \beta$.

For each $\alpha \in \Lambda$, let us put $T_{\alpha} = X_{\alpha} - \pi_{\alpha}(X - clW_{\alpha})$, then T_{α} is closed in X_{α} because π_{α} is an open map. Again let $C_{\alpha} = Int T_{\alpha}$ for each $\alpha \in \Lambda$, then

(3) $\{C_{\alpha}: \alpha \in \Lambda\}$ is an open cover of X.

In fact, for each $x \in X$ there is $\alpha \in \Lambda$ such that $x \in W_{\alpha}$. There are some $\beta \in \Lambda$ and some open set V in X_{β} such that $x \in \pi_{\beta}^{-1}(V) \subset W_{\alpha}$ since W_{α} is open in X. We choose a $\gamma \in \Lambda$ satisfying $\gamma \geq \alpha$ and $\gamma \geq \beta$, then $x \in C_{\gamma}$ because $\pi_{\beta}^{-1}(V) \subset \pi_{\gamma}^{-1}(T_{\gamma})$. To show this, let $y=(y_{\delta})_{\delta \in \Lambda} \in \pi_{\beta}^{-1}(V) - \pi_{\alpha}^{-1}(T_{\gamma})$, then $y_{\beta} \in V$ and $y_{\gamma} \in \pi_{\gamma}(X-clW_{\gamma})$. I.e., there is an element $z=(z_{\delta})_{\delta \in \Lambda} \in X-clW_{\gamma}$ such that $z_{\gamma} = \pi_{\gamma}(z)=y_{\gamma}$, $y_{\beta} = \pi_{\beta}^{\gamma}(z_{\gamma})\in V$, $z \in \pi_{\beta}^{-1}(V)=\pi_{\gamma}^{-1}(\pi_{\beta}^{\gamma})^{-1}(V)\subset W_{\alpha}$, then $z \in W_{\gamma}$. This is a contradiction.

By $|\Lambda|$ -paracompactness of X, there is a locally finite open cover $\{O_{\alpha} : \alpha \in \Lambda\}$ of X such that $O_{\alpha} \subset C_{\alpha}$ for each $\alpha \in \Lambda$. Since $T_{\alpha} \subset V_{\alpha} = \bigcup \{V_{\alpha\xi} : \xi \in \Xi\}$ and T_{α} is closed in X_{α} then there is a sequence $\langle \mathcal{G}_n(\alpha) \rangle_{n \in \omega}$ of open sets of X_{α} , satisfying

(4) Each $\mathcal{G}_n(\alpha)$ is a part refinement of $\{V_{\alpha\xi} : \xi \in \Xi\}$ and $T_\alpha \subset \bigcup \mathcal{G}_n(\alpha)$ for each $n \in \omega$.

(5) For each $x \in T_{\alpha}$ there is a $n \in \omega$ such that $\operatorname{ord}(x, \mathcal{G}_n(\alpha)) \leq \omega$, and $G_1 \bigcap G_2 \in \mathcal{G}_n(\alpha)$ if $G_1, G_2 \in \mathcal{G}_n(\alpha)$.

For each $n \in \omega$, let $\mathcal{H}_n = \{\pi_\alpha^{-1}(\mathbf{G}) \bigcap \mathbf{O}_\alpha : \mathbf{G} \in \mathcal{G}_n(\alpha) \text{ and } \alpha \in \Lambda\}$, then

(6) \mathcal{H}_n is an open refinement of \mathcal{U} for each $n \in \omega$.

In fact, for each $x \in X$, there is $\alpha \in \Lambda$ such that $x \in O_{\alpha} \subset C_{\alpha} \subset \pi_{\alpha}^{-1}(T_{\alpha})$ and there is $G \in \mathcal{G}_n(\alpha)$ such that $x \in \pi_{\alpha}^{-1}(G) \cap O_{\alpha}$, i.e., \mathcal{H}_n is a cover of X. Again since for each $\alpha \in \Lambda$ and each $G \in \mathcal{G}_n(\alpha)$ there is some $\xi(G) \in \Xi$ such that $G \subset V_{\alpha\xi(G)}$, then $\pi_{\alpha}^{-1}(G) \cap O_{\alpha} \subset \pi_{\alpha}^{-1}(G) \subset \pi_{\alpha}^{-1}(V_{\alpha\xi(G)}) \subset U_{\xi(G)}$. So, (6) is true.

For each $F \in [\omega]^{<\omega}$, let us put $\mathcal{H}_F = \bigwedge_{n \in F} \mathcal{H}_n$, then

(7) Each \mathcal{H}_F is an open refinement of \mathcal{U} .

Finally, we prove:

(8) For each $x \in X$, there is a $F \in [\omega]^{<\omega}$ such that $\operatorname{ord}(x, \mathcal{H}_F) \leq \omega$.

Let $x \in X$, since $\{O_{\alpha} : \alpha \in \Lambda\}$ is a locally open cover of X, $\Delta = \{\alpha \in \Lambda : x \in O_{\alpha}\}$ is a nonempty finite set. And for each $\alpha \in \Delta$, since $x \in O_{\alpha} \subset \pi_{\alpha}^{-1}(T_{\alpha})$, there is some $n_{\alpha} \in \omega$ such that $\operatorname{ord}(\pi_{\alpha}(x), \mathcal{G}_{n_{\alpha}}(\alpha)) \leq \omega$. Put $F = \{n_{\alpha} : \alpha \in \Delta\}$ and let $\mathcal{G}_{n_{\alpha}}^{-1}(\alpha) = \{\pi_{\alpha}^{-1}(G) : G \in \mathcal{G}_{n_{\alpha}}(\alpha)\}$, then

$$(\mathcal{H}_F)_x \subset \{\mathrm{G} \cap [\bigcap_{\alpha \in \Delta'} \mathrm{O}_\alpha] : \mathrm{G} \in \bigwedge_{\alpha \in \Delta'} (\mathcal{G}_{n_\alpha}^{-1}(\alpha))_x \text{ and } \Delta' \in [\Delta]^{<\omega} \}$$

Therefore, $\operatorname{ord}(x, \mathcal{H}_F) \leq \omega$. \Box

Proof of Theorem 2. Let $\mathcal{U} = \{ U_{\xi} : \xi \in \Xi \}$ be an open cover of open subspace Y of X. For each $\alpha \in \Lambda$ and each $\xi \in \Xi$, we put $V_{\alpha\xi} = \bigcup \{V: V \text{ is in } X_{\alpha} \text{ and } \pi_{\alpha}^{-1}(V) \subset U_{\xi} \}$ and $V_{\alpha} = \bigcup \{ V_{\alpha\xi} : \xi \in \Xi \}, \text{ then }$

(1) $\{\pi_{\alpha}^{-1}(V_{\alpha}): \alpha \in \Lambda\}$ is an open cover of Y and $\pi_{\alpha}^{-1}(V_{\alpha}) \subset \pi_{\beta}^{-1}(V_{\beta})$ if $\alpha \leq \beta$.

Since X is hereditarily $|\Lambda|$ -paracompact, the open cover $\{\pi_{\alpha}^{-1}(V_{\alpha}): \alpha \in \Lambda\}$ of the subspace Y of X has an open refinement $\{W_{\alpha} : \alpha \in \Lambda\}$ such that

(2) $\operatorname{clW}_{\alpha} \subset \pi_{\alpha}^{-1}(V_{\alpha})$ for each $\alpha \in \Lambda$, and $W_{\alpha} \subset W_{\beta}$ if $\alpha \leq \beta$.

For each $\alpha \in \Lambda$, put $\mathbf{E}_{\alpha} = \bigcup \{ \mathbf{E}: \mathbf{E} \text{ is open in } \mathbf{X}_{\alpha} \text{ and } \pi_{\alpha}^{-1}(\mathbf{E}) \subset \mathbf{W}_{\alpha} \}$, then (3) $\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha}) \subset \mathbf{W}_{\alpha}$ for each $\alpha \in \Lambda$ and $\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha}) \subset \pi_{\beta}^{-1}(\mathbf{E}_{\beta})$ if $\alpha \leq \beta$.

Now, we assert that:

(4) $\{\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha}): \alpha \in \Lambda\}$ is an open cover of Y.

In fact, for each $x \in Y$ there is a $\alpha \in \Lambda$ such that $x \in W_{\alpha}$. There are some $\beta \in \Lambda$ and some open set V in X_{β} such that $x \in \pi_{\beta}^{-1}(V) \subset W_{\alpha}$ by [4,Theorem 2.5.5]. Let us put $\gamma \in \Lambda$ such that both $\gamma \geq \alpha$ and $\gamma \geq \beta$, then $x \in \pi_{\beta}^{-1}(V) = (\pi_{\beta}^{\gamma}\pi_{\gamma})^{-1}(V) = \pi_{\gamma}^{-1}(\pi_{\beta}^{\gamma})^{-1}(V) \subset W_{\alpha} \subset W_{\gamma}$, then $x \in \pi_{\gamma}^{-1}(E_{\gamma})$.

Put $F_{\alpha} = cl(E_{\alpha}) \bigcap [cl(V_{\alpha}) - V_{\alpha}]$ for each $\alpha \in \Lambda$, we assert that

(5) $\pi_{\alpha}^{-1}(\mathbf{F}_{\alpha}) \bigcap \mathbf{Y} = \phi.$

In fact, if there is some $x = (x_{\alpha})_{\alpha \in \Lambda} \in \pi_{\alpha}^{-1}(\mathbf{F}_{\alpha}) \cap \mathbf{Y}$, then $x_{\alpha} \in \mathbf{F}_{\alpha} \subset cl(\mathbf{V}_{\alpha})$ - $\mathbf{V}_{\alpha}, x \notin \pi_{\alpha}^{-1}(\mathbf{V}_{\alpha})$ since $x_{\alpha} \notin \mathbf{V}_{\alpha}$. Next, we have $x \in cl_Y \pi_{\alpha}^{-1}(\mathbf{E}_{\alpha})$. To prove this, let us put $\mathbf{H} \in \mathbf{N}_Y(x)$, then there are some $\beta \in \Lambda$ and some open set V in X such that $x \in \pi_{\beta}^{-1}(V) \subset H$. Pick $\gamma \geq \alpha$, $\gamma \geq \beta$ and let $V' = (\pi_{\beta}^{\gamma})^{-1}(V)$, then

 $\begin{aligned} x \in \pi_{\gamma}^{-1}(\mathbf{V}') = &\pi_{\gamma}^{-1}(\pi_{\beta}^{\gamma})(\mathbf{V}) = (\pi_{\beta}^{\gamma}\pi_{\gamma})^{-1}(\mathbf{V}) = &\pi_{\beta}^{-1}(\mathbf{V}) \subset \mathbf{H}.\\ \text{Since } x_{\alpha} \in \mathbf{F}_{\alpha} \subset \mathbf{cl}(\mathbf{E}_{\alpha}) \text{ and } x_{\gamma} \in \mathbf{V}', \text{ then } \pi_{\alpha}^{\gamma}(\mathbf{V}') \cap \mathbf{E}_{\alpha} \neq \phi. \text{ Let us put } \mathbf{b} \in \pi_{\alpha}^{\gamma}(\mathbf{V}') \cap \mathbf{E}_{\alpha}, \end{aligned}$ then there is $c \in V'$ such that $\pi_{\alpha}^{\gamma}(c) = b$. There is $y = (y_{\delta})_{\delta \in \Lambda}$ $\in X$ such that $y_{\gamma} = \pi_{\gamma}(y) = c$. I.e., $y_{\alpha} = \pi_{\alpha}^{\gamma}(y_{\gamma}) = \pi_{\alpha}^{\gamma}(c) = b$,

 $\begin{array}{l} \underset{\mathbf{y}\in\pi_{\gamma}^{-1}(\mathbf{V}')\cap\pi_{\alpha}^{-1}[\pi_{\alpha}^{\gamma}(\mathbf{V}')\cap\mathbf{E}_{\alpha}]\subset\pi_{\gamma}^{-1}(\mathbf{V}')\cap\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha})\subset\mathbf{H}\cap\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha}), \\ \text{i.e., } \mathbf{H}\cap\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha})\neq\phi, \text{ thus } \mathbf{x}\in\mathbf{cl}_{Y}\pi_{\alpha}^{-1}(\mathbf{E}_{\alpha})\subset\pi_{\alpha}^{-1}(\mathbf{V}_{\alpha}). \text{ This contradicts to } \mathbf{x}\notin\pi_{\alpha}^{-1}(\mathbf{V}_{\alpha}). \end{array}$ (6) $(X_{\alpha}-F_{\alpha}) \cap cl(E_{\alpha}) \subset V_{\alpha} = \bigcup \{V_{\alpha\xi} : \xi \in \Xi\}$ for each $\alpha \in \Lambda$.

In fact, for each $t \in (X_{\alpha} - F_{\alpha}) \cap cl(E_{\alpha})$, we have $t \notin F_{\alpha}$ and $t \in cl(E_{\alpha})$. Since $t \notin cl(V_{\alpha}) - V_{\alpha}$ and $E_{\alpha} \subset V_{\alpha}$, then $t \in V_{\alpha}$.

By $\delta\theta$ -refinableness of X_{α} - F_{α} , there is a sequence $\langle \mathcal{G}_n(\alpha) \rangle_{n \in \omega}$ of open covers of $(X_{\alpha}$ - F_{α}) $\cap cl(E_{\alpha})$ such that

(7) Each $\mathcal{G}_n(\alpha)$ is part refinement of $\{V_{\alpha\xi} : \xi \in \Xi\}$ and $G_1 \bigcap G_2 \in \mathcal{G}_n(\alpha)$ if $G_1, G_2 \in \mathcal{G}_n(\alpha)$ $\mathcal{G}_n(\alpha)$

(8) For each $x \in (X_{\alpha} - F_{\alpha}) \cap cl(E_{\alpha})$ there is a $n \in \omega$ such that $ord(x, \mathcal{G}_n(\alpha)) \leq \omega$.

Next, since X is hereditarily $|\Lambda|$ -paracompact, the open cover $\{\pi_{\alpha}^{-1} (E_{\alpha}) : \alpha \in \Lambda\}$ of the subspace Y has a locally finite open refinement $\{O_{\alpha} : \alpha \in \Lambda\}$ such that $O_{\alpha} \subset \pi_{\alpha}^{-1}(E_{\alpha})$ for each $\alpha \in \Lambda$

Define $\mathcal{H}_n = \{ \mathcal{O}_\alpha \bigcap \pi_\alpha^{-1}(\mathcal{G}) : \mathcal{G} \in \mathcal{G}_n(\alpha), \ \alpha \in \Lambda \}$ and let $\mathcal{H}_F = \bigwedge_{n \in F} \mathcal{H}_n$ for each $F \in \mathcal{G}_n(\alpha)$ $[\omega]^{<\omega}$, then

(9) Each \mathcal{H}_F is an open refinement of \mathcal{U} .

In fact, for each $x \in Y$ and each $n \in \omega$, there is some $\alpha \in \Lambda$ such that $x \in O_{\alpha} \subset \pi_{\alpha}^{-1}(E_{\alpha})$, then $x_{\alpha} \in (X_{\alpha}-F_{\alpha}) \cap cl(E_{\alpha})$. There is $G \in \mathcal{G}_n(\alpha)$ such that $x_{\alpha} \in G$, $x \in O_{\alpha} \cap \pi_{\alpha}^{-1}(G)$, i.e., \mathcal{H}_n is an open cover of Y. Since for each $G \in \mathcal{G}_n(\alpha)$ there is $\xi \in \Xi$ such that $G \subset V_{\alpha\xi}$, then $O_{\alpha} \bigcap \pi_{\alpha}^{-1}(G) \subset \pi_{\alpha}^{-1}(G) \subset \pi_{\alpha}^{-1}(V_{\alpha\xi}) \subset U_{\xi}$, hence \mathcal{H}_{F} is an open refinement of \mathcal{U} for each $F \in [\omega]^{<\omega}.$

Finally, we assert that

(10) For each $x \in X$, there is some $F \in [\omega]^{<\omega}$ such that $\operatorname{ord}(x, \mathcal{H}_F) \leq \omega$.

Let $x \in Y$, $\Delta = \{\alpha \in \Lambda : x \in O_{\alpha}\}$ is an nonempty finite set. For each $\alpha \in \Delta$, $x \in O_{\alpha} \subset \pi_{\alpha}^{-1}(E_{\alpha})$, we have $x_{\alpha} \in (X_{\alpha}-F_{\alpha}) \cap E_{\alpha}$ by (5), there is some $n_{\alpha} \in \omega$ such that $\operatorname{ord}(x, \mathcal{G}_{n_{\alpha}}(\alpha)) \leq \omega$. Put $F = \{n_{\alpha} : \alpha \in \Delta\}$, then

 $(\mathcal{H}_F)_x \subset \{ G \cap [\bigcap_{\alpha \in \Delta'} \mathcal{O}_\alpha] : G \in \bigwedge_{\alpha \in \Delta'} (\mathcal{G}_{n_\alpha}^{-1}(\alpha))_x \text{ and } \Delta' \in [\Delta]^{<\omega} \},$ i.e., $\operatorname{ord}(x, \mathcal{H}_F) \leq \omega$.

So, X is a hereditarily $\delta\theta$ -refine space. \Box

Now, we discuss Tychonoff products of infinite factors about both $\delta\theta$ -refinable spaces and hereditarily $\delta\theta$ -refinable spaces.

Proof of Theorem 3. (\Leftarrow) When $|\Lambda| < \omega$, it is obvious that $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ is $\delta\theta$ -refinable since $F = \Lambda \in [\Lambda]^{<\omega}$. Without the loss of generality, we suppose $|\Lambda| \ge \omega$. Define the relation \le : $F \le E$ if and only if $F \subset E$ for each $F, E \in [\Lambda]^{<\omega}$. Then $[\Lambda]^{<\omega}$ is a directed set on the relation \le . Put $X_F = \prod_{\alpha \in F} X_{\alpha}$ for each $F \in [\Lambda]^{<\omega}$ and define the projection:

 $\pi_F^E: X_E \to X_F$ when $\tilde{F} \leq E$, where $\pi_F^E(\mathbf{x}) = (\mathbf{x}_\alpha)_{\alpha \in F} \in X_F$ for each $\mathbf{x} = (\mathbf{x}_\alpha)_{\alpha \in E} \in X_E$.

It is easy to prove that π_F^E is an open and onto map, $\{X_E, \pi_F^E, [\Lambda]^{<\omega}\}$ is an inverse system of spaces X_E with bounding maps π_F^E : $X_E \to X_F$ when $E \ge F$.

Let X' is the inverse limit of the inverse system $\{X_E, \pi_F^E, [\Lambda]^{<\omega}\}$, by [4, 2.5.3 Example], X' is homeomorphic to $X = \prod_{\alpha \in \Lambda} X_{\sigma}$.

In other respects, since each $X_F = \prod_{\alpha \in F} X_{\alpha}$ is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable), the inverse system $\{X_E, \pi_F^E, [\Lambda]^{<\omega}\}$ satisfies the condition of Theorem 1. X' is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable). Therefore, so is $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ also.

 (\Leftarrow) Assume that the product $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable). For every $F \in [\Lambda]^{<\omega}$, let us put a point $x_{\alpha} \in X_{\alpha}$ when $\alpha \in \Lambda$ -F, then the closed subspace $Y_F = \prod_{\alpha \in F} X_{\alpha} \times \prod_{\alpha \in \Lambda - F} \{x_{\alpha}\}$ of X is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable). Thus, $X_F = \prod_{\alpha \in F} X_{\alpha}$ is also $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable). \Box

Proof of Theorem 4. The equivalence of both (1) and (2) is direct by Theorem 3. (2) \Rightarrow (3) hold obviously. Now, we prove (3) \Rightarrow (2). In fact, for each $F \in [\Lambda]^{<\omega}$, let m=maxF since $F \neq \phi$. We pick a fixed $\mathbf{x}_{\alpha} \in \mathbf{X}_{\alpha}$ when $\alpha \in \{0, 1, ..., m\} - F$, then $\prod_{\alpha \in F} \mathbf{X}_{\alpha} \times \prod_{\alpha \in \{0, 1, ..., m\} - F} \{x_{\alpha}\}$ is a closed set of $\prod_{i \leq m} \mathbf{X}_{i}$. So, $\prod_{i \in F} \mathbf{X}_{i}$ is $\delta\theta$ -refinable (resp. hereditarily $\delta\theta$ -refinable). \Box

Finally, we point out that there are similar results about both weakly $\delta\theta$ -refinable spaces and hereditarily weakly $\delta\theta$ -refinable spaces

Corollary 1. Let X be the inverse limit of an inverse system $\{X_{\alpha}, \pi_{\beta}^{\alpha}, \Lambda\}$ and let the projection π_{α} is an open and onto map for each $\alpha \in \Lambda$. If X is $|\Lambda|$ -paracompact (resp. hereditarily $|\Lambda|$ - paracompact) and each X_{α} is weakly $\delta\theta$ -refinable (resp. hereditarily weakly $\delta\theta$ -refinable), then X is weakly $\delta\theta$ -refinable (resp. hereditarily weakly $\delta\theta$ -refinable).

Proof. We only prove the situation of weakly $\delta\theta$ -refinable spaces, the Proof of hereditarily weakly $\delta\theta$ -refinable spaces is similar to Theorem 2.

Let $\mathcal{U} = \{ U_{\xi} : \xi \in \Xi \}$ be an arbitrary open cover of X. For each $\alpha \in \Lambda$ and each $\xi \in \Xi$, the following are the same as the symbols in the proof of the above theorem: $V_{\alpha\xi}$, V_{α} , W_{α} , T_{α} , C_{α} and O_{α} . And there are the results which are same as (1)-(3) in Theorem 1.

Since $T_{\alpha} \subset V_{\alpha} = \bigcup \{ V_{\alpha\xi} : \xi \in \Xi \}$, there is an open cover $\bigcup_{n \in \omega} \mathcal{G}_n(\alpha)$ of T_{α} such that

(4') For each $G \in \bigcup_{n \in \omega} \mathcal{G}_n(\alpha)$, there is some $\xi \in \Xi$ such that $G \subset V_{\alpha\xi}$, and $G_1 \bigcap G_2 \in \mathcal{G}_n(\alpha)$ for each $G_1, G_2 \in \mathcal{G}_n(\alpha)$

(5') For each $x \in T_{\alpha}$ there is a $n_{\alpha} \in \omega$ such that $1 \leq \operatorname{ord}(x, \mathcal{G}_n(\alpha)) \leq \omega$.

For each $n \in \omega$ and each $F \in [\omega]^{\leq \omega}$, let us put $\mathcal{H}_n = \{\pi_{\alpha}^{-1}(G) \cap O_{\alpha}: G \in \mathcal{G}_n(\alpha) \text{ and } \alpha \in \Lambda\}$ and $\mathcal{H}_F = \bigwedge_{n \in F} \mathcal{H}_n$, then

(6') Each \mathcal{H}_F is an open part refinement of \mathcal{U} .

Finally, we prove:

(7) For each $x \in X$, there is some $F \in [\omega]^{<\omega}$ such that $\operatorname{ord}(x, \mathcal{H}_F) \leq \omega$.

Let $x \in X$, since $\{O_{\alpha} : \alpha \in \Lambda\}$ is a locally open cover of $X, \Delta = \{\alpha \in \Lambda : x \in O_{\alpha}\}$ is an nonempty finite set. And for each $\alpha \in \Delta$, since $x \in O_{\alpha} \subset \pi_{\alpha}^{-1}(T_{\alpha})$, then $x_{\alpha} \in T_{\alpha}$. There is some $n_{\alpha} \in \omega$ such that $1 \leq \operatorname{ord}(x, \mathcal{G}_{n_{\alpha}}(\alpha)) \leq \omega$. Put $F = \{n_{\alpha} : \alpha \in \Delta\}$, then $\phi \neq (\mathcal{H}_F)_x \subset \{G \cap [\bigcap_{\alpha \in \Delta'} O_{\alpha}]: G \in \bigwedge_{\alpha \in \Delta'} (\mathcal{G}_{n_{\alpha}}^{-1}(\alpha))_x \text{ and } \Delta' \in [\Delta]^{<\omega}\}.$

So, $1 \leq \operatorname{ord}(x, \mathcal{H}_F) \leq \omega$. \Box

Corollary 2. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ be $|\Lambda|$ -paracompact, X is $\delta \theta$ -refinable (resp. weakly $\delta \theta$ refinable) iff $\prod_{\alpha \in F} X_{\alpha}$ is $\delta \theta$ -refinable (resp. weakly $\delta \theta$ -refinable) for each $F \in [\Sigma]^{<\omega}$.

Corollary 3. Let $X = \prod_{i \in \omega} X_i$ is countable paracompact, then the following are equivalent: (1) X is weakly $\delta\theta$ -refinable (resp. hereditarily weakly $\delta\theta$ -refinable).

(2) $\prod_{i \in F} X_i$ is weakly $\delta \theta$ -refinable (resp. hereditarily weakly $\delta \theta$ -refinable) for each $F \in [\Sigma]^{<\omega}$

(3) $\prod_{i \leq n} X_i$ is weakly $\delta \theta$ -refinable (resp. hereditarily weakly $\delta \theta$ -refinable) for each $n \in \omega$.

Acknowledgement. The author would like to express his thanks to the Scientific Fund of the Eductional Committee in Sichuan of China for its subsidy to this subject.

References

- [1] K.Chiba, Covering properties in products, Math.Japonica 34, No.5(1989),693-713.
- [2] K.Chiba, Normality of inverse limits, Math. Japonica 35, No.5(1990), 959-970.
- [3] D.K.Burke, Covering properties, Handbook of Set Thoretic Topology, chapter 9, K.Kunen and J.Vaughan, editors, North Holland, Amsterdam (1984), 347-422.
- [4] R.Engelking, General Topology, Polish Scientific Pulishers, Warszawa, 1977.
- [5] G.Grugenhage, Generalized Metric Spaces, In K.Kunen and J.Vaughan, Eds., Handbook of Set Theoretic Topology (North Holland, Amsterdam, 1984).
- [6] Zhu Peiyong, The products on σ -paralindelof spaces, Scienticae Mathematicae Vol.1, No.1, No.2(1998),217-221.
- [7] Zhu Peiyong, Hereditarily Screenableness and Its Tychonoff Products, Topology Appl 83(1998)231-238.

Zhu Peiyong's address: Department of Mathematics, Southwest University for Nationalities, Chengdu, 610041, P.R.China.

Sun Shixin's address: School of Computer Science and Technology, University of Electronic Science and Technology, Chengdu, 610054, P.R.China. .