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Abstract. On the generalized Morrey spaces, an inequality concerning fractional

integrals is proved and a boundedness of fractional integral operators is shown. The

target spaces of the result is smaller than that of any results as far as we know.

1 Introduction The boundedness of fractional integral operators on the Morrey spaces

was studied by Adams ([Ad]), Chiarenza and Frasca ([CF]) etc. Chiarenza and Frasca

showed that the Hardy-Littlewood maximal operator is bounded on the Morrey spaces. By

use of this fact and establishing a pointwise estimate of fractional integrals with the Hardy-

Littlewood maximal function, they showed the boundedness of fractional integral operators

on the Morrey spaces ([CF, Theorem 2]). On the other hand, not using this pointwise

estimate, Olsen showed the same bound as [CF, Theorem 2] ([Ol, Theorem 9]). Olsen

proved an interesting inequality concerning fractional integrals on the Morrey spaces ([Ol,

Theorem 2]) and showed his result by use of this inequality and a bootstrapping argument.

The purpose of this paper is to prove Olsen's inequality on the generalized Morrey spaces

(Theorem 1) and to show a boundedness of fractional integral operators on the generalized

Morrey spaces (Theorem 4). This is a generalization of [Ol, Theorem 9] to the generalized

Morrey spaces.

The notion of the generalized Morrey spaces can be found in [P1] and the theory of

the generalized Morrey spaces has been developed by many authors (see the references

at the end of this paper). The reasons for considering the generalized Morrey spaces are

emphasized in [P1]. The boundedness of fractional integral operators on the generalized

Morrey spaces has been investigated by several authors. In [Na1] by use of the Hardy-

Littlewood-Sobolev inequality Nakai obtained the boundedness with some (broader) target

spaces. (See Remark 3.) The result corresponds to [CF, Corollary] which is weaker than

[CF, Theorem 2]. We emphasize that our result (Theorem 4) is a generalization of [CF,

Theorem 2] to the generalized Morrey spaces. (See [KNS] for a related result.)

Another purpose of this paper is to give a simpli�ed proof. In [CP] Curz-Uribe and

P�erez established a weighted inequality relating the Hardy-Littlewood maximal function to

the sharp maximal function. The inequality resembles the good-� inequality of Fe�erman

and Stein. By use of this inequality they showed two-weighted norm inequalities for the

several operators. We believe that our proof of Theorem 1 will be simple compared with

the one in [Ol] by following the arguments established in [CP].

We �rst recall de�nitions and notations. All cubes are assumed to have their sides

parallel to the coordinate axes. For x 2 Rn and l > 0 we will use the notation Q(x; l) to

denote a cube with center at x and sidelength l. Also, cQ will denote a cube with the same

center as Q, but with sidelength cl.
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We will say that a function f is in the generalized Morrey space L�
q
(Rn), 1 � q � 1

and � : (0; 1) 7! (0; 1), if for all cubes Q(�; l) we have

�
1

jQj

Z
Q

jf jq dx

�1=q
� C�(l):(1)

Here, jQj denotes the volume of the cube Q. The smallest constant C such that (1) holds

is the Morrey norm of f with respect to q and �, and it is denoted by kfkq;�. Applying

H�older's inequality to (1), we see that kfkq1 ;� � kfkq2;� for all q1 � q2. This tells us that

L�q1 (R
n) � L�q2(R

n) for q1 � q2. If �(l) � l�n=r, 1 � q � r � 1, then L�q (R
n) is the

Morrey space de�ned in [Ol]. The function space L�q (R
n) is a Banach space.

A function � : (0; 1) 7! (0; 1) is said to be almost increasing (almost decreasing)

if there exists a constant C > 0 such that �(l) � C�(l0) (�(l) � C�(l0)) for l � l0. The

following observation can be seen in [Na3].

If inf l0�l �(l
0) = 0 for some l > 0, then L�

q
(Rn) = f0g. Let inf l0�l �(l

0) > 0 for every l > 0

and �1(l) = inf l0�l �(l
0). Then �1 is decreasing and L�

q
(Rn) = L�1

q
(Rn) with equivalent

norms. If inf l0�l �(l
0)l0n=q = 0 for some l > 0, then L�q (R

n) = f0g. Let infl0�l �(l
0)l0n=q >

0 for every l > 0 and �2(l) = l�n=q infl0�l �(l
0)l0n=q . Then �2(l)l

n=q is increasing and

L�q (R
n) = L�2q (Rn) with equivalent norms. Thus, to consider our problems we may assume

that � is almost decreasing and �(l)ln=q is almost increasing. For such � one knows that

1

A
�
�(l0)

�(l)
� A for

1

2
�
l0

l
� 2;(2)

where A > 0 is independent of l; l0 > 0.

Given p, 1 < p <1, the fractional integral operator Tp is de�ned by

Tpf(x) =
X
k2Z

jQ(x; 2k)j�1=p
Z
Q(x;2k)

jf j dy;

where Q(x; 2k) denotes the cube with center at x and sidelength 2k. We notice that

Tpf(x) �

Z
Rn

jf(y)j

jx� yjn=p
dy:

Theorem 1 Given p, 1 < p <1. Let 1 < q < p=(p�1) � v � 1, 1=s = 1=v+1=q+1=p�1

(i.e. q � s) and s < u � v. Suppose that � and � are almost decreasing, and, �(l)ln=q and
�(l)ln=v are almost increasing. Let  (l) = �(l)ln(1�1=p) and suppose further thatZ

1

L

 (l)l�1 dl � A (L); L > 0(3)

for some constant A > 0. Then we have

kg � Tpfks; � � Ckfkq;�kgku;�:

Here, the constant C is independent of f and g.

Remark 2 It is easy to see that �(l) � l�n=r log(2 + l), q � r < p=(p � 1), satis�es the
condition (3). Note that L�q (R

n) does not belong to any (classical) Morrey spaces.
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Remark 3 In Theorem 1 if we put u = v =1 and g � � � 1, then the relation between q
and s corresponds to [CF, Corollary] and our theorem states a generalization of it. In [Na1]
the author treated more general Morrey spaces than those of ours and obtained another
generalization of [CF, Corollary]. We emphasize that in this paper one of our purposes is
to obtain a generalization of [CF, Theorem 2] which is stronger than [CF, Corollary]. (See
Theorem 4.)

The following Theorem 4 can be proved by using a bootstrapping argument, which is

due to Olsen, based on Theorem 1. We shall show this in the last section.

Theorem 4 Given p, 1 < p < 1. Let 1 < q � r < p=(p � 1) and 1=t = 1=r + 1=p �

1. Suppose that � is almost decreasing, and, �(l)ln=r is almost increasing. Let  (l) =

�(l)ln(1�1=p) and suppose further thatZ
1

L

 (l)l�1 dl � A (L); L > 0

for some constant A > 0. Then for s=t = q=r we have

kTpfks; � Ckfkq;�:

Here, the constant C is independent of f .

Remark 5 If we put �(l) � l�n=r and �(l) � l�n=v, then Theorems 1 and 4 are the same
as Olsen's theorems Theorems 2 and 9, respectively. (See [Ol].) But Olsen's results need
the condition that f have the support contained in a bounded domain. We note that the
functions f with compact support are not dense in the Morrey spaces.

In the following C's will denote constants independent of f and g. It will be di�erent in

each occasion.

2 Proof of Theorem 1

2.1 Reduction of the proof of Theorem 1 We denote the collection of all dyadic

cubes by � and, for given z 2 Rn, denote the collection of all cubes Q such that Q� z 2 �

by �z. Given p, 1 < p < 1, and z 2 Rn de�ne the translated dyadic fractional integral

operator T d
p;z

by

T dp;zf(x) =
X

x2Q2�z

jQj�1=p
Z
Q

jf j dy:

If z = 0 we write T d
p
for T d

p;0. Given p, 1 � p < 1, de�ne the dyadic fractional maximal

operator Md
p by

Md

p f(x) = sup
x2Q2�

jQj�1=p
Z
Q

jf j dy:

If p = 1 this is the dyadic Hardy-Littlewood maximal operator and we writeMdf forMd

1 f .

The following argument is due to the �rst part of the proof of [Ol, Theorem 2]. We need

to prove that

 Z
Q(�;l)

jgTpf j
s dx

!1=s

� Ckfkq;�kgku;� (l)�(l)jQ(�; l)j
1=s(4)
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holds for all cubes Q(�; l). It will suÆce to prove (4) with Q = Q(0; 2K ), K 2 Z, by (2).

Decompose f according to Q, that is, f = f1 + f2 and f1(x) = �3Q(x)f(x). We then have

by Minkowski's inequality that�Z
Q

jgTpf j
s dx

�1=s

�

�Z
Q

jgTpf1j
s dx

�1=s
+

�Z
Q

jgTpf2j
s dx

�1=s
� I + II:(5)

The estimate of II. It follows from condition (3) that for x 2 Q

Tpf2(x) �

1X
k=K

jQ(x; 2k)j�1=p
Z
Q(x;2k)

jf j dy(6)

� kfkq;�

1X
k=K

jQ(x; 2k)j1�1=p�(2k)

� kfkq;�

Z
1

2K
 (t)t�1 dt � Ckfkq;� (2

K ):

Estimate (6) and s < u imply

II � Ckfkq;� (2
K )

�Z
Q

jgjs dx

�1=s
� Ckfkq;�kgku;� (2

K )�(2K )jQj1=s:(7)

The estimate of I.

Claim 6 ([Ol, p.2017], also [SW, p.826]) We claim that there exists a constant C such
that for x 2 Q

Tpf1(x) � C

Z
3Q

T dp;zf1(x)
dz

j3Qj
:

Proof. Fix x 2 Q. We rewriteZ
3Q

T dp;zf1(x)
dz

j3Qj
(8)

=

Z
3Q

X
x2Q2�z

jQj�1=p
Z
Q

jf1(y)j dy
dz

j3Qj

=
X
k2Z

(2k)�n=p
Z
3Q

Z
3Q

jf1(y)j�Q: x2Q2�z; jQj=2nk(y) dy
dz

j3Qj
:

By geometric consideration (see [SW]) we see for every y 2 Q(x; 2k) that

jfz 2 3Q : exists Q 2 �z such that x; y 2 Q; jQj = 2nkgj � 3�nj3Qj:

Thus, we have by Fubini's theorem

(2k)�n=p
Z
3Q

Z
3Q

jf1(y)j�Q: x2Q2�z; jQj=2nk(y) dy
dz

j3Qj
� CjQ(x; 2k)j�1=p

Z
Q(x;2k)

jf1(y)j dy:

(9)

The claim follows from (8) and (9).

This claim, H�older's inequality and Fubini's theorem yield

I � C

�Z
3Q

Z
Q

jg(x)T d
p;z
f1(x)j

s dx
dz

j3Qj

�1=s
:(10)

Thus, we can reduce the problem to proving the following lemma.
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Lemma 7 For all z 2 3Q we have�Z
Q

jgT dp;zf1j
s dx

�1=s

� Ckgku;��(2
K)(2K )n=v

�Z
3Q

jf1j
q dx

�1=q
:

Assume that Lemma 7 is true. Then it follows from (10) that

I � Ckgku;��(2
K)(2K )n=v

�Z
3Q

jf jq dx

�1=q
� Ckfkq;�kgku;� (2

K )�(2K )jQj1=q+1=p+1=v�1:

(11)

From (5), (7) and (11) we have (4), since 1=s = 1=q + 1=p+ 1=v � 1.

2.2 Preliminaries Except for the last part, the proof of the lemma follows the argument

in [CP, pp.707-710]. For reader's convenience the full proof is given here.

Lemma 8 [Lemma 4.1 of [CP]] Given a non-negative function f and p, 1 < p <1, there
exists a constant Cp depending only on p and the dimension n such that for any dyadic cube
Q0 X

Q:Q2�; Q�Q0

jQj1�1=p
Z
Q

f dy � CpjQ0j
1�1=p

Z
Q0

f dy:

This lemma can be proved by the de�nition and 1� 1=p > 0.

Lemma 9 [Lemma 4.4 of [CP]] Given p, 1 < p < 1, there exists a constant Dp such that
for any non-negative function f , dyadic cube Q0 and x0 2 Q0

1

jQ0j

Z
Q0

jT dp f � (T dp f)Q0
j dx � DpM

d

p
f(x0):

Here, FQ denotes the average of F over Q.

Proof. By the de�nition of T dp for x 2 Q0

T dp f(x) =
X

x2Q2�; Q�Q0

jQj�1=p
Z
Q

f dy +
X

x2Q2�; Q0�Q

jQj�1=p
Z
Q

f dy:

Hence,

1

jQ0j

Z
Q0

T d
p
f dx =

1

jQ0j

X
Q2�; Q�Q0

jQj1�1=p
Z
Q

f dy +
X

Q2�; Q0�Q

jQj�1=p
Z
Q

f dy:

Therefore, by Lemma 8

1

jQ0j

Z
Q0

jT d
p
f � (T d

p
f)Q0

j dx

�
2

jQ0j

X
Q2�; Q�Q0

jQj1�1=p
Z
Q

f dy � 2CP jQ0j
�1=p

Z
Q0

f dy � 2CpM
d

p f(x0):

Lemma 10 [Calder�on-Zygmund decomposition] Given p, 1 � p < 1, and a non-negative
function f 2 Lq(Rn) for some q, 1 � q < p=(p � 1). Then for each � > 0 there exists a
disjoint collection of dyadic cubes fC�

i
g such that for each i

� < jC�i j
�1=p

Z
C�
i

f dy � 2n=p�
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and

fx 2 Rn : Md

p f(x) > �g =
[
i

C�i :

Moreover, the cubes are maximal: if Q 2 � such that Q � fMd

p
f(x) > �g, then Q � C�

i

for some i.

Definition 11 [De�nition 3.1 of [CP]] Given a > 1 and a weight w de�ne the set function
Aa
w
on measurable sets E � Rn by

Aaw(E) = jEj1=a
0

�Z
E

wa dx

�1=a
= jEj

�
1

jEj

Z
E

wa dx

�1=a
:

Here, 1=a0 = 1� 1=a.

Lemma 12 [Lemma 3.2 of [CP]] For any a > 1 and weight w the set function Aa
w
has the

following properties:
(a) If E � F , then

Aa
w
(E) � (jEj=jF j)1=a

0

Aa
w
(F );

(b) w(E) � Aa
w
(E); (c) If fEjg is a sequence of disjoint sets and

S
j
Ej = E, then

X
j

Aa
w
(Ej) � Aa

w
(E):

Here, w(E) denotes w(x)dx measure of E.

This lemma can be proved by the de�nition and using H�older's inequality.

2.3 Proof of Lemma 7 First, we note that it will suÆce to prove the result for T d
p
. Since

in the proof that follows it will be clear that the general case follows by a simple modi�cation

of the argument. Second, we may assume that f1 is bounded. Since the general case follows

by using a simple limiting argument.

Fix 1 < p < 1. Set w = jgjs�Q, H = T dp f1, a = u=s > 1. Let fC�
i
g be the

Calder�on-Zygmund decomposition of H with Md and let fQ�
j
g be the Calder�on-Zygmund

decomposition of jf1j with M
d

p
.

Fix N = 2n + 1. For each � > 0 let 
� =
S
i
C�
i
. By maximality for each k we have

CN�
k

� C�
i
for some i. By Lemma 12, (b) and (c),

w(
N�)

=
X
k

w(CN�
k

) �
X
k

Aa
w
(CN�

k
)

=
X
i

X
CN�
k

�C�
i

Aa
w
(CN�

k
)

�
X
i

Aaw(
N� \ C
�

i ):

Fix � < N�sa
0

. Divide the indices i into two sets: i 2 F if

1

jC�
i
j

Z
C�
i

jH �HC�
i
j dx � ��
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and i 2 G if the opposite inequality holds. Now we have two relations:

w(
N�) �
X
k

Aa
w
(CN�

k
);(12)

X
k

Aa
w
(CN�

k
) �

X
i2F

Aa
w
(
N� \ C

�

i
) +

X
i2G

Aa
w
(
N� \ C

�

i
):(13)

If i 2 G, then by Lemma 9X
i2G

Aaw(
N� \ C
�

i ) �
X
i2G

Aaw(C
�

i ) �
X
j

Aaw(Q
(�=Dp)�

j
):(14)

If i 2 F , then we claim that

Aa
w
(
N� \ C

�

i
) � �1=a

0

Aa
w
(C�

i
):

By Lemma 12, (a), it suÆces to show that j
N� \ C
�

i
j � �jC�

i
j: By the maximality if

x 2 
N� \ C
�

i
, then MdH(x) =Md(H�C�

i
)(x): Hence,


N� \ C
�

i = fx 2 C�i : Md(H�C�
i
)(x) > N�g

= fx 2 C�
i
: Md(H�C�

i
)(x) �HC�

i
> N� �HC�

i
g

� fx 2 C�i : Md(jH �HC�
i
j�C�

i
)(x) > �g:

Since Md is weak-type (1; 1) with constant 1, and since i 2 F ,

j
N� \ C
�

i j �
1

�

Z
C�
i

jH �HC�
i
j dx � �jC�i j:

Therefore, X
i2F

Aaw(
N� \ C
�

i ) � �1=a
0
X
i2F

Aaw(C
�

i ) � �1=a
0
X
i

Aaw(C
�

i ):(15)

By the Lebesgue di�erentiation theoremZ
Q

wHs dx � s

Z
1

0

�s�1w(fx 2 Q : MdH(x) > �g) d�:(16)

It follows from (13){(15) that

Z
1

0

�s�1

 X
k

Aaw(C
N�

k )

!
d�

�

Z
1

0

�s�1

0
@X

j

Aaw(Q
(�=Dp)�

j
)

1
A d�+ �1=a

0

Z
1

0

�s�1

 X
i

Aaw(C
�

i )

!
d�:

Since f1 and w have compact support and f1 is bounded, the integrals of the both sides of

above inequality are �nite. Thus, we can re-arrenge the terms and hence,

Z
1

0

�s�1

 X
i

Aa
w
(C�

i
)

!
d� � C

Z
1

0

�s�1

0
@X

j

Aa
w
(Q�

j
)

1
A d�(17)
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by � < N�sa
0

. Inequalities (16), (12) and (17) imply

Z
Q

wHs dx � Cs

Z
1

0

�s�1

0
@X

j

Aa
w
(Q�

j
)

1
A d�:(18)

Claim 13 For every dyadic cube Q = Q(�; 2k) such that Q \Q 6= ; we claim that

Aa
w
(Q) � C

�
kgku;��(2

K)(2K )n=v
�s
jQj1�s=v:

Proof. Since �(l)ln=v is almost increasing, if k < K then

Aa
w
(Q) = jQj

�
1

jQj

Z
Q

jgju dy

�s=u
� jQj

�
kgku;��(2

k)
�s

=
�
kgku;��(2

k)(2k)n=v
�s
jQj1�s=v � C

�
kgku;��(2

K)(2K )n=v
�s
jQj1�s=v:

If k � K then by u � v

Aaw(Q) = jQj1�s=u
�Z

Q\Q

jgju dy

�s=u

� jQj1�s=ujQjs=u
�

1

jQj

Z
Q

jgju dy

�s=u

�

�
kgku;��(2

K)(2K )n=v
�s
jQj1�s=ujQjs=u�s=v �

�
kgku;��(2

K )(2K )n=v
�s
jQj1�s=v:

By this claim and (18) now we need to prove that

s

Z
1

0

�s�1

0
@X

j

jQ�j j
1�s=v

1
A d� � C

�Z
jf1j

q dx

�s=q
:(19)

Since 1� 1=p > 0, f1 has compact support and is bounded, we note that the volume of

Q 2 fQ�
j
g have a positive lower bound. For every Q 2 fQ�

j
g de�ne the mother cube m(Q)

by a minimal cube Q0 such that Q � Q0 2 fQ�
j
g and jQj < jQ0j. Then we can rewrite the

left-hand side of (19) as

X
Q2fQ�

j
g

jQj1�s=v

 �
jQj�1=p

Z
Q

jf1j dy

�s
�

 
jm(Q)j�1=p

Z
m(Q)

jf1j dy

!s!
:(20)

Since jQj < jm(Q)j, (20) is bounded by

X
Q2fQ�

j
g

jQj

 �
jQj�1=p�1=v

Z
Q

jf1j dy

�s
�

 
jm(Q)j�1=p�1=v

Z
m(Q)

jf1j dy

!s!
:(21)

Set 1=P = 1=p+ 1=v � 1. For a.e. x 2 Rn de�ne the cube Qx by a minimal cube Q such

that x 2 Q 2 fQ�
j
g, and de�ne an operator S by

Sf1(x) = jQxj
�1=P

Z
Qx

jf1j dy:
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Then we claim that

X
Q2fQ

�
j
g

jQj

 �
jQj�1=P

Z
Q

jf1j dy

�s
�

 
jm(Q)j�1=P

Z
m(Q)

jf1j dy

!s!
=

Z
(Sf1)

s dx:(22)

By Fubini's theorem

X
Q2fQ

�
j
g

jQj

 �
jQj�1=P

Z
Q

jf1j dy

�s
�

 
jm(Q)j�1=P

Z
m(Q)

jf1j dy

!s!

=

Z X
Q2fQ

�
j
g

�Q(x)

 �
jQj�1=P

Z
Q

jf1j dy

�s
�

 
jm(Q)j�1=P

Z
m(Q)

jf1j dy

!s!
dx

=

Z �
jQxj

�1=P

Z
Qx

jf1j dy

�s
dx =

Z
(Sf1)

s dx:

Clearly, Sf1(x) � Md

P
f1(x). Since Md

P
with 1=s = 1=q + 1=P � 1 is bounded from

Lq(Rn) to Ls(Rn), we obtain

Z
(Md

P f1)
s dx � C

�Z
jf1j

q dx

�s=q
:(23)

Now (19) follows from (20){(23).

3 Proof of Theorem 4 We note that

f 2 L�q (R
n) () f� 2 L

�
�

q=�
(Rn) and kf�kq=�; �� = kfk�q;�(24)

for 0 < �=q � 1 and non-negative function f . Recall 1=t = 1=r+1=p�1. Set � = [t=r]+1 <

1, where [t=r] denotes the largest integer not greater than t=r. For the integers k 2 [1; �]

de�ne the sequences f�kg and fskg by

�k =

�
k; k 2 [1; �� 1];

t=r; k = �
and 1=sk = 1=t+ 1=�k(1=q � 1=r):

Notice that s�=t = q=r.

The proof is by induction on k. Letting u = v = 1 and g � � � 1 in Theorem 1, we

have

kTpfks1; � Ckfkq;�:(25)

We assume that for k 2 [2; �]

kTpfksk�1; � Ckfkq;�:(26)

Then, noting 0 < (�k � 1)=sk�1 � 1=q < 1, we have by (24) and (26)

(Tpf)
�k�1 2 L

 
�k�1

sk�1=(�k�1)
(Rn) and k(Tpf)

�k�1ksk�1=(�k�1);  
�k�1 � Ckfk�k�1

q;�
:(27)

Our choices of �k and sk enable us to apply Theorem 1 to g � (Tpf)
�k�1 and s = sk=�k

(i.e. v = t=(�k � 1)), and hence we have by (27) and (24)

kTpfksk; � Ckfkq;�:(28)

Inequalities (25), (26) and (28) and relation s�=t = q=r imply our desired inequality.



242 SATOKO SUGANO AND HITOSHI TANAKA

Acknowledgement. The authors thank anonymous refree for his (or her) helpful comments.

References

[Ad] Adams D., A note on Riesz potentials, Duke Math. J. 42(1975), 765{778.

[AM] Arai H. and Mizuhara T., Morrey spaces on spaces of homogeneous type and estimates for

Boxb and the Cauchy-Szego projection, Math. Nachr. 185(1997), 5{20.

[CF] Chiarenza F. and Frasca M., Morrey spaces and Hardy-Littlewood maximal function, Rend.

Mat. 7(1987), 273{279.

[CP] Curz-Uribe, SFO D. and P�erez C., Two-weight, weak-type norm inequalities for fractional

integrals, Calderon-Zygmnd operators and commutators, Indiana Univ. Math. J. 49(2000),

697{721.

[KNS] Kurata K., Nishigaki S. and Sugano S., Boundedness of integral operators on general-

ized Morrey spaces and its application to Schr�odinger operators, Proc. Amer. Math. Soc.

128(2000), 1125{1134.

[M] Mizuhara T., Boundedness of some classical operators on generalized Morrey spaces, Har-

monic Analysis (Sendai, 1990), 183{189, ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991.

[Na1] Nakai E., The Hardy-Littlewood maximal operator, singular integral operators and the Riesz

potentials on generalized Morrey spaces, Math. Nachr. 166(1994), 95{103.

[Na2] Nakai E., Pointwise multipliers on the Lorentz spaces, Mem. Osaka Kyoiku Univ. III Natur.

Sci. Appl. Sci. 45(1996), 1{7.

[Na3] Nakai E., A characterization of pointwise multipliers on the Morrey space, Sci. Math.

3(2000), 445{454.

[Ol] Olsen P., Fractional integration, Morrey spaces and Schr�odinger equation, Comm. Partial

Di�erential Equations, 20(1995), 2005{2055.

[P1] Peetre J., On convolution operators leaving Lp;� spaces invariant, Ann. Mat. Pura Appl.,

72(1966), 295{304.

[P2] Peetre J., On the theory of Lp;� spaces, J. Funct. Anal. 4(1969), 71{87.

[SW] Sawyer E. and Wheeden R.L., Weighted inequalities for fractional integrals on euclidean and

homogeneous spaces, Amer. J. Math. 114(1992), 813{874.

Satoko Sugano

Kobe City College of Technology

8-3 Gakuen-higashimachi, Nishi-ku

Kobe, 651-2194

JAPAN

E-mail: sugano@kobe-kosen.ac.jp

Hitoshi Tanaka

Department of Mathematics

Gakushuin University

1-5-1 Mejiro, Toshima-ku

Tokyo 171-8588

JAPAN

E-mail: hitoshi.tanaka@gakushuin.ac.jp


