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ON SOME VARIATIONS OF GLEASON’S GAME
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Abstract. We consider a two-person zero-sum game where the players alternate their
moves until each of them has made a total of n moves. A move of either player consists
of instructing a referee to move a chip either clockwise or counterclockwise to the next
node around a three-node board. These three nodes are arranged in a circle and are
labeled +1, +2 and -3. The main feature here is neither player is informed of any
of his opponent’s past or current moves. Whenever the chip visits a node there is an
intermediate payoff equal to the label on that node. The payoff is taken to be the sum
of these intermediate payoffs at termination. Each player can remember all his own
past moves and therefore may use a history of such moves to decide his next move.
This game is solved for all positive integral values of n.

1 Introduction In the early 1950’s Andrew Gleason of Harvard proposed an interesting
two-person zero-sum game. This stochastic game with an information lag for both players
has a very simple description but turns out to be quite difficult to solve. Ferguson and
Shapley[2] described Gleason’s Game as follows. The two players move a chip around a
three-node board (see Figure 1). The nodes are arranged in a circle, and are labeled +1,
+2 and -3. Initially the chip rests on node +1 and player 1 starts. Thereafter, the players
move alternately. There is a one move delay in informing the players of the position of the
chip, so that, except for the first move, the players make their move only knowing the node
from which the opponent has just moved. A move consists of instructing a referee to move
the chip either clockwise or counterclockwise to the next node; the players are not allowed
to leave the chip where it is. After each move is given to the referee, the referee announces
the node that the chip has just left, and requires player 2 to pay player 1 an amount equal
to the label of that node. The problem is for player 1 to maximize and for player 2 to
minimize the limiting average payoff.

+1

+2-3

Figure 1: The three-node board.

Ferguson and Shapley explained why Gleason’s Game seems easy but is actually hard:
“When the referee announces the state just vacated, both players know the history of the
game up to that point. Indeed, this information is common knowledge (both players know
the other knows, both know the other knows he knows, etc.). At first sight, it might be
thought that one needs not remember back past that point in choosing a strategy. This is
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not so because when the opponent made his last move, he had to choose it not knowing the
actual state, and you should be able to take advantage of that. And the opponent chose his
strategy trying to take advantage of your lack of knowledge of the previous state, so that
should be taken into account, and so on.” They solved Gleason’s Game by first converting
it to a stochastic game using the notion of generalized subgames. The functional equations
associated with these generalized subgames are then solved with an iterative method that
involves alternately solving a finite game with perfect information and a Markov decision
problem with limiting average payoff. This leads to −0.09336 < v < −0.09323, where v is
the value of Gleason’s Game. It was also shown by them that no strategy that remembers
only a bounded number of past moves can be optimal. Games in which a player needs to
remember a history of all its past moves in order to play optimally are difficult to analyze,
and only a very small number of them had ever been solved. The best-known example is
undoubtedly the Big Match due to Blackwell and Ferguson[1].
In this paper we consider a game that differs from Gleason’s Game in terms of the

information made available to the players. More specifically, we assume neither player is
informed of any moves, past or current, made by the other player. It is surprising there
exist optimal strategies that use a mixture of at most four pure strategies irrespective of the
duration of the game. Games in which each player is not informed of any of the opponent’s
moves are sometimes called games with no information. The published literature on games
with no information is limited. Because of their nature, these games are almost exclusively
certain search games where a mobile seeker searches a mobile hider in darkness over some
specified region. A good example is the Princess and Monster Game; see, for example,
Foreman[3], Gal[4], Garnaev[5], Wilson[8], and Worsham[9]. It is therefore of interest to
find a multi-stage game with no information that is not a search game and that can be
solved exactly.

2 The Game Γn We consider the two-person zero-sum game Γn where n is any positive
integer. A referee with the board shown in Figure 1 is stationed in one room. The players,
called player 1 and player 2, are isolated from one another and also from the referee in
another two rooms. Using an intercom, the referee can talk to either player. The players
know n, how the board looks like, and that the chip is initially at node +1. Here is how the
game proceeds. The referee calls player 1 and asks him to make his first move. Player 1 is
only allowed to decide between moving clockwise or counterclockwise. If player 1 chooses
clockwise (counterclockwise), the referee moves the chip clockwise (counterclockwise) from
its initial position at node +1 to the next node on the board and records its label as the
intermediate payoff. That is, the intermediate payoff is taken to be the label of the node
that the chip visits as the result of a player’s move. For example, if the first move of player 1
is to move clockwise, the referee will move the chip to node +2, and he will record +2 as
the intermediate payoff. The referee next calls player 2 and asks him to make his first move.
Player 2 also has to decide between moving clockwise or counterclockwise. If player 2 chooses
clockwise (counterclockwise), the referee moves the chip clockwise (counterclockwise) from
its current position to the next node on the board. He then records the label of that node
as another intermediate payoff. The referee then calls player 1 and asks him to make his
second move. This process continues with the players moving alternately. While the game
is still in progress the referee reveals nothing else to the players. The game terminates after
each player has completed n moves, making a total of 2n moves between the two players.
After the game terminates, the payoff is taken to be the sum of the 2n intermediate payoffs
recorded by the referee. The objective in Γn is for player 1 to maximize and for player 2 to
minimize this payoff.
There are certain differences between Γn and Gleason’s Game. The former is a finite
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game for each n while the latter is an infinite game. We avoid matrix games with count-
ably many pure strategies since such games exhibit several undesirable properties not found
among finite games. Furthermore, since n can be made arbitrarily large, nothing of sig-
nificance is lost by considering finite games in our case. In Gleason’s Game, the payoff is
the average of the intermediate payoffs, chosen out of necessity to avoid unbounded payoffs.
Such a problem does not arise in Γn, so the payoff is chosen to be the sum of the intermedi-
ate payoffs for ease of exposition. The main difference between the two games occurs in how
the information of the opponent’s moves is revealed. In Gleason’s Game, this information
is given one move late while in Γn it is not given at all.

Although a player has no access to his opponent’s moves we assume he can remember
all his own past moves. Hence he may use a history of such moves to decide his next move.

3 A Solution of Γn To obtain a solution, we first represent Γn in extensive form as a
tree with its information sets. In standard terminology, this representation is a game of
perfect recall. We next examine the set of pure strategies, and reduce their number by using
the reduced normal form of an extensive game. This method of reducing the number of
pure strategies is due to Kuhn[6, 7]. After performing such reduction to our case, we are
still left with 2n pure strategies for each player. This is the major obstacle to solve a game
in extensive form since the size of a mixed strategy generally grows exponentially in the size
of the game tree. Such a huge increase in the size often renders a problem computationally
intractable.

Each pure strategy may be identified by a path of length n. Letm be a move of a player.
We take it that a move has the value 1 or -1: m = 1 (m = −1) stands for a clockwise
(counterclockwise) move. An ordered tuple (m1,m2, . . . ,mn) of n moves is called a path
of length n. All the moves in a path belong to the same player. In the above path, mi

denotes his ith move. A path for a player is a description how he moves. For example, the
path (−1, 1, 1) for player 2 means his first move is counterclockwise, his second and third
moves are clockwise. For brevity, we hereafter refer a pure strategy as a path.

We next construct the game matrix of size 2n × 2n. We adopt the standard convention
that player 1 chooses a row and player 2 chooses a column. Let node = +1,+2, or − 3,
sn = (m1,m2, . . . ,mn) be a path of player 1, tn = (m

0
1,m

0
2, . . . ,m

0
n) be a path of player 2,

and m and m0 be moves. The length of a given path is indicated by its subscript. Let

hsn, tni Payoff to player 1 in Γn if player 1 uses sn and player 2 uses tn
leaf (sn, tn) Node where the chip is found at termination in Γn

hnode : m,m0i Sum of the two intermediate payoffs if player 1 chooses m and then
player 2 chooses m0, assuming that the chip is at node just before
player 1 chooses m

sn ◦m (m1,m2, . . . ,mn,m)

sum (sn, tn)
Pn

i=1(mi +m
0
i)

Suppose s3 = (1, 1,−1) and t3 = (−1, 1, 1). Then hs3, t3i = 2+1+2+(−3)+2+(−3) = 1;
leaf (s3, t3) = −3; h+2 : −1,−1i = 1 + (−3) = −2; h−3 : −1, 1i = 2 + (−3) = −1;
s3 ◦ 1 = (1, 1,−1, 1); sum (s3, t3) = 2. The following relations are easy to establish.

hsn ◦m, tn ◦m0i = hsn, tni+ hleaf (sn, tn) : m,m
0i,

sum (sn, tn) ≡ 0 (mod 3) if and only if leaf (sn, tn) = +1,(1)

sum (sn, tn) ≡ 1 (mod 3) if and only if leaf (sn, tn) = +2,(2)

sum (sn, tn) ≡ 2 (mod 3) if and only if leaf (sn, tn) = −3.(3)
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Proposition 1 The value of Γ1 is −1, and the value of Γn is − 2
9 for n ≥ 2.

Define the paths of length n ≥ 1 by

s1
n = (1, 1, 1, 1,−1, 1, . . . , (−1)n), s2

n = (1, 1,−1, 1,−1, 1, . . . , (−1)n),
s3

n = (1,−1, 1, 1,−1, 1, . . . , (−1)n), s4
n = (1,−1,−1, 1,−1, 1, . . . , (−1)n),

t1n = (1, 1, 1,−1, 1,−1, . . . , (−1)n+1), t2n = (1, 1,−1, 1,−1, 1, . . . , (−1)n),
t3n = (1,−1, 1,−1, 1,−1, . . . , (−1)n+1), t4n = (1,−1,−1, 1,−1, 1, . . . , (−1)n).

Let x∗n =
1
3 s

1
n +

1
9 s

2
n +

2
9 s

3
n +

1
3 s

4
n and y∗n =

2
9 t

1
n +

1
3 t

2
n +

1
3 t

3
n +

1
9 t

4
n.

Then x∗n is an optimal strategy of player 1 and y∗n is an optimal strategy of player 2 in Γn

for n ≥ 1.

We clarify certain points in Proposition 1. We only discuss the case for player 1; similar
discussion applies to player 2. (1) The four paths s1

n to s
4
n of player 1 are defined with respect

to n starting from the left end of the tuples. For example, s3
2 = (1,−1). (2) Beginning with

the fourth move, the moves in each path always alternate between 1 and -1. (3) When n = 1
or n = 2, s1

n to s
4
n are not distinct. In these cases, x

∗
n are interpreted as follows. For n = 2,

x∗2 =
1
3 s

1
2+

1
9 s

2
2+

2
9 s

3
2+

1
3 s

4
2 =

1
3 (1, 1)+

1
9 (1, 1)+

2
9 (1,−1)+ 1

3 (1,−1) = 4
9 (1, 1)+

5
9 (1,−1).

For n = 1, it is easy to see x∗1 = 1(1), that is, player 1 always moves clockwise.

4/9

3/42/5

5/9

2/53/4

Figure 2: Optimal behavior strategies for player 1(left) and player 2(right) in Γn.

To better visualize the optimal strategies in Proposition 1, we represent them as behavior
strategies in Figure 2. In this figure, an outgoing edge towards the lower right (left) is a
clockwise (counterclockwise) move. If a node has only one outgoing edge, that edge is clearly
chosen with certainty. If there are two outgoing edges, the probabilities of choosing them
sum to one; we only show the probability choosing the clockwise move. One interesting
observation is that the optimal strategies embed among themselves. By this is meant that
if a player removes the last move from his optimal strategy in Γn, he will obtain an optimal
strategy in Γn−1. This implies the players do not even need to know the value of n to play
optimally. We now derive some results required to prove Proposition 1.

Lemma 1 Let n ≥ 3 and let s1
n to s4

n be defined as in Proposition 1. For any path tn of
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player 2, one of the following three cases holds.

leaf (s1
n, tn) = +1, leaf (s

2
n, tn) = +2, leaf (s

3
n, tn) = +2, leaf (s

4
n, tn) = −3.

leaf (s1
n, tn) = +2, leaf (s

2
n, tn) = −3, leaf (s3

n, tn) = −3, leaf (s4
n, tn) = +1.(4)

leaf (s1
n, tn) = −3, leaf (s2

n, tn) = +1, leaf (s
3
n, tn) = +1, leaf (s

4
n, tn) = +2.

Proof Since the chip has to terminate at a node, leaf (s1
n, tn) = +1, +2 or− 3.

Suppose leaf (s1
n, tn) = +1. We need to show leaf (s2

n, tn) = +2, leaf (s3
n, tn) = +2, and

leaf (s4
n, tn) = −3. This is the first case in (4). Let sum (s1

n, tn) = r. Then sum (s
2
n, tn) =

r − 2, sum (s3
n, tn) = r − 2, and sum (s4

n, tn) = r − 4. To see that sum (s2
n, tn) = r − 2,

we just need to examine those moves that differ in s1
n and s

2
n. Only their third moves are

different, so the result follows.
¿From (1), leaf (s1

n, tn) = +1 implies sum (s
1
n, tn) ≡ 0 (mod 3), that is, r ≡ 0 (mod 3).

sum (s2
n, tn) = r − 2 ≡ r + 1 ≡ 1 (mod 3) implies from (2) that leaf (s2

n, tn) = +2.

sum (s3
n, tn) = r − 2 ≡ r + 1 ≡ 1 (mod 3) implies from (2) that leaf (s3

n, tn) = +2.

sum (s4
n, tn) = r − 4 ≡ r + 2 ≡ 2 (mod 3) implies from (3) that leaf (s4

n, tn) = −3.
The second and third cases of (4) can be treated similarly.♦
Lemma 2 is the companion to Lemma 1. It is slightly more involved because we have to

separate the cases for n odd or even.

Lemma 2 Let n ≥ 3 and t1n to t4n be defined as in Proposition 1. Let sn be any path of
player 1. If n is odd, one of the following three cases holds.

leaf (sn, t
1
n) = +1, leaf (sn, t

2
n) = +2, leaf (sn, t

3
n) = +2, leaf (sn, t

4
n) = −3.

leaf (sn, t
1
n) = +2, leaf (sn, t

2
n) = −3, leaf (sn, t

3
n) = −3, leaf (sn, t

4
n) = +1.(5)

leaf (sn, t
1
n) = −3, leaf (sn, t

2
n) = +1, leaf (sn, t

3
n) = +1, leaf (sn, t

4
n) = +2.

If n is even, one of the following three cases holds.

leaf (sn, t
1
n) = +1, leaf (sn, t

2
n) = +1, leaf (sn, t

3
n) = +2, leaf (sn, t

4
n) = +2.

leaf (sn, t
1
n) = +2, leaf (sn, t

2
n) = +2, leaf (sn, t

3
n) = −3, leaf (sn, t

4
n) = −3.(6)

leaf (sn, t
1
n) = −3, leaf (sn, t

2
n) = −3, leaf (sn, t

3
n) = +1, leaf (sn, t

4
n) = +1.

Proof Proceed as in the proof of Lemma 1. If sum (sn, t
1
n) = r, we need to verify that:

For n odd, sum (sn, t
2
n) = r − 2, sum (sn, t

3
n) = r − 2, and sum (sn, t

4
n) = r − 4.

For n even, sum (sn, t
2
n) = r, sum (sn, t

3
n) = r − 2, and sum (sn, t

4
n) = r − 2.♦

Let

U = {(+1,+2,+2,−3), (+2,−3,−3,+1), (−3,+1,+1,+2)},
V = {(+1,+1,+2,+2), (+2,+2,−3,−3), (−3,−3,+1,+1)}.

Each ordered tuple in U is a case in (4) (or (5)), and each tuple in V is a case in (6). The
proof of Lemma 3 below is by straightforward exhaustive evaluation and is omitted.

Lemma 3 Let m and m0 be any moves.
(i) For each (k1, k2, k3, k4) in U ,

1

3
hk1 : m,m

0i+ 1
9
hk2 : m,m

0i+ 2
9
hk3 : m,m

0i+ 1
3
hk4 : m,m

0i = 0.(7)
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(ii) For each (k1, k2, k3, k4) in U ,

2

9
hk1 : m,−1i+ 1

3
hk2 : m, 1i+ 1

3
hk3 : m,−1i+ 1

9
hk4 : m, 1i = 0.(8)

(iii) For each (k1, k2, k3, k4) in V ,

2

9
hk1 : m, 1i+ 1

3
hk2 : m,−1i+ 1

3
hk3 : m, 1i+ 1

9
hk4 : m,−1i = 0.(9)

Let E(xn, tn) denote the expected payoff (to player 1) if player 1 uses the mixed strategy
xn and player 2 uses the path tn. Let E(sn, yn) denote the expected payoff if player 1 uses
the path sn and player 2 uses the mixed strategy yn.

Lemma 4 Let n ≥ 3. Let x∗n and y∗n be defined as in Proposition 1. Then

E(x∗n+1, tn ◦m0) = E(x∗n, tn) for all paths tn and for all moves m0,(10)

E(sn ◦m, y∗n+1) = E(sn, y
∗
n) for all paths sn and for all moves m.(11)

Proof We only prove (11). Let n ≥ 3, sn be any path, and m be any move. Let m̃ denote
the (n+1)th move in the paths tin+1 (i = 1, 2, 3, 4) that are defined in Proposition 1. When
i = 1, 3, this m̃ move is clockwise (counterclockwise) for n even (odd). When i = 2, 4, this
move is clockwise (counterclockwise) for n odd(even). That is, for i = 1, 3, m̃ = (−1)n,
and for i = 2, 4, m̃ = (−1)n+1. The above observation may also be seen from the right
diagram in Figure 2 where these paths are numbered from right to left. Hence for i = 1, 3,
tin+1 = t

i
n ◦ (−1)n, and for i = 2, 4, tin+1 = t

i
n ◦ (−1)n+1. We have

E(sn ◦m, y∗n+1) = E(sn ◦m, 2
9
t1n+1 +

1

3
t2n+1 +

1

3
t3n+1 +

1

9
t4n+1)

=
2

9
hsn ◦m, t1n+1i+

1

3
hsn ◦m, t2n+1i+

1

3
hsn ◦m, t3n+1i+

1

9
hsn ◦m, t4n+1i

=
2

9
hsn ◦m, t1n ◦ (−1)ni+

1

3
hsn ◦m, t2n ◦ (−1)n+1i

+
1

3
hsn ◦m, t3n ◦ (−1)ni+

1

9
hsn ◦m, t4n ◦ (−1)n+1i

=
2

9
hsn, t

1
ni+

1

3
hsn, t

2
ni+

1

3
hsn, t

3
ni+

1

9
hsn, t

4
ni

+
2

9
hleaf (sn, t

1
n) : m, (−1)ni+

1

3
hleaf (sn, t

2
n) : m, (−1)n+1i

+
1

3
hleaf (sn, t

3
n) : m, (−1)ni+

1

9
hleaf (sn, t

4
n) : m, (−1)n+1i

= E(sn, y
∗
n) + θ where

θ =
2

9
hleaf (sn, t

1
n) : m, (−1)ni+

1

3
hleaf (sn, t

2
n) : m, (−1)n+1i

+
1

3
hleaf (sn, t

3
n) : m, (−1)ni+

1

9
hleaf (sn, t

4
n) : m, (−1)n+1i.

We are done if we can show θ = 0.
Let n be odd. From (5),

θ =
2

9
hk1 : m,−1i+ 1

3
hk2 : m, 1i+ 1

3
hk3 : m,−1i+ 1

9
hk4 : m, 1i
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for some (k1, k2, k3, k4) in U . Using (8), θ = 0.
Let n be even. From (6),

θ =
2

9
hk1 : m, 1i+ 1

3
hk2 : m,−1i+ 1

3
hk3 : m, 1i+ 1

9
hk4 : m,−1i

for some (k1, k2, k3, k4) in V . Using (9), θ = 0.♦
When constructing the payoff matrix of Γn, it is useful to enumerate the 2

n paths of a
player in some consistent way from path 1 to path 2n. For 1 ≤ i ≤ 2n, we define path i as
follows. First convert i− 1 to binary as a string of 0 and 1. If necessary, left pad by adding
extra 0 in front until we have a string of length n. Replace all 1 by -1, and then replace all
0 by 1. As an illustration suppose n = 5 and i = 14. In binary, 13 = 1101 and we need to
add one extra 0 in front to get 01101. Replace all 1 by -1 to obtain 0,−1,−1, 0,−1. Replace
all 0 by 1 to obtain 1,−1− 1, 1,−1. Hence path 14 is (1,−1,−1, 1,−1).
Proof of Proposition 1 When n = 1, the payoff matrix is

-1 3
-2 -1

This matrix has a saddle-point in pure strategies; the -1 in bold is its saddle-point value.

Now let n ≥ 2. The conclusion of Proposition 1 follows if we can prove

E(x∗n, tn) ≥ −2
9

for all paths tn,(12)

E(sn, y
∗
n) ≤ −2

9
for all paths sn.(13)

We only prove (12) since the proof of (13) is similar. When n = 2, 3, the payoff matrices
are respectively

2 -3 2 6
-2 2 1 2
-3 1 -3 -2
-4 -3 2 -3

0 1 0 -5 5 0 5 9
5 0 -4 0 1 5 4 5
1 -4 1 5 0 4 0 1
-3 1 0 1 -1 0 5 0
0 -5 0 4 -4 0 -4 -3
-4 0 -1 0 -5 -4 1 -4
-5 -1 -5 -4 0 1 0 -5
-6 -5 0 -5 5 0 -4 0

We verify directly, using the above matrices, that (12) is true for n = 2, 3.
Assume now (12) is true for n = k ≥ 3.
Using (10) with n replaced by k, for all paths tk and all moves m

0,

E(x∗k+1, tk ◦m0) = E(x∗k, tk).

Hence for all moves m0,

E(x∗k+1, tk ◦m0) = E(x∗k, tk) ≥ −
2

9
for all paths tk.
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If tk runs through all the 2
k paths of length k, and m0 runs through the two moves m0 = 1

and m0 = −1, then tk ◦m0 will run through all the 2k+1 paths of length k + 1. Writing
tk+1 for tk ◦m0, we obtain

E(x∗k+1, tk+1) ≥ −2
9

for all paths tk+1.

By induction (12) is true for n ≥ 3. Including the case for n = 2 that has been verified by
direct calculation, (12) is true for n ≥ 2.♦
There are many optimal strategies. We restrict the discussion to those optimal strategies

that address the following problem: What are some alternate optimal strategies if all we
can change are the fourth or later moves in the paths in Proposition 1? The weights in
Proposition 1 cannot be changed.
Using (7) it can be shown the following sets of paths also work for player 1:

s1
n = (1, 1, 1,m4, . . . ,mn), s2

n = (1, 1,−1,m4, . . . ,mn),

s3
n = (1,−1, 1,m4, . . . ,mn), s4

n = (1,−1,−1,m4, . . . ,mn)

where for 4 ≤ k ≤ n, mk may take the value +1 or -1 independent of k. Thus there are at
least 2n−3 sets of such paths.
Alternate optimal strategies with at most 4 paths seem to occur less frequent for player 2.
Besides the one given in Proposition 1, the only other set of paths that we are able to find
is

t1n = (1, 1, 1,−1, 1,−1, . . . , (−1)n+1), t2n = (1, 1,−1,−1, 1,−1, . . . , (−1)n+1),

t3n = (1,−1, 1, 1,−1, 1, . . . , (−1)n), t4n = (1,−1,−1, 1,−1, 1, . . . , (−1)n).
For a (mixed) strategy xn and a path sn, let xn(sn) denote the probability that xn

assigns to sn. The support of xn is defined as the set of paths sn with xn(sn) > 0. The size
of xn is then defined to be the cardinality of its support. Proposition 1 says each player in
Γn has an optimal strategy of size 4 or less for all positive n. We show this remains true
even when we change the initial position of the chip at the start of the game.

4 Games with Other Initial Positions In Γn, the chip rests initially at node +1 when
the game starts. Let Γ2

n and Γ
−3
n denote the game where the chip rests initially at node +2

and at node -3 respectively. All other aspects of Γn are assumed to remain unchanged, like
player 1 still making the first move.
First consider Γ2

n. We solve Γ
2
n in the same way as we have solved Γn. The basic method

is to solve Γ2
n numerically for small values of n, make a guess, and then verify the guess.

Proposition 2 The value of Γ2
1 is −7

6 , and the value of Γ2
n is −7

9 for n ≥ 2.
In Γ2

1, an optimal strategy of player 1 is to choose the clockwise move with probability 5
6 ,

and an optimal strategy of player 2 is to choose the clockwise move with probability 1
6 .

Define the paths of length n ≥ 2 by

ŝ1
n = (1,−1, 1, 1,−1, 1, . . . , (−1)n), ŝ2

n = (1,−1,−1, 1,−1, 1, . . . , (−1)n),
ŝ3

n = (−1,−1, 1, 1,−1, 1, . . . , (−1)n), ŝ4
n = (−1,−1,−1, 1,−1, 1, . . . , (−1)n),

t̂1n = (−1, 1, 1,−1, 1,−1, . . . , (−1)n+1), t̂2n = (−1, 1,−1,−1, 1,−1, . . . , (−1)n+1),

t̂3n = (−1,−1, 1, 1,−1, 1, . . . , (−1)n), t̂4n = (−1,−1,−1, 1,−1, 1, . . . , (−1)n).
Let x̂∗n =

1
3 ŝ

1
n +

1
9 ŝ

2
n +

2
9 ŝ

3
n +

1
3 ŝ

4
n and ŷ∗n =

1
9 t̂

1
n +

1
3 t̂

2
n +

1
3 t̂

3
n +

2
9 t̂

4
n.

Then x̂∗n is an optimal strategy of player 1 and ŷ∗n is an optimal strategy of player 2 in Γ2
n

for n ≥ 2.
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We have given the optimal strategies separately for n = 1 since we cannot extend the
definition of x̂∗n and ŷ∗n above to include this case. Let us see what happen if we do otherwise.
For example, x̂∗1 =

4
9 (1) +

5
9 (−1), that is, to choose the clockwise move with probability

4
9 . It is easily seen that this strategy is not optimal. We can prove Proposition 2 with the
same method we have used to prove Proposition 1. Since the chip now starts initially from
node +2, we have to make some minor adjustments to reflect this fact. For example, (1)
has to be replaced by

sum (sn, tn) ≡ 0 (mod 3) if and only if leaf (sn, tn) = +2.

We omit the proof of Proposition 2.
Now consider Γ−3

n . Here we may guess a solution of Γ−3
n based on the known solution

of Γn. Consider the game Γn+1. Using the optimal strategies in Proposition 1 both players
choose clockwise for their first move. Thus the referee moves the chip to node -3 and he is
about to call player 1 to choose his second move. From that moment the game to be played
is precisely Γ−3

n . Hence the guess is that for n ≥ 1, value (Γn+1) = 2 + (−3) + value (Γ−3
n ),

or value (Γ−3
n ) = 7

9 . Furthermore, if we delete the first move from each player’s optimal
strategy in Γn+1 we should obtain his optimal strategy in Γ

−3
n . It turns out the above guess

is correct. For completeness we summarize the results in Proposition 3.

Proposition 3 The value of Γ−3
n is 7

9 for n ≥ 1. Define the paths of length n ≥ 1 by

s̃1
n = (1, 1, 1,−1, 1,−1, . . . , (−1)n+1), s̃2

n = (1,−1, 1,−1, 1,−1, . . . , (−1)n+1),

s̃3
n = (−1, 1, 1,−1, 1,−1, . . . , (−1)n+1), s̃4

n = (−1,−1, 1,−1, 1,−1, . . . , (−1)n+1),

t̃1n = (1, 1,−1, 1,−1, 1, . . . , (−1)n), t̃2n = (1,−1, 1,−1, 1,−1, . . . , (−1)n+1),

t̃3n = (−1, 1,−1, 1,−1, 1, . . . , (−1)n), t̃4n = (−1,−1, 1,−1, 1,−1, . . . , (−1)n+1).

Let x̃∗n =
1
3 s̃

1
n +

1
9 s̃

2
n +

2
9 s̃

3
n +

1
3 s̃

4
n and ỹ∗n =

2
9 t̃

1
n +

1
3 t̃

2
n +

1
3 t̃

3
n +

1
9 t̃

4
n.

Then x̃∗n is an optimal strategy of player 1 and ỹ∗n is an optimal strategy of player 2 in Γ−3
n

for n ≥ 1.
5 The Game Ωn(a, b, c) We may generalize further by adding a chance move at the
very beginning before player 1 chooses his first move. Here is how the chance move may
be implemented. The referee uses a probability distribution to select the node where the
chip will rest initially. Let the probabilities of selecting nodes 1, 2 and -3 be a, b and c
respectively where a + b + c = 1. Both players are informed the values of a, b and c but
are not informed the outcome of this chance move. All other aspects of the game remain
unchanged. Let Ωn(a, b, c) denote this game. We have already solved three special cases of
Ωn(a, b, c): Ωn(1, 0, 0) = Γn, Ωn(0, 1, 0) = Γ

2
n, and Ωn(0, 0, 1) = Γ

−3
n .

It is helpful to recall what we have done earlier. Associated with each of Γn, Γ
2
n or Γ

−3
n is

an 2n×2n payoff matrix where each entry is obtained by summing 2n intermediate payoffs.
Let these matrices be called A(Γn), A(Γ2

n) and A(Γ−3
n ) respectively. A(Ωn(a, b, c)), the

payoff matrix of Ωn(a, b, c), is clearly given by

A(Ωn(a, b, c)) = aA(Γn) + bA(Γ2
n) + cA(Γ−3

n ).

For any specific values of a, b and c, it is possible but laborious to use the above relation
to solve Ωn(a, b, c) by applying the same method as we have done for Γn. Instead of doing
that, we restrict our attention now to explore when Ωn(a, b, c) may be solved easily. Since
we already know the solutions of Γn, Γ

2
n and Γ

−3
n , it is natural to investigate how to reduce

Ωn(a, b, c) to a game that is similar in some sense to one of these three games. Towards this
goal we first prove the following lemma.
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Lemma 5 For n ≥ 1,
A(Γn) +A(Γ2

n) +A(Γ−3
n ) = 0.(14)

Proof The 0 on the right side of (14) is an 2n × 2n matrix whose entries are all zeroes.
Let sn and tn be any paths of player 1 and player 2 respectively. We wish to show that,
corresponding to these two paths,

payoff in Γn + payoff in Γ
2
n + payoff in Γ

−3
n = 0.(15)

The proof becomes obvious if we play the games Γn, Γ
2
n and Γ

−3
n simultaneously. Prior to

the start, suppose the referee places a white chip at node +1, a black chip at node +2, and
a red chip at node -3. Note that at this moment there is exactly one chip at each node.
According to the instructions contained in sn and tn, the referee moves the three chips
simultaneously 2n times. But each time the chips move (we call this a stage), they do so
with the same direction, either clockwise or counterclockwise. This is because the moves
are determined from one particular element in the tuples sn or tn. It is not hard to see that,
at the end of each stage, there is still exactly one chip at each node. This is all we need.
The sum of the three intermediate payoffs at the end of each stage is therefore equal to the
sum of the labels on the three nodes which is zero. The right side of (15) is 2n× 0 = 0.♦
Lemma 4 implies Ωn(

1
3 ,

1
3 ,

1
3 ) is a trivial game since

A(Ωn(
1

3
,
1

3
,
1

3
)) =

1

3
A(Γn) +

1

3
A(Γ2

n) +
1

3
A(Γ−3

n ) = 0.

Its value is zero, and any path of length n is an optimal strategy for either player.
Let Tn denote one of Γn, Γ

2
n, Γ

−3
n or their variants. For any positive real number α, we

define Ωn(a, b, c) ∼ αTn if A(Ωn(a, b, c)) = αA(Tn). If Ωn(a, b, c) ∼ αTn, a basic result in
game theory states the games Ωn(a, b, c) and Tn have the same optimal strategies and the
value of Ωn(a, b, c) is α times the value of Tn.

Proposition 4 Let 1
3 < a ≤ 1. Then

Ωn(a,
1− a
2
,
1− a
2
) ∼ 3a− 1

2
Γn,(16)

Ωn(
1− a
2
, a,

1− a
2
) ∼ 3a− 1

2
Γ2

n,

Ωn(
1− a
2
,
1− a
2
, a) ∼ 3a− 1

2
Γ−3

n .

Proof To prove (16),

A(Ωn(a,
1− a
2
,
1− a
2
)) = aA(Γn) +

1− a
2

A(Γ2
n) +

1− a
2

A(Γ−3
n )

=
3a− 1
2

A(Γn) +
1− a
2

©
A(Γn) +A(Γ2

n) +A(Γ−3
n )

ª
=

3a− 1
2

A(Γn)

so that

Ωn(a,
1− a
2
,
1− a
2
) ∼ 3a− 1

2
Γn.♦

Suppose we reverse the sign of all the node labels, that is, node +1 becomes node -1,
node +2 becomes node -2, and node -3 becomes node +3. Let Γ̂−1

n , Γ̂−2
n and Γ̂3

n denote the
games when the chip initially rests at node -1, node -2 and node +3 respectively.
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Proposition 5 Let 0 ≤ a < 1
3 . Then

Ωn(a,
1− a
2

,
1− a
2
) ∼ 1− 3a

2
Γ̂−1

n ,(17)

Ωn(
1− a
2
, a,

1− a
2
) ∼ 1− 3a

2
Γ̂−2

n ,

Ωn(
1− a
2
,
1− a
2
, a) ∼ 1− 3a

2
Γ̂3

n.

Proof To prove (17),

A(Ωn(a,
1− a
2
,
1− a
2
)) = aA(Γn) +

1− a
2

A(Γ2
n) +

1− a
2

A(Γ−3
n )

=
1− 3a
2

{−A(Γn)}+ 1− a
2

©
A(Γn) +A(Γ2

n) +A(Γ−3
n )

ª
=

1− 3a
2

A(Γ̂−1
n )

so that

Ωn(a,
1− a
2
,
1− a
2
) ∼ 1− 3a

2
Γ̂−1

n .♦

A solution of Γ̂−1
n cannot be deduced from a solution of Γn. We need to repeat the whole

process in Section 3 to obtain a solution.

6 Conclusion Motivated by Gleason’s Game we formulate and solve a class of finite
games. The surprising thing about these games is that they have optimal strategies with
a small support. It is uncertain whether this is due to the fact that the labels on the
nodes sum to zero. In the original formulation, Gleason probably chose the labels with a
zero sum to make the game appeared fair to both the players. As pointed out by Ferguson
and Shapley[2], Gleason’s Game is not a fair game since it favors player 2. Talking about
fairness, Ωn(

1
3 ,

1
3 ,

1
3 ) is a fair game, both Γn and Γ

2
n favor player 2 while Γ

−3
n favors player 1.

We make one final remark. The left diagram in Figure 2 shows an optimal strategy of
player 1 in Γn. From the fourth move onwards, player 1 always moves clockwise for his even
moves and counterclockwise otherwise. This implies player 2 knows exactly how player 1
is going to move. But player 2 cannot gain any advantage from this knowledge because
he does not know the current position of the chip. Player 1, by randomizing appropriately
when he chooses his second and third moves, ensures the chip would move in a pattern that
prevents player 2 from exploiting his future deterministic moves.
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