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Abstract. Given a �nite group G with irreducible character � 2 Irr(G); r 2 N and

a partition � of r, we de�ne higher characters �
(r)
�

of G, following Frobenius [2]. We

interpret them as a generalization of Schur functions in noncommuting variables, as a

multilinear invariant map, as the sum over Sr of a character of the wreath product

G oSr , and as the trace of a e�Gre�-module. Using these interpretations, we are able

to compute (� +  )
(r)
�

in terms of �
(a)
� and  

(b)
� where a + b = r and � and � are

partitions of a and b, respectively.

We show distinct higher characters are orthogonal in section 3.1.

These �
(r)
�

have the property that they are constant on Sr � G orbits of Gr , i.e.

invariant under diagonal conjugation and permutation of entries of an r-tuple. By

decomposing HomGr
(IndGr

Sr
E�; Ind

Gr

Sr
E�) = e�Gre�, we �nd an orthogonal family of

functions with this property. In the case G is abelian, we show this family forms a basis

for all such functions on Gr. This doesn't happen for general G, as shown on some

examples in the appendix. However, in both cases, we show that it is only necessary

to consider � = (r) (or � = (1r)) in theorems 8 and 9. The reader may skip straight

to section 3.2 for these results.

1 Introduction This paper is a largely expository study of Frobenius' higher characters

�(r) and illuminates three di�erent contexts in which they arise. In [2] Frobenius gives the

�
(r)
i

in terms of the irreducible characters �i, as in de�nition 2, as well as in terms of the

group determinant.

Character theory grew out of Frobenius' study of the group determinant, initiated in

correspondence with Dedekind in 1896. Given a �nite group G of cardinality n, choose

n indeterminants fxggg2G and construct the n � n matrix XG = [xgh�1 ]. The group

determinant is de�ned as �G = det(XG). Frobenius factored �G =
Q
�di
i

over C . The

�i are irreducible homogeneous polynomials of degree di and correspond to the irreducible

complex representations �i with character �i. One can easily recover �i(g) as the coeÆcient

of xdi�11 in @�i

@xg
. Further, �i = det(

P
g2G

�i(g)xg). But what of the other coeÆcients? The

higher characters �
(r)
i

we study below arise as other coeÆcients occurring in the �i and

their derivatives.

Recently, there has been a renewed interest in the group determinant. In 1991, Formanek

and Sibley [1] proved the group determinant determines the group. In fact, Hoehnke and

Johnson show we only need the �
(1)
i
; �

(2)
i
; and �

(3)
i

to determine the group in [4], and a

result of Mans�eld's gives a more elementary proof of this in [9].

Frobenius gives the higher characters �
(r)
i

in terms of the �i as in de�nition 2 as well

as in terms of the group determinant. In this study, we use the former and a natural

generalization of it to prove properties (such as orthogonality and behavior under direct

sum) of the higher characters and exhibit them as occurring in other contexts of math.
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(Orthogonality aslo follows from considering the higher characters as coming from characters

of a wreath product. [5])

We assume the reader is familiar with the basics of representation theory of �nite groups

and in particular with that of the symmetric group and its connection to symmetric functions

[8].

Acknowledgments: I would like to thank K. W. Johnson for encouraging me to submit

this, even though it was written in 1996 as a graduate student and sat on my shelf since

then. Thanks to Ian Grojnowski for asking all the right questions and being in�nitely

generous with his time. Also, thanks to Paul Brown for teaching me GAP [11], and thanks

to T.Y. Lam for his guidance and support.

2 ��

2.1 Notation and some de�nitions Let Sr denote the symmetric group on r letters.

Given a permutation � 2 Sr , we can write it in cycle notation

� = (m1 �(m1) �
2(m1)����

�1 (m1))(m2 �(m2) �
2(m2)����

�2 (m2)) � � � (ml ����
�
` (ml)):

If we use the convention that �1 � �2 � � � � � �`, then we say � has shape sh(�) =

(�1 �2 � � ��`) = �. Then � is a partition of r, written � ` r, of length `(�) = l. The

partition � will also be used to denote the conjugacy class of � which has size r!
z�
, where

z� = jCSr
(�)j. (In general, CG(g) is the centralizer of g 2 G.) Furthermore, a partition

� ` r will also be used to denote an irreducible character � 2 Irr(Sr). Let

e� =
�(1)

r!

X
�2Sr

�(��1)� =
�(1)

r!

X
�2Sr

�(�)�

denote the central idempotent of C [Sr ], which we can also view as a projection. Then

E� = C [Sr ]e� = e�C [Sr ] has character �(1)�. We can further decompose e� = e
(1)
�

+e
(2)
�

+

� � �+e
(�(1))
�

into a sum of orthogonal idempotents, obtained, for instance, by multiplying the

row and column stabilizers of a standard Young tableaux of shape �. Then C [Sr ]e
(i)
�

is an

irreducible representation of Sr with character � and its isomorphism type is independent

of i. Let L� = C [Sr ]e
(1)
�
. Throughout this paper, we will use L� when it is most convenient

to use an irreducible representation, but E� when we want to make use of the fact that e�
is central.

De�nition 1 Given � a character of G, and � 2 Sr of shape sh(�) = � in cycle notation

as above, de�ne

��(g1; : : : ; gr) = �(gm1
g�(m1) : : : g��1 (m1)) � � ��(gml

: : : g��` (ml)):

Example 1 If � = (124)(3) then ��(g1; g2; g3; g4) = �(g1g2g4)�(g3).

Let sgn denote the sign character of Sr that is �1 on odd permutations and 1 on even

permutations.

De�nition 2 If � is a character of G then the r-character is

�(r)(g1; g2; : : : ; gr) =
X
�2Sr

sgn(�)��(g1; g2; : : : ; gr):
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A perfectly natural generalization of these higher characters is obtained by replacing

sgn(�) with any irreducible character � of Sr. In fact, in [6], Johnson denotes by �(r;+)

the r-character one gets using the trivial representation of Sr, and shows that these and

the �(r) are orthogonal for �xed r, as � ranges over Irr(G), the irreducible characters of G.

Making this generalization, one could interpret these new r-characters as coeÆcients of a

\group immanant". See [7].

De�nition 3 For � an irreducible character of G and � 2 Irr(Sr) de�ne

��(g1; g2; : : : ; gr) = �
(r)
�
(g1; g2; : : : ; gr) =

X
�2Sr

�(�)��(g1; g2; : : : ; gr):

In section 3.1 we'll show that distinct higher characters are orthogonal.

If G has a representation V with character �, we can interpret �� as coming from the

action of the wreath product of G and Sr on V

r.

Let Gr = G�G � � � � �G| {z }
r

and let Gr denote the wreath product G oSr = Sr nGr where

(g1; g2; : : : ; gr)
� = ��1(g1; g2; : : : ; gr)� = (g��1(1); g��1(2); : : : ; g��1(r)):

Let �(G) denote the copy of G that sits in Gr diagonally.

If V is an irreducible representation of G with character � of degree n, then V 
r is an

irreducible representation of Gr , with action de�ned by

(g1; g2; : : : ; gr)v1 
 � � � 
 vr = g1v1 
 � � � 
 grvr;

and with character denoted �
r . The natural action of Sr on V

r via

� (w1
w2
 � � �
wr) = w��1(1)
w��1(2)
 � � �
w��1(r)

makes V 
r into an irreducible representation of the wreath product Gr. Let us denote its

character by e�, noticing ResGr

Gr e� = �
r and ResGr

�(G)
e� = �r .

In the notation of [5], if � is the character of the representation V , then our ��(g) =e�(g�) is denoted �(#n
V )e(g;�) (having identi�ed the r-tuple g with the function f1; : : : ; rg !

G sending i to gi). Further, �(�)��(g) is the character of (#
nV )e
 � evaluated at (g;�).

Hence the orthogonality of these extended higher characters follows from the orthogonality

of the irreducible characters of the wreath product Gr.

As a way of understanding �
(r)
�

and its connection to e�, let's �rst consider �� evaluated

on �(G). We show below that �
(r)
�
(g; g; : : : ; g) = r!�S�V (g), where we denote S�V =

HomG(Res
Gr

G
IndGr

Sr
L�; V


r). Schur-Weyl duality gives us that V 
r '
L

�`r
�(1)S�V as a

�(G) representation. See [8] or [3]. Notice �(1)S�V ' e�V

r. It is immediate that S�V is

a representation of G, and for the convenience of the reader, we compute its character.

Claim 1 S�V is a representation of G with character

�S�V (g) =
1

r!
�
(r)
�
(g; g; : : : ; g):
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Proof: Recall that if fx1; : : : ; xng are the eigenvalues of g acting on V , then �S�V (g) =

s�(x1; : : : ; xn ), where s� denotes the Schur function. (See [8] or [3].) Notice also that gm

will have eigenvalues fxm1 ; : : : ; x
m

n
g and so

�(gm) = xm1 + xm2 + � � �+ xm
n
= pm(x1; : : : ; xn)

where pm denotes themth-power sum symmetric function. Recall p� = p�1p�2 � � � p�` . Then
the well-known expansion of the Schur functions in terms of power sum symmetric functions

gives us:

�S�V (g) = s�(x1; : : : ; xn)

=
X
�`r

1

z�
�(�)p�(x1; : : : ; xn)

=
1

r!

X
�`r

r!

z�
�(�)�(g�1 )�(g�2 ) � � ��(g�`)

=
1

r!
�
(r)
�
(g; g; : : : ; g)

�

This suggests we can interpret the �
(r)
�
(g1; g2; : : : ; gr) as coming from the action of the

corner ring e�C [Gr ]e� ' HomGr
(IndGr

Sr
E�; Ind

Gr

Sr
E�) on e�V


r ' HomGr
(IndGr

Sr
E�; V


r),

which we will explore in section 2.3. It also suggests that �
(r)
�

is a generalization of the

Schur function s�.

2.2 �� as a multilinearization Just as one can go from a bilinear form B to a quadratic

form Q via Q(x) := B(x; x) and then from a quadratic form to a bilinear one via B(x; y) :=
1
2 (Q(x + y)�Q(x) �Q(y)), we can go from s� back up to �

(r)
�
.

First we clarify what we mean by multilinearization. Suppose we are given a homoge-

neous rth degree polynomial Q(~x) = Q(x1; : : : ; xn) in the (possibly noncommuting) vari-

ables fxign1 . Let V = C n with standard basis f~eign1 , and let V � have dual basis f�ign1 .
Then ~x = (x1; : : : ; xn) =

P
n

1 xi~ei and �i(~x) = xi. We'll associate to Q an element of

(V �)
r ' (V 
r)�. If Q(~x) =
P
ci1i2:::irxi1 � � �xir let �Q =

P
ci1i2:::ir�i1 
 �i2 
 � � � 
 �ir .

Notice �Q(~x
 � � �
~x) = Q(~x).

We de�ne the multilinearization MQ of Q to be the homogeneous rth degree polynomial

in the nr noncommuting variables fxijg 1�i�n

1�j�r

via

MQ( ~X1; ~X2; : : : ~Xr) =
1

r!

X
�2Sr

�Q( ~X�(1)

~X�(2)
 � � �
 ~X�(r))

where ~Xi = (x1i; x2i; : : : ; xni).

One can also de�ne MQ more directly from Q via

r!MQ( ~X1; : : : ~Xr) = Q( ~X1 + � � �+ ~Xr)�
X
i

Q( ~X1 + � � �+
c~Xi + � � � ~Xr) +

X
i<j

Q( ~X1 � � �+
c~Xi � � � +

c~Xj � � �+ ~Xr) � : : :

+(�1)n�1
X
k

Q( ~Xk):
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It is tedious, but not too diÆcult, to verify these de�nitions are equivalent.

Because �Q 2 (V 
r)�, it is easy to seeMQ is linear in each entry, i.e. r-multilinear. Also,

it is clear that Q(~x) = MQ(~x; ~x; : : : ; ~x). So we have a recipe to go from an r-multilinear

form to an r-form and back.

We can multilinearize a given Q, by summing the multilinearizations of the monomials

of Q. So, in the following examples, we consider just monomials.

Example

1. Let p(x) = xr. Then Mp( ~X) =Mp(x1; : : : ; xr) =
1
r!

P
�2Sr

x�(1) � � � x�(r).

2. Let q(x; y) = x2y. Then Mq(x1; y1; x2; y2; x3; y3) =
1
6
(x1x2y3 + x2x1y3 + x1x3y2 + x3x1y2 + x2x3y1 + x3x2y1):

3. Let p(z) = z2. Let r(x; y; z) = q(x; y)p(z) = x2yz2.

Notice Mr(x1; y1; z1; : : : ; x5; y5; z5) =
3!2!
5!

P
�2S5

Mq(x�(1); y�(1); x�(2); y�(2); x�(3); y�(3))Mp(z�(4); z�(5)).

This process of multilinearization gives us a way to generalize symmetric functions to

functions in noncommuting variables. Now let's focus on Schur functions.

Claim 2 Let Ms�
denote the multilinearization of s�. Then we have s�(g) = �S�V (g) =

��(g; g; : : : ; g) and ��(g1; g2; : : : ; gr) =Ms�
(g1; g2; : : : ; gr)

Proof: The �rst statement follows from claim 1. Let p� = p�1 � � � p�` denote the power
sum symmetric function. If Y is an n � n matrix with eigenvalues fy1; y2; : : : ; yng, and
� ` r, then let us denote p�(Y ) = p�(y1; y2; : : : ; yn) = Tr(Y �1)Tr(Y �2) � � �Tr(Y �l): Similar

to the above examples, upon multilinearization we get

r!Mp�
(X1; : : : ;Xr) =

X
�2Sr

Tr
�
X�(1)X�(2) � � �X�(�1)

�
� � �Tr

�
X�(r��l+1) � � �X�(r)

�
:

Writing � 2 Sr in cycle notation � = (�(1)�(2):::�(�1)) (�(�1+1):::�(�1+�2)) � � � (�(r��l+1):::�(r)),

then the inner summand of the above is just Tr� (X1; : : : ;Xr).

As � ranges over Sr, � ranges over all permutations of shape � in Sr and this is a

z�-to-1 correspondence. (In fact, all of CSr
(� ) gets sent to � .) Hence r!Mp�

(X1; : : : ;Xr) =

z�
P

� :sh(�)=�Tr� (X1; : : : ;Xr).

So it is easy to see that the multilinearization of the Schur function s� =
P

�`r

1
z�
�(�)p�

is just

Ms�
(X1; : : : ;Xr) =

1

r!

X
�`r

1

z�
�(�) z�

X
� :sh(�)=�

Tr� (X1; : : : ;Xr)

=
1

r!

X
�2Sr

�(�)Tr�(X1; : : : ;Xr):

When � : G ! GLn(C ) is a representation with character � and we set Xi = �(gi),

the above says the multilinearization of the Schur function evaluated at the Xi is exactly
1
r!
�
(r)
�
(g1; g2; : : : ; gr).

�

Corollary 1 If � ` r has `(�) > �(1), then �
(r)
�
(g1; g2; : : : ; gr) = 0.
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Proof: We know that if the length of � is greater than n = dimV then L� does not occur

in V 
r. See [8] or [3]. Hence �S�V = s� = 0 and so its multilinearization is also 0.

�

We now have the machinery to compute (� +  )�.

Motivated by Example 3 above, we make the following de�nition, adopting Johnson's

notation [6].

De�nition 4 For two functions fi : G
ri ! C , let f1 Æ f2 : Gr1+r2 ! C be given by

f1 Æ f2(g1; : : : ; gr1+r2) =
1

r1!r2!

X
�2Sr1+r2

f1(g�(1); : : : g�(r1))f2(g�(r1+1); : : : g�(r1+r2)):

Remark: Notice that, up to a scalar, f1 Æ f2 multilinearizes the tensor of the functions

f1 � f2(g; h) = f1(g)f2(h).

Theorem 2 Let �; 2 Irr(G); � ` r. Then

(� +  )� =
X

C�

��
(�� Æ  �);

where C�

��
are the Littlewood-Richardson coeÆcients.

Proof: First recall that the Littlewood-Richardson coeÆcients appear when we induce (or

restrict) representations of Sr1
�Sr2

to Sr1+r2 . In particular, Ind
Sr1+r2

Sr1
�Sr2

��� =
P
C�

��
�.

Using Schur Weyl duality, as in [3], we conclude that over GL(V )�GL(W )

S�(V �W ) =
M

C�

��
S�V 
 S�W:

In terms of characters this says �S�(V�W ) =
P
C�

��
�S�V � �S�W . Applying claims 1 and 2

and the remark above, we see immediately that (�+  )� =
P
C�

��
(�� Æ  �):

�

Corollary 3 As previously, let �(r) denote the higher character �(1r). Then

(� +  )(r) =
X

a+b=r

�(a) Æ  (b):

Proof: We know the C
(1r)
�� = 1 exactly when � = (1a); � = (1b) and 0 otherwise. Or, in

other words, ^r(V �W ) =
L

a+b=r ^
aV 
 ^bW .

�

2.3 �� as a trace In claim 1, we saw that
�(1)
r! �

(r)
�
(g; : : : ; g) is the trace of the diagonal

action of g on e�V

r and therefore equals the trace of the action of (g; g; : : : ; g)e� on V 
r.

One can then ask what is e�((g1; g2; : : : ; gr)e�)? Although it is not a representation of Gr,

Hom(IndGr

Sr
E�; V


r) is a representation of Hom(IndGr

Sr
E�; Ind

Gr

Sr
E�); and we are in e�ect

computing the trace of this action.

Claim 3 For � 2 Sr and g = (g1; g2; : : : ; gr) 2 Gr
, e�(g�) = ���1(g).
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Proof: This is best seen on an example. Let � = (124)(3) and let g = (g1; g2; g3; g4). Let

fvign1 be a basis for V and write [a
(k)
ij

] for the matrix of gk with respect to this basis. Then

g�(vi1
vi2
vi3
vi4) = g(vi4
vi1
vi3
vi2)

=

nX
j=1

a
(1)
ji4
vj


nX
j=1

a
(2)
ji1
vj


nX
j=1

a
(3)
ji3
vj


nX
j=1

a
(4)
ji2
vj

= a
(1)
i1i4

a
(2)
i2i1

a
(3)
i3i3

a
(4)
i4i2

vi1
vi2
vi3
vi4 + independent terms.

So

e�(g�) =

nX
ik=1

a
(1)
i1i4

a
(2)
i2i1

a
(3)
i3i3

a
(4)
i4i2

=

0@ nX
i1=1

X
i4;i2

a
(1)
i1i4

a
(4)
i4i2

a
(2)
i2i1

1A nX
i3=1

a
(3)
i3i3

!

= Tr(a(1)a(4)a(2))Tr(a(3)) = �(g1g4g2)�(g3)

= ���1(g):

The proof for general � is similar, but for the sake of notation, we leave it to the reader.

�

Theorem 4 e�(ge�) = �(1)
r! �

(r)
�
(g).

Proof: From claim 3, it follows

e�(ge�) =
�(1)

r!

X
�2Sr

�(��1)e�(g�)
=

�(1)

r!

X
�2Sr

�(��1)���1 (g) =
�(1)

r!

X
�2Sr

�(�)��(g)

=
�(1)

r!
�
(r)
�
(g):

�

In other words, �
(r)
�
(g) = r!

�(1) e�(e�ge�) (since e2� = e�), and e�(e�ge�) simply computes the

trace of an element of e�C [Gr ]e� ' HomGr
(IndGr

Sr
E�; Ind

Gr

Sr
E�) on the module e�V


r '

HomGr
(IndGr

Sr
E�; V


r). In section 3 we will generalize this situation by replacing V 
r with

any representation of Gr.

2.4 �� as an invariant For the moment, let's consider G = GL(V ). Then S�V is

irreducible. We can see �
(r)
�

as a multilinear invariant map (with respect to the �(G)-

action) of End(V )�r . The above sections 2.2 and 2.3 all translate into the language of

invariants used in Procesi's work [10], which we'll outline below.

Make the identi�cations (End(V )
r)
�
' ((V � 
 V )
r)

�
' (V 
r)� 
 V 
r ' End(V 
r)

and so can view a G-invariant map End(V )
r ! C as an element of End(V 
r) which

commutes with the action of G = GL(V ).

Again, Sr acts naturally on V

r (as does GLr) and is centralized by the diagonal action

of G = GL(V ) ' GLn. We know all operators commuting with the G-action can be realized
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as elements of C [Sr ], and those commuting with both the G-action and the Sr-action are

thus linear combinations of the e�.

In his theorem 1.2 of [10], Procesi shows that under the above identi�cations � 2 Sr

corresponds to an element he calls �� 2 End(V 
r) via

�� : w1
w2
 � � �
wr 7! w��1(1)
w��1(2)
 � � �
w��1(r)

which in turn corresponds to an invariant �� 2 (End(V )
r)
�
, and that this is exactly our

���1 . (This gives an alternate proof of claim 3.) Thus any multilinear invariant on r n� n

matrices is a linear combination of the ��.

Using the fact that the center of C [Sr ] is spanned by the e�, we also see the invariants

that commute with both the G-action and the Sr-action are linear combinations in the

�
(r)
�
. Corollary 1 is essentially equivalent to his theorem 4.3 [10] that all \trace identities"

are linear combinations of the �
(r)
�

for which `(�) > n.

3 w-functions We saw in theorem 4 that �
(r)
�
(g) = r!

�(1)
e�(ge�) where e� was the character

of V 
r as a representation of the wreath product Gr. Let us generalize the situation to any

character of Gr and examine the corresponding functions.

De�nition 5 De�ne the w-orbits of Gr
to be the orbits of Gr

under the conjugation action

of Sr ��(G).

Observe these are not the same as the conjugacy classes in the group Gr.

Recall ��1(g1; g2; : : : ; gr)� = (g��1(1); g��1(2); : : : ; g��1(r)).

De�nition 6 Let f : Gr ! C be any function. Then we'll call f a w-function (for lack of

a better name) if

f(��1g�) = f(g) = f(a�1ga);

for all � 2 Sr; a = (a; a; : : : ; a) 2 �(G) � Gr ; g = (g1; g2; : : : ; gr) 2 Gr
. In other words, f

is constant on all w-orbits.

De�nition 7 Let � be any character of Gr . De�ne f
�

�
: Gr ! C by

f
�

�
: g 7! �(ge�):

Claim 4 f
�

�
is a w-function.

Proof: First, recall � is a class function on Gr, and e� and �(G) commute with all of

C [Sr ]. Thus for � 2 Sr, a 2 �(G);

f
�

�
(��1g�) = �(��1g�e�) = �(��1(ge�)�) = �(ge�)

= f�
�
(g)

f
�

�
(a�1ga) = �(a�1gae�) = �(a�1(ge�)a) = �(ge�)

= f
�

�
(g)

�

Notice, in general, the character of any e�C [Gr ]e�-module will yield a w-function in this

manner. (Warning: they are not usually class functions of Gr.) In the following sections,

we will give some conditions under which the f
�

�
are orthogonal to each other, �nd the span

of all the f
�

�
, and give a condition under which they span all the w-functions.
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3.1 orthogonality

Theorem 5 Let �; � 2 Irr(Gr); �; � 2 Irr(Sr). If h� � �; � � �i = 0 thenX
g2Gr

f
�

�
(g)f

�

� (g) = 0:

Proof: Notice, because Sr is a quotient of Gr we can lift �; � up to characters of Gr which

will have Gr in their kernels. In other words, �(g�) = �(�); �(g�) = �(�); 8g 2 Gr. Thus

the inner tensor products � ��; � � � make sense. The orthogonality relations for characters

of Gr give us that for any � 2 Sr � Gr,
P

w2Gr
� � �(w)� � �(�w) = 0. Scaling, summing

over � and reordering summations yields

0 = �(1)

r!

�(1)

r!

X
�2Sr

X
�g2Gr

� � �(�g)� � �(��g)

= �(1)

r!

�(1)

r!

X
g2Gr

X
�2Sr

�(�)�(�g)
X
�2Sr

�(��)�(��g)

=
X
g2Gr

�(
X
�2Sr

�(1)

r!
�(�)�g)�(

X
�2Sr

�(1)

r!
�(��)��g) =

X
g2Gr

�(e�g)�(e�g)

=
X
g2Gr

�(ge�)�(ge�) =
X
g2Gr

f
�

�
(g)f

�

� (g)

�

Theorem 6 If � � � is a sum of distinct irreducible characters of Gr , then

1

jGrj

X
g2Gr

f
�

�
(g)f

�

�
(g) =

�(1)

�(1)
h�;ResGr

Sr
�i =

1

�(1)
�(e�)

Proof: Now, because irreducible characters occur in � �� with multiplicity 1, the relations

for characters of Gr gives us 1
jGrj

P
w2Gr

; � � �(w)� � �(�w) = 1
���(1)� � �(� ). Then, using

the work above, we get

1

jGrj

X
g2Gr

f
�

�
(g)f

�

�
(g) =

�(1)

�(1)

1

r!

X
�2Sr

�(� )�(� ) =
1

�(1)
�(e�)

=
�(1)

�(1)
h�;ResGr

Sr
�i:

�

Corollary 7 In particular, it follows that the higher characters �
(r)
�

are orthogonal. Fur-

ther,
1
r!�

(r)
�

has norm
1
nr
s�(1; : : : ; 1) if it is non-zero and if � � e� consists of distinct char-

acters.

Proof As before, if �i 2 Irr(G) is the character of a representation Vi, then let e�i 2 Irr(Gr)

be the irreducible character of the associated action of Gr on V

r

i
. Notice that

hResGr

Gr� � e�i;ResGr

Gr� �f�jiGr = �(1)�(1)h�
r
i
; �
r

j
iGr = 0
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if i 6= j. Thus we must also have h� � e�i; � �f�jiGr
= 0; and the result follows from theorem

5. Observe that we know the action of � 2 Sr on V 
r, so that e�(�) = n`(sh(�)) where

n = �(1). Hence, if � � e� is a sum of distinct irreducible characters, then theorems 4 and 6

give that the norm of 1
r!
�
(r)
�

is 1
e�(1)

1
r!

P
�2Sr

�(� )n`(sh(�)) = 1
nr
s�(1; 1; : : : ; 1):

�

Notice, when � 2 Irr(Gr) has Res
Gr

Gr� irreducible, i.e. the restriction is of the form  
�1

1 


� � �
 �`
`

for distinct  i 2 Irr(G); � ` r, then the f
�

�
are symmetrized products of the  i

(�i)
�

(as with the multilinearizations in the examples of section 2.2), and so also include the

functions denoted by �i Æ �j in Johnson's work [6]. The above proof extends to show that

this larger class of f
�

�
are orthogonal.

3.2 counting w-orbits and w-functions

Claim 5 The dimension of the space of all w-functions on a �nite group G is

1

jGj

X
g2G

X
�`r

1

z�
jCG(g

�1)j � � � jCG(g
�`)j:

Proof: Counting the dimension of the space of w-functions is equivalent to counting the

number of orbits of the conjugation action ofSr��(G) on Gr. We count them as follows. G

acts on G by conjugation with character  (g) = jCG(g)j. G acts on Gr under the diagonal

action with character  
r . Asking how many Sr orbits there are is the same as asking

how many times the trivial character occurs in Symr(C [G]) = S(r)(C [G]) = S1(C [G]). We

know the character of G on S1(C [G]) is just  
(r)
1 j�(G), recalling � = (r) denotes the trivial

representation of Sr, which by abuse of notation we also sometimes refer to as 1. Hence

the number of w-orbits is

h1;  
(r)
1 i�(G) =

1

jGj

X
g2G

X
�`r

1

z�
 (g�1) (g�2 ) � � � (g�`)

=
1

jGj

X
g2G

X
�`r

1

z�
jCG(g

�1)j � � � jCG(g
�`)j:

�

Theorem 8 Let B = ff�1 : �(e1) 6= 0g. Then B is an orthogonal basis for span ff�
�
: � 2

Irr(Sr); � 2 Irr(Gr)g. In particular, the higher characters are all linear combinations of the

f
�

1 .

Proof: By abuse of notation, we write 1 for the trivial representation � = (r) 2 Irr(Sr).

Theorem 5 gives us that the f
�

1 are orthogonal. Take any f
�

�
: g 7! �(g�). Recall (as in the

proof of theorem 5) we can lift � up to a character of Gr , also denoted �, which will have

Gr in its kernel.

Write � � � =
P

�i2Irr(Gr)
mi�i. Then

�(ge�) = �(g
X
�2Sr

�(�)�) =
X
�2Sr

�(�)�(g�) =
X
�2Sr

�(g�)�(g�)

=
X
�2Sr

� � �(g�) = � � �(g
X
�2Sr

�) = � � �(ge1)

=
X

�i2Irr(Gr)

mi�i(ge1):
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Hence we see f
�

�
=
P

�i2Irr(Gr)
mif

�

1 . By the remark below, f
�

1 = 0 if f
�

1 62 B, thus

f
�

�
2 span(B).

�

Remark: Notice, the set f� 2 Irr(Gr) : �(e�) 6= 0g are exactly the support of IndGr

Sr
L�,

since

�(e�) =
�(1)

r!

X
�2Sr

�(�)�(�) = �(1)hResGr

Sr
�; �iSr

= �(1)h�; IndGr

Sr
�i:

Let U be the representation of Gr with character �. Then U and HomGr
(IndGr

Sr
1; U) are

isomorphic as HomGr
(IndGr

Sr
1; IndGr

Sr
1)-modules and f

�

1 is the trace of this action. When

�(e1) = 0 then HomGr
(IndGr

Sr
1; U) = 0, and so its trace f

�

1 is also 0.

Remark: We could also replace the trivial character � = (r) by the sign character � = (1r)

in theorem 8 and theorem 9 (to follow).

3.3 abelian G By comparing the number of w-orbits to the size of the support of IndGr

Sr
1,

we see that in general not all w-functions occur as f
�

�
. For example, when r = 2; G = S3

there are 8 w-orbits but jBj = 7. When r = 3; G = S3 there are 17 w-orbits but jBj = 13.

See the appendix. However, when G is abelian, we do indeed capture all the w-functions.

To prove this, we require a simple case of the following lemma.

Lemma 1 Let � 2 Irr(Sr); h 2 Gr; and � 2 Sr be of shape sh(� ) = �. De�ne h
�
=

(hm1
h�(m1) � � �h��1 (m1); : : : ; hml

h�(ml) � � � h��` (ml)). Then

IndGr

Sr
�(�h) =

�
�(� )jGj`(�) if h

�
= (1`(�))

0 otherwise

Proof:

IndGr

Sr
�(�h) =

1

r!

X
�g2Gr:

(�g)�h(�g)�12Sr

�((�g)�h(�g)�1)

=
1

r!

X
�g2Gr:

����1[g�hg�1]�
�1
2Sr

�(����1[g�hg�1]�
�1

)

=
X
g2Gr:

g� hg�1=1

�(� )

So, we'll be done if we can show that #fg 2 Gr : g�hg�1 = 1g = jGj`(�) when h
�
=

(1; 1; : : : ; 1) = (1`(�)), and 0 otherwise. For instance, we have jGj-many choices for gm1
.

The equation g�hg�1 = 1 then speci�es for us the values of g�q(m1), and also imposes the

requirement that the product hm1
h�(m1) � � �h��1 (m1) = 1. The same argument holds for

m2; : : : ;m`(�). Our requirement is met for all the mj precisely when h
�
= (1`(�)), and in

this case, we have jGj`(�) choices for g.

�

Theorem 9 If G is abelian, then B = ff�1 : �(e1) 6= 0g is an orthogonal basis for the space

of all w-function on Gr
.
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Proof: We simply do a dimension count. We saw in claim 5 that the number of w-orbits

for an abelian group is
P

�`r

1
z�
jGj`(�). We also computed in lemma 1 that IndGr

Sr
1(� ) =

jGj`(sh(�)). So

hIndGr

Sr
1; IndGr

Sr
1i = hResGr

Sr
IndGr

Sr
1; 1iSr

=
1

r!

X
�2Sr

IndGr

Sr
1(� ) 1(� )

=
1

r!

X
�2Sr

jGj`(sh(�))

=
X
�`r

1

z�
jGj`(�):

Next we'll show that if �(e1) 6= 0 then h�; IndGr

Sr
1i = 1. In other words, it occurs with

multiplicity one. Take any � 2 Irr(Gr). Since G is abelian, � can be realized as IndGr

HnGr���
where � 2 Irr(Gr), � 2 Irr(H), and H � Sr is the stabilizer of � with action given by

� � �(g) = �(��1g�). Both � and � extend to characters of H n Gr, because H is the

stabilizer of � and because H is a quotient of H n Gr . Using Mackey's criterion, we see

ResGr

Sr
IndGr

HnGr� � � = IndSr

H
�. Hence

h�; IndGr

Sr
1i = hIndGr

HnGr� � �; Ind
Gr

Sr
1i = hResGr

Sr
IndGr

HnGr� � �; 1i

= hIndSr

H
�; 1iSr

= h�;ResSr

H
1iH = h�; 1iH

= 1 or 0

We conclude jBj = #f� 2 Irr(Gr) : �(e1) 6= 0g = # of � in the support of IndGr

Sr
1

= hIndGr

Sr
1; IndGr

Sr
1i = # of w-orbits.

�

Remark: Since characters of wreath products of the form Gr are well understood [8] and

the combinatorics of the character theory of Sn is well-understood, one could combine the

two to get combinatorial formulas for the higher characters of Sn . We have computed

some small examples, and as yet saw no structure in the data. (These computations were

done in 1996-97, so perhaps more recent literature of which the author is unaware addresses

this structure.)

4 Appendix In this appendix, we list the non-zero f
�

1 for � 2 Irr(G) where G = S3,

r = 2; r = 3. The computations were done using the package GAP [11].

The �rst column lists w-orbit representatives, where � = (23); � = (123). The second

column is the size of each w-orbit. The very last row of the table gives the norm of f�1 .

Notice the �rst row is just �(e1) = h�; IndGr

Sr
1i, and so one can read o� the degree �(1) by

dividing the �rst row by the last.

The higher characters  
(r)
�

for  2 Irr(S3); � ` r are contained in the table as well.

Write Irr(S3) = f1; sgn; �g.
Then for r = 2 (Table I.), the �rst column is 1

2!1(2) = 1 
 1, the second column is
1
2!sgn(2) = sgn
 sgn, the fourth column is 1

2!�(2), and the �fth column is 1
2! sgn(11). Notice

the sum of the fourth and �fth columns is �
 � 2 Irr(S2
3).

For r = 3 (Table II.), the �rst column is 1
3!1(3) = 1 
 1 
 1, the second column is

1
3!
sgn(3) = sgn 
 sgn 
 sgn, the seventh column is 1

3!
�(3), and the thirteenth column is

1
2
1
3!sgn(21). Notice the second column plus twice the thirteenth column is �
�
� 2 Irr(S3

3).
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I.

The f
�

1 for G = S3; r = 2

(1; 1) 1 1 1 1 3 1 2 2

(1; �� ) 6 1 -1 0 0 0 1 -1

(1; �) 4 1 1 1 -32 -12
1
2

1
2

(�; � ) 3 1 1 -1 1 -1 0 0

(�; �� ) 6 1 1 -1 -1
2

1
2

0 0

(�; �) 12 1 -1 0 0 0 -1
2

1
2

(�; �) 2 1 1 1 0 1 -1 -1

(�; ��1) 2 1 1 1 3
2

-1
2

-1 -1

norm 1 1 1
2

3
4

1
4

1
2

1
2

II.

The f
�

1 for G = S3; r = 3

(1; 1; 1) 1 1 1 1 1 2 2 4 2 1 3 1 3 2

(1; 1; � ) 9 1 -1 1
3

- 1
3

4
3

- 4
3

0 0 1
3

1 - 1
3

-1 0

(1; 1; �) 6 1 1 1 1 1 1 -2 1 0 0 0 0 -1

(1; �; � ) 9 1 1 - 1
3 - 1

3
2
3

2
3

4
3 - 2

3 - 1
3

1
3 - 1

3
1
3 - 2

3

(1; �; �� ) 18 1 1 - 1
3 - 1

3
2
3

2
3 - 2

3 - 2
3

1
6 - 1

6
1
6 - 1

6
1
3

(1; �; �) 36 1 -1 1
3 - 1

3
1
3 - 1

3 0 0 - 1
6 - 1

2
1
6

1
2 0

(1; �; �) 6 1 1 1 1 0 0 0 0 0 -1 0 -1 1

(1; �; ��1) 6 1 1 1 1 0 0 2 0 - 1
2 - 1

2 - 1
2 - 1

2 0

(�; �; � ) 3 1 -1 -1 1 0 0 0 0 -1 1 1 -1 0

(�; �; �� ) 18 1 -1 -1 1 0 0 0 0 0 0 0 0 0

(�; �; �) 18 1 1 - 1
3

- 1
3

- 1
3

- 1
3

- 2
3

1
3

- 1
3

1
3

- 1
3

1
3

1
3

(�; ��; �) 36 1 1 - 1
3

- 1
3

- 1
3

- 1
3

1
3

1
3

1
6

- 1
6

1
6

- 1
6

- 1
6

(�; ��; ��) 6 1 -1 -1 1 0 0 0 0 1
2

- 1
2

- 1
2

1
2

0

(�; �; �) 18 1 -1 1
3

- 1
3

- 2
3

2
3

0 0 1
3

0 - 1
3

0 0

(�; �; ��1) 18 1 -1 1
3

- 1
3

- 2
3

2
3

0 0 - 1
6

1
2

1
6

- 1
2

0

(�; �; �) 2 1 1 1 1 -1 -1 1 -1 1 0 1 0 -1

(�; �; ��1) 6 1 1 1 1 -1 -1 -1 -1 0 1 0 1 0

norm 1 1 1
3

1
3

1
3

1
3

1
2

1
6

1
12

1
4

1
12

1
4

1
8
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