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ON SOLVING EQUATIONS ARISING FROM OPTIMIZATION

PROBLEMS BY SOME GENERALIZED NEWTON METHOD
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Abstract. In this paper we consider equations arising from an optimization problem

by the Lagragian method and show a new algorithm for solving the equations by a

generalized Newton method. In a �nite number of iterations we can �nd matrices

which are closed to the inverse of the Jacobian matrix by the generalied Newton

method. Moreover we get the superlinear convergence to the optimal solution of the

optimization problem from our theorem.

1 Introduction Consider the following nonlinear optimization problem:

minimize f(x) subject to g(x) = 0; x � 0; x 2 Rn (1)

where f : Rn ! R and g : Rn ! Rm are twice times continuously di�erentiable. We

get some equations arising from the above problem (1). Further we deal with the Karush-

Kuhn-Tucker (K-K-T) condition to (1) (e.g. see [5]).

The authors ( [1], [2], [5] and so on) assume that the second order suÆciency condition

for the optimality in order to have the K-K-T point, but it seems to be diÆcult that we

apply the suÆciency condition to optimization problems. We assume that the inverse of

the Jacobian matrix at the K-K-T point is non-singular. In [5] the norm of the inverse of

the Jacobian matrix, whose norm seems to be not easily evaluated. We use a well-known

theorem in linear algebra and we get an upper bound for the norm of the inverse.

By applying the Newton method , which is due to [3] and [4] without �nding the inverse

of Jacobian matrices to the equations, we show a new algorithm for solving the equations to

the K-K-T condition. In Theorem 2 we prove superlinear convergence to the K-K-T point

by our algorithm in the same result as in [3] and [4]. Theorem 3 ensures that the iteration

of our algorithm shows the monotone convergence to the optimal solution.

2 Prelinimaries and Notations Let w = (x; y; z)T 2 Rn�Rm�Rn, where z � 0 and

y are multiplier vectors. In order to �nd the K-K-T condition, we consider the following

Lagrangian function

K(w) = f(x) + yT g(x) � zTx;

where x = (x1; x2; � � � ; xn)T . Denote a norm

k x k=
nX
i=1

jxij

and

k A k=
nX
i=1

nX
j=1

jaij j
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for n� n-matrix A = (aij) where aij 2 R.

Consider the following K-K-T Condition:

5
x
K(w) = 0;

g(x) = 0;

ZXe = 0:

Here X = diag(x1; x2; � � � ; xn); e = (1; 1; � � � ; 1)T ; Z = diag(z1; z2; � � � ; zn) and

5
x
K(w) =5f(x) + yT5g(x) � z:

In what follows we deal with equations arising from Problem (1):

r(w) = 0; (2)

where r is an into mapping on R2n+m such that,

r(w) =

0
@ 5

x
K(w)

g(x)

ZXe

1
A :

Let w� = (x�; y�; z�)T be a K-K-T point of (1): We deal with �nding solutions of (2)

under the following assumptions.

Assumption. Let I� = fi 2 N : (x�)i = 0g and assume that the following conditions

(A1)-(A5) hold:

(A1) Functions f and g = (g1; g2; � � � ; gm)T have continuous twice derivertives. Functions

52f and 5x(y
T g) are uniformly Lipschitzian on a neighborhood D of w�; i.e., there

exist L1 > 0 and L2 > 0 satisfying

k 52f(x1) �52f(x2) k � L1 k x1 � x2 k
k 52

x
(yT1 g(x1)) �52

x
(yT2 g(x2)) k � L2(k x1 � x2 k + k y1 � y2 k)

for (x1; y1; z); (x2; y2; z) 2 D;

respectively;

(A2) If i 2 I�, then we have the i-th element (z�)i > 0 of z�;

(A3) It follows that

52
x
K(w�) > 0;

where

52
x
K(w�) =52f(x�) +52

x
((y�)Tg(x�));

(A4) Let the set

f@gi
@x

T

(x�) : i = 1; 2; � � � ;mg [ fei = (0; � � � ; 0; i1; 0; � � � ; 0)T : i 2 I�g

be linearly independent;
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(A5) Let m � jI�j:
The following lemma can be proved by applying results in linear algebra.

Lemma 1 Under Assumption (A1)-(A5) the following (i) and (ii) hold;

(i) Let

M =

� 52
x
K 5gT

5g O

�
;

where 52
x
K = 52

x
K(w�);5gT = 5gT (x�): Then there exists the inverse matrix of

M such that

M�1 =

�
I �(52

x
K)�1 5 gT

O I

�
�
�

(52
x
K)�1 O

O (�5 g(52
x
K)�15 gT )�1

�

�
�

I O

�5 g(52
x
K)�1 I

�
:

(ii) Let

5r(w�) =

� M Z12

Z21 X�

�
;

where

Z12 =

� �I
O

�
and Z21 = (Z� O):

There exists the inverse matrix of 5r(w�) such that

(5r(w�))�1 =

�
I �M�1Z12

O I

�
�
� M�1 O

O (X� � Z21M�1Z12)
�1

�

�
�

I O

�Z21M�1 I

�
:

Proof. (i) Since 52K = (
@2f

@xi@xj
)ij > 0, it follows that 52K is symmetric and

there exists an n � n� matrix U such that U�1 = UT and 52K = UT�U , where � =

diag(�1; �2; � � � ; �n) and �i > 0 for i = 1; � � � ; n are eigenvalues of 52K. Then we have

(52K)�1 = UT��1U

as well as (52K)�1 is symmetric. From (A3), we get 5g(52K)�15 gT > 0, as

yT 5 g(52K)�15 gTy = (U 5 gTy)T��1U 5 gTy > 0

with y 6= 0 2 Rm. Thus there exists the inverse of 5g(52
x
K)�15gT and we get the inverse

of M as above.

(ii) By putting

K� = (52K)�1 + (52K)�1 5 gT [�5 g(52K)�1 5 gT ]�15 g(52K)�1;
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it follows that K� is symmetric, because of the following equalities:

(5g(52K)�1 5 gT )T = 5g(52K)�1 5 gT ;

((5g(52K)�1 5 gT )�1)T = (5g(52K)�1 5 gT )�1:

Since �Z21M�1Z12 = Z�K�, 5r(w�) is nonsingular if and only if X� + Z�K� is non-
singular. Without loss of generality we consider

X� = diag(x�1; � � � ; x�a; x�a+1; � � � ; x�n)

and

I� = fi : x�
i
= 0; z�

i
> 0; for i = 1; � � � ; ag;

Q� = fq : x�
q
> 0; z�

q
= 0; for q = a+ 1; � � � ; ng:

Here a = jI�j: In order to show det(5r(w�)) 6= 0 we will prove det(X�+Z�K�) 6= 0: Suppose

that (X� + Z�K�)x = 0; where x = (x1; x2; � � � ; xn)T : In q 2 Q� such that z�
q
= 0 we have

xq = 0: By putting

Z�1 = diag(
1

z�1
;
1

z�2
; � � � ; 1

z�
a

; 0; � � � ; 0)

we get

(Z�1X� +K�)(x1; � � � ; xi; � � � ; xa; 0; � � � ; 0)T = 0;

so that we have K�(x1; � � � ; xi; � � � ; xa; 0; � � � ; 0)T = 0 for i 2 I�:

Suppose that some ~x = (x1; x2; � � � ; xa; 0; � � � ; 0)T 6= 0 and K�~x = 0: From (A5) and

rank(5g(w�)) � m, it follows that, for some ci 2 R,

mX
i=1

ci
@gi

@x
(w�) = �

aX
j=1

xjej :

From (A4), we have ci = xj = 0 for any i; j. This contradicts with ~x 6= 0. Thus it follows

that xi = 0 for i 2 I�: Since det(X� + Z�K�) 6= 0; there exists the inverse of 5(r(w�)) as

above. This completes the proof.

FromLemma 1 it follows that there exist positive numbers "; �;M;N;B1; B2; B3; L3; L4; L5

and a subset D � R2n+m satisfying the following assumtion:

(A6) Let 0 < � < 1 and 0 < " < 1 satisfy

B3�+ "L5 <
p
2� 1 and 1�M"B2 > 0

and an integer N � 3 be

� B3�+ "L5 + 1

(B3�+ "L5)�1 � 1

�N�2
� �� �2

B3(�2 + 1)"
h
L3 +

q
L3

2 +
4L4(���2)

B3(�2+1)

i (= B4(�)):
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Here

D = fw 2 R2n+m :k w �w� k� "g;
M = L1 + L2(1 + 2n") + 1;

B1 = max
w2D

k 5r(w) k;

B2 = max
w2D

k (5r(w))�1 k;

B3 =
B2(M" +B1)

1�M"B2

;

L3 = L1 + L2 + 1;

L4 = 2nL2;

L5 = max
w2D

k 5x(y
T g(x)) k B2(1 + �2)

1�M"B2

:

If suÆciently small "; � > 0 are �xed, then we get a small neighborhood D of w� and

the other positive numbers Bi; i = 1; 2; 3; etc.

Remarks. Since B3�+ "L5 <
p
2� 1, it follows that

(B3�+ "L5)
�1 > 1 and

B3�+ "L5 + 1

(B3�+ "L5)�1 � 1
< 1:

3 Algorithm by the Generalized Newton Method For k = 1; 2; � � � ; we show an

algorithm for

fw(k) = (x(k); y(k); z(k))T 2 Rn �Rm �Rng;

such that lim
k!1

w(k) = w�, by applying the generalized Newton method. Denote as follows:

J (k) = 5r(w(k));

=

0
@ 52

x
K(w(k)) 5g(x(k))T �I

5g(x(k)) O O

Z(k) O X(k)

1
A ;

52
x
K(w) = 52f(x) +52

x
(yT g(x));

X(k) = diag(x
(k)

1 ; x
(k)

2 ; � � � ; x(k)
n

);

Z(k) = diag(z
(k)

1 ; z
(k)

2 ; � � � ; z(k)
n

):

For k = 1; 2; � � � ; we construct the following sequences of l � l-matrices fU(k)g and

fV (p)(k)g for p = 1; 2; � � � ; k. In order to solve (2), we show the following algorithm for

computing the above V (k)(k), which is suÆciently close to [5r(w�)]�1 rather than �nding

the inverse matrices of 5r(w(k)).

Algorithm. Let � and N 2 N satisfy (A6). We choose w(1) 2 D and put J (1) =

5r(w(1)). For k = 1; 2; � � � ; do the following steps.
Step 1. For k = 1; 2; � � � ;N , �nd a matrix U(k) such that

k J (k)U(k) � I k� �: (cf: Theorem 1)

Put V (0)(k) = U(k) and go to Step 2.
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For k = N + 1;N + 2; � � � , put

V (0)(k) = V (k�1)(k � 1): (cf: Theorem 3)

Go to Step 2.

Step 2. For p = 1; 2; � � � ; k; compute a sequence fV (p)(k)g such that

V (p)(k) = V (p�1)(k)[2I � J (k)V (p�1)(k)]:

Step 3. Compute

w(k+1) = w(k) � V (k)(k)r(w(k)): (cf: Theorem 2)

Go to Step 1.

4 Superlinear Convergence We prove the closeness of J (k) to 5r(w�) as follows.

Lemma 2 For k = 1; 2; � � � ; we get

k J (k) �5r(w�) k� (L3 + L4 k x(k) � x� k) k w(k) �w� k :

Proof. From (A1) we get for k 2 N

k J (k) �5r(w�) k
�k 52

x
K(w(k)) �52

x
K(w�) k +2 k 5g(x(k)) �5g(x�) k

+ k Z(k) � Z� k + k X(k) �X� k
�k 52f(x(k))�52f(x�) k + k 52

x
((y(k))T g(x(k))) �52

x
((y�)T g(x�)) k

+2
X
i

X
j

j
Z 1

0

@

@x

h@gi(x� + �(x(k) � x�))

@xj
)
iT
d�(x(k) � x�)j

+ k w(k) � w� k
�k 52f(x(k))�52f(x�) k + k 52

x
((y(k))T g(x(k))) �52

x
((y�)T g(x�)) k

+2
hX

i

X
j

X
q

Z 1

0

j @

@xq

�@gi(x�)
@xj

�
jd�jx(k)

q
� x�

q
j
i
+ k w(k) � w� k

� L1 k w(k) �w� k +L2 k w(k) � w� k +2nL2 k x(k) � x� k2 + k w(k) � w� k
� (L3 + L4 k x(k) � x� k) k w(k) � w� k :

This completes the proof.

We prove the convergence of fV (k)(k)g approaching to the inverse matrix [5r(w�)]�1

as k !1.

Theorem 1 Under assumptions (A1) - (A6) the following statements (i)-(iv) hold for

k = 1; 2; � � � , and p = 1; 2; � � � ; k;:
(i) It follows that

k J (k)V (p)(k) � I k� �2
(p�1)

and lim
k!1

J (k)V (k)(k) = I;
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(ii) As long as w(k) 2 D, we have

k J (k) k � M" +B1;

k [J (k)]�1 k � B2

1�M"B2

;

(iii) We get

k V (k)(k)� [J (k)]�1 k� B2�
2(k�1)

1�M"B2

;

(iv) There exists a positive number L such that

k V (k)(k)� [5r(w�)]�1 k� L k w(k) �w� k + B2�
2(k�1)

1�M"B2

:

Proof. (i) By the mathematical induction it can be proved for k = 1; 2; � � � . If p = 1

, we put Ck = J (k)V (0)(k)� I and k Ck k� � . Assume that J (k)V (q)(k) = I + C2(q�1)

k
for

q = 1; 2; � � � ; k � 1: From Step 2 in Algorithm, it follows that

J (k)V (q+1)(k) = [I + C2(q�1)

k
][I �C2(q�1)

k
]

= I � C2q

k
:

And also we have

lim
k!1

J (k)V (k)(k) = I:

(ii) From Lemma 2 we have

k J (k) k�M" +B1:

Since

k I � J (k)[5r(w�)]�1 k = k (5r(w�)� J (k))(5r(w�))�1 k
� "B2M < 1;

it follows that

k [J (k)]�1 k = k [5r(w�)]�1(J (k)[5r(w�)]�1)�1 k

� k [5r(w�)]�1 kk
1X
i=0

(I � J (k)[5r(w�)]�1)i k

� B2

1X
i=0

(M"B2)
i

=
B2

1�M"B2

:

(iii)From (ii) we have

k V (k)(k)� [J (k)]�1 k = k [J (k)]�1[J (k)V (k)(k)� I]) k
� k [J (k)]�1 kk J (k)V (k)(k)� I k

� B2�
2(k�1)

1�M"B2

:



198 S. SAITO

(iv) From (iii) we have

k V (k)(k)� [5r(w�)]�1 k � k V (k)(k) � [J (k)]�1 k + k [J (k)]�1 � [5r(w�)]�1 k

� B2�
2(k�1)

1�M"B2

+ k [5r(w�)]�1 kk 5r(w�)� J (k) kk [J (k)]�1 k

� B2�
2(k�1)

1�M"B2

+
B2
2M

1�M"B2

k w(k) �w� k :

This completes the proof.

We have the superlinear convergence for w(k) to w� as k!1 by the generalized Newton

method as well as we get w(k) 2 D for any k = 1; 2; � � � :
Theorem 2 Under assumptions (A1) - (A6) and w(1) 2 D it follows that

lim
k!1

k w(k+1) � w� k
k w(k) � w� k = 0

and w(k) 2 D for k = 2; 3; � � � :
Proof. Since r(w�) = 0, we have, as k �!1

w(k+1) � w� = w(k) � w� � V (k)(k)[r(w(k)) � r(w�)]

= w(k) � w� + V (k)(k)[J (k)(w� �w(k)) +O(k w(k) �w� k2)]
= ([J (k)]�1 � V (k)(k))J (k)(w(k) � w�) + V (k)(k)O(k w(k) � w� k2):

From Theorem 1 we get

k w(k+1) �w� k � B2�
2(k�1)

(M" +B1)

1�M"B2

k w(k) � w� k +L5 k w(k) � w� k2;

where

L5 = max
w2D

k 52
x
(yT g(x)) k B2(1 + �2)

1�M"B2

:

From (A6), we have, as long as w(k) 2 D,

k w(k+1) � w� k� (B3�+ "L5)" < ":

This completes the proof.

Under Assumption we have k w(k+1) � w� k<k w(k) � w� k and k w(k+1) � w(k) k<k
w(k) � w(k�1) k for k = 1; 2; � � � : The number N is given in Assupmtion (A6).

Theorem 3 Under assumptions (A1) - (A6) we get the following statements (i) and (ii).

(i) For a Æ > 0 such that

Æ � B3�
2k�1

+ "L5 + 1

(B3�2
k�2

+ "L5)�1 � 1
(= B5(k)) for k = 1; 2; � � � ;

we get

k w(k+1) � w(k) k
k w(k) � w(k�1) k � Æ:
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(ii) Moreover if ÆN�2 � B4(�); then it follows that

k J (N+1)V (N)(N) � I k� �

and k w(k+1) � w(k) k is decreasing for k = 1; 2; � � � :
Proof. (i) By putting dk =k w(k) � w� k, we have

k w(k+1) � w(k) k
k w(k) � w(k�1) k � dk+1 + dk

jdk � dk�1j

=
dk+1=dk + 1

j(dk=dk�1)�1 � 1j :

From the proof of Theorem 2, it follows that

dk+1

dk
� B3�

2k�1

+L5dk

� B3�
2
k�1

+L5"

� B3�+ "L5 < 1

for k = 2; 3; � � � :Then we get

1

dk�1=dk � 1
� 1

(B3�2
k�2

+ "L5)�1 � 1
;

and also

k w(k+1) �w(k) k
k w(k) � w(k�1) k � B5(k) � Æ:

(ii) From (i), we have

k w(k+1) � w(k) k � Æ k w(k) � w(k�1) k
� Æk�1 k w(2) � w(1) k
� 2"Æk�1:

By the same proof of Lemma 2 it follows that

k J (N+1)� J (N) k � (L3 + L4 k x(N) � x(N�1) k) k w(N) � w(N�1) k
� 2(L3 + 2L4"Æ

N�2)"ÆN�2;

as well as

k J (N+1)V (N)(N) � I k � k J (N)V (N)(N) � I k + k J (N)� J (N+1) kk V (N)(N) k
� �2

N�1

+ 2(L3 + 2L4"Æ
N�2)"ÆN�2B3(�

2N�1

+ 1):

When N � 3, we get

�� �2
N�1

B3(�2
N�1

+ 1)"
h
L3 +

r
L2
3 +

4L4(���2
N�1

)

B3(�2
N�1

+1)

i � B4(�):
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From ÆN�2 � B4(�), then we have

4"2L4Æ
2(N�2) + 2"L3Æ

N�2 +
�2

N�1 � �

B3(�2
N�1

+ 1)
� 0;

so that

k J (N+1)V (N)(N) � I k� �

and the other conclusion holds. This completes the proof.

Remarks. (i) From (A6), it follows that B5(k) < 1. Therefore we can have 0 < Æ < 1

such that B5(k) � Æ and ÆN�2 � B4(�).

(ii) If B4(�) < 1, then we can set

N =
h logB4(�)

log Æ

i
+ 2:
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