ON SCATTERED COUNTABLE METRIC SPACES

HIROO FUKAISHI AND SHINPEI OKA

Received January 17, 2003; revised February 18, 2003

ABSTRACT. The compact countable metric spaces are topologically classified simply by the classical Mazurkiewicz-Sierpiński theorem. Our concern is non-compact case. After viewing the scattered countable metric spaces of length 2 and the locally compact countable metric spaces, we shall prove Theorem 2, the main theorem of the present paper. Theorem 2 presents a topological classification of a class of scattered countable metric spaces which is far from the class of locally compact countable metric spaces.

1. Preliminaries. Let X be a topological space. The following is Cantor's well-known process of deriving which is done by transfinite induction. (cf. Kuratowski [1])

Let $X^{(0)} = X$ and $X_{(0)}$ the set of the isolated points of $X^{(0)}$. If β is a non-limit ordinal, let $X^{(\beta)} = X^{(\beta-1)} - X_{(\beta-1)}$ and $X_{(\beta)}$ the set of the isolated points of $X^{(\beta)}$, where $\beta - 1$ means the ordinal preceding β . If β is a limit ordinal, let $X^{(\beta)} = \bigcap_{\gamma < \beta} X^{(\gamma)}$ and $X_{(\beta)}$ the set of the isolated points of $X^{(\beta)}$.

Each $X^{(\beta)}$ is a closed subset of X, and each $X_{(\beta)}$ is a discrete open subset of $X^{(\beta)}$.

A space X is called *scattered* if $X^{(\alpha)} = \emptyset$ for some α . A scattered space is also characterized as a space in which every non-empty (closed) subspace has an isolated point. The first ordinal α for which $X^{(\alpha)}$ vanishes is called the *length* of the scattered space X and is denoted by leng(X). For a point x of X, we write rank $x = \beta$ if $x \in X_{(\beta)}$. A scattered space X has the following properties which will be used in this paper implicitly and frequently. Let β be an ordinal and U an open set of X.

- (a) $X^{(\beta)} \cap U = U^{(\beta)}$ and $X_{(\beta)} \cap U = U_{(\beta)}$ (and hence we have the following two).
- (b) $\operatorname{leng}(U) = \beta$ if and only if $U \cap X^{(\beta)} = \emptyset$ and $U \cap X^{(\gamma)} \neq \emptyset$ for every $\gamma < \beta$.
- (c) $X_{(\beta)}$ is dense in $X^{(\beta)}$.

A scattered countable metric space X of length α has in addition the following properties.

(d) The length α is a countable or finite ordinal. (For compact case, α is in addition a non-limit ordinal)

(e) If $\beta + 1 < \alpha$ then $|X_{(\beta)}| = \omega$ with ω the first countable ordinal. If $\beta + 1 = \alpha$ then $|X^{(\beta)}| = |X_{(\beta)}| \le \omega$. (For compact case, $|X^{(\beta)}| = |X_{(\beta)}| < \omega$.)

If the length $\alpha > 0$ is a non-limit ordinal and $|X^{(\alpha-1)}| = \mathfrak{m}, 1 \leq \mathfrak{m} \leq \omega$, we write type $X = (\alpha, \mathfrak{m})$.

The following is the well-known Mazurkiewicz-Sierpiński theorem which caused and led us to write the present paper.

Theorem 1. (Mazurkiewicz-Sierpiński [2]) A compact countable metric space X of type (α, n) is homeomorphic to the ordinals $(0, \omega^{\alpha-1}n]$ with the order topology. Hence the

²⁰⁰⁰ Mathematics Subject Classification. 54G12.

Key words and phrases. scattered space, length, rank, type.

topological type of a compact countable metric space is uniquely deternined by its type (α, n) , and the number of topological types of compact countable metric spaces is \aleph_1 .

The compact countable metric space of type (α, n) is denoted by $MS(\alpha, n)$.

2. Scattered countable metric spaces of length **2.** We start with type (2, 1).

Proposition 1. Let X be a scattered countable metric space of type (2, 1) with $X^{(1)} = X_{(1)} = \{p\}$. Then X admits precisely three topological types. Each type is characterized by the existence of a clopen neighborhood base $X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ of p satisfying

- (r) $|U_m U_{m+1}| = 1$ for every *m*, or
- (r') $|U_1 U_2| = \omega$ and $|U_m U_{m+1}| = 1$ for every $m \ge 2$, or
- (s) $|U_m U_{m+1}| = \omega$ for every m.

The X 's which admit clopen neighborhood bases satisfying (r), (r'), (s) are respectively denoted by $\boldsymbol{r}, \boldsymbol{r'}, \boldsymbol{s}$. Typical spaces are as follows :

r	r'	8
MS(2,1) ,	$MS(2,1)\oplus\mathbb{N}$,	$MS(3,1) - MS(3,1)_{(1)}$,
$[0, \omega]$	$[0,\omega 2] - \{\omega\}$	$[0, \omega^{2}] - \{ \omega n 1 \le n < \omega \}$

, where \oplus means the topological sum and \mathbb{N} denotes the countable discrete space.

If $1 \leq n < \omega$, the space of the form

$$\overbrace{r \oplus r \oplus \cdots \oplus r}^{n} \quad (\text{resp} \quad \overbrace{s \oplus s \oplus \cdots \oplus s}^{n})$$

is denoted by $n\mathbf{r}$ (resp $n\mathbf{s}$) and the space of the form

$$\overbrace{r \oplus r \oplus r \oplus \cdots}^{\omega} \quad (\text{resp} \quad \overbrace{s \oplus s \oplus s \oplus \cdots}^{\omega})$$

by $\omega \boldsymbol{r}$ (resp $\omega \boldsymbol{s}$).

Definition 1. A space X is said to *absorb* a space Y if $X \approx X \oplus Y$, where \approx means the left side is homeomorphic to the right side.

A finite points space is absorbed by $n\mathbf{r}$, $\omega\mathbf{r}$, $n\mathbf{s}$, $\omega\mathbf{s}$. The countable discrete space \mathbb{N} is absorbed by $\omega\mathbf{r}$, $n\mathbf{s}$, $\omega\mathbf{s}$ but not by $n\mathbf{r}$.

Proposition 2. Let X be a scattered countable metric space of type (2, n), $1 \le n < \omega$. Then X admits precisely n + 2 topological types as follows :

$$n\mathbf{r}, n\mathbf{s}, k\mathbf{r} \oplus (n-k)\mathbf{s}, 1 \le k \le n-1, n\mathbf{r} \oplus \mathbb{N}.$$

Proposition 3. Let X be a scattered countable metric space of type $(2, \omega)$. Then X is homeomorphic to one and only one of the following spaces :

$$\omega \boldsymbol{r}, \ \omega \boldsymbol{s}, \ k \boldsymbol{r} \oplus \omega \boldsymbol{s}, \ 1 \leq k < \omega, \ k \boldsymbol{s} \oplus \omega \boldsymbol{r}, \ 1 \leq k < \omega, \ \omega \boldsymbol{r} \oplus \omega \boldsymbol{s}.$$

Proof. Using 0-dimensionality we can take a discrete family $\{U_x : x \in X^{(1)}\}$ of clopen sets of X so that $U_x \cap X^{(1)} = \{x\}$. We may assume $U_x \approx \mathbf{r}$ or \mathbf{s} . Put $U = \bigcup_{x \in X^{(1)}} U_x$ and R = X - U. Then R is homeomorphic to \emptyset , a finite points space or N. A finite points space is absorbed by U and can be vanished. The residue N is not absorbed by U only when $U \approx n\mathbf{r}$. This complets the proof.

3. Non-compact locally compact countable metric spaces. The non-compact locally compact countable metric spaces can be topologically classified easily by using Alexandrov's one-point compactification $X^* = X \cup \{p\}$.

Proposition 4. If α is a limit ordinal with $\alpha < \omega_1$, then a locally compact countable metric space X of length α has the unique topological type.

Proof. In this case, type $X^* = (\alpha + 1, 1)$ and the point p has the highest rank α in X^* . Theorem 1 says that X^* has the unique topological type so that X does because the rank of a point is preserved under homeomorphisms. This completes the proof.

Proposition 5. If α is a non-limit ordinal with $0 < \alpha < \omega_1$, then a locally compact countable metric space X of type (α, ω) has the unique topological type.

Proof. In this case, it is also true that type $X^* = (\alpha + 1, 1)$ and the point p has the highest rank α in X^* because if not, $X^{(\alpha-1)}$ would not have an accumulation point in the compact space X^* . Theorem 1 says again that X^* has the unique topological type so that X does. This completes the proof.

If α is a limit ordinal (resp a non-limit ordinal), $LC(\alpha)$ denotes the unique locally compact countable metric space of length α (resp of type (α, ω)) assured by the propositions above. LC(0) denotes the empty set for convenience.

Proposition 6. Let α be a non-limit ordinal with $0 < \alpha < \omega_1$ and let X be a non-compact locally compact countable metric space X of type $(\alpha, n), 1 \leq n < \omega$. Then the topological type of X is uniquely determined by the rank of p in X^{*} and is homeomorphic to

$$MS(\alpha, n) \oplus LC(\beta), \ \beta < \alpha,$$

with β the rank of p.

Proof. Taking a clopen set U of X^* so that $U \cap (X^*)^{(\beta)} = \{p\}$ we have

 $X^* = (X^* - U) \cup U \approx MS(\alpha, n) \oplus MS(\beta + 1, 1)$

which implies $X \approx X^* - \{p\} \approx MS(\alpha, n) \oplus LC(\beta)$. This completes the proof.

Remark. Though a detailed description as above was not given in [2], it was proved there that the number of topological types of locally compact countable metric spaces is \aleph_1 because every locally compact countable metric space is obtained from $MS(\alpha, n)$, $\alpha < \omega_1$, $1 \leq n < \omega$, by removing a point.

4. Main theorem.

Definition 2. Let X be a scattered countable metric space. A non-isolated point x of X whose rank β is a non-limit ordinal is called a *regular* point if x has a clopen neighborhood

base $U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ satisfying

$$(U_m - U_{m+1}) \cap X_{(\beta-1)} | < \omega$$
 for every m .

If not, x is called a *singular* point.

A point x of X whose rank β is a limit ordinal is called a *regular* point if x has a clopen neighborhood base $U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ in X satisfying

$$leng(U_m - U_{m+1}) < \beta \text{ for every } m.$$

If not, x is called a *singular* point.

Remark. If a point x, whose rank β is a non-limit ordinal, is a regular point, then using 0-dimensionality we can choose U_m so that

$$(U_m - U_{m+1}) \cap X_{(\beta-1)} = 1$$
 for every m.

If a point x, whose rank β is a non-limit ordinal, is a singular point, then we can also choose U_m so that

 $|(U_m - U_{m+1}) \cap X_{(\beta-1)}| = \omega$ for every m.

If a point x, whose rank β is a limit ordinal, is a singular point, then we can choose U_m so that

$$leng(U_m - U_{m+1}) = \beta \text{ for every } m.$$

The term 'regular' comes from the following fact.

Proposition 7. Every non-isolated point of a locally compact countable metric space X is a regular point.

Proof. Let x be a non-isolated point of X. If rank $x = \beta$ is a non-limit ordinal, take a compact clopen set U so that $U \cap X^{(\beta)} = \{x\}$ and take a clopen neighborhood base $U = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ of x. Then $|(U_m - U_{m+1}) \cap X_{(\beta-1)}| < \omega$ for every m, because if $|(U_m - U_{m+1}) \cap X_{(\beta-1)}| = \omega$ for some m then $(U_m - U_{m+1}) \cap X_{(\beta-1)}$ would not have an accumulation point. If β is a limit ordinal, take U and U_m , $m = 1, 2, 3, \ldots$, as above. Then each $U_m - U_{m+1}$ is compact so that $leng(U_m - U_{m+1})$ is a non-limit ordinal. Thus $leng(U_m - U_{m+1}) < \beta$ for every m. This completes the proof.

Definition 3. Let X be a scattered countable metric space of length $\alpha \geq 2$. Let Φ be a function, with no continuity assumed, of the interval $(0, \alpha)$ to the two points set $\{r, s\}$. We define X to have rankwise uniform type Φ if

every point of
$$X_{(\beta)}$$
 is a regular point if $\Phi(\beta) = r$,
every point of $X_{(\beta)}$ is a singular point if $\Phi(\beta) = s$.

Let X be a scattered countable metric space of length α having rankwise uniform type Φ . Propositins 1, 2 and 3 tell us the following : For each non-limit ordinal $0 < \beta < \alpha$,

 $\Phi(\beta) = r$ is equivalent to

 $\left\{ \begin{array}{ll} X_{(\beta)} \cup X_{(\beta-1)} \approx n \boldsymbol{r} \quad \text{or} \quad n \boldsymbol{r} \oplus \mathbb{N} \\ X_{(\beta)} \cup X_{(\beta-1)} \approx \omega \boldsymbol{r} \end{array} \right. \quad \text{if} \quad \beta+1=\alpha \text{ and } |X^{(\beta)}|=n \ , \ 1 \leq n < \omega \,,$ if otherwise,

and $\Phi(\beta) = s$ is equivalent to

$$\begin{array}{ll} X_{(\beta)} \cup X_{(\beta-1)} \approx n \, \boldsymbol{s} & \text{if } \beta + 1 = \alpha \text{ and } |X^{(\beta)}| = n \ , \ 1 \le n < \omega \, , \\ X_{(\beta)} \cup X_{(\beta-1)} \approx \omega \, \boldsymbol{s} & \text{if otherwise.} \end{array}$$

Remark. By Proposition 7 every locally compact countable metric space has the rankwise uniform type Φ taking the value r constantly. To go beyond the length 2, one might expect that this kind of rankwise uniform type is easy to deal with. Unfortunately this is not so. Indeed, a scattered countable metric space of type (3, 1) with the rankwise uniform type $\Phi(2) = \Phi(1) = r$ admits just five topological types (see [3, Table 1]), three of which are locally compact and the other non-locally compact two are described as below :

$$T = [0, \omega^{2}] - \{\omega(2n-1) \mid 1 \le n < \omega\},\$$

$$T' = [0, \omega^{2}2) - \{\omega(2n-1) \mid 1 \le n < \omega\},\$$

with the topologies induced from the order topology of $[0, \omega_1)$. Furthermore a scattered countable metric space of type (4, 1) with the rankwise uniform type $\Phi(3) = \Phi(2) = \Phi(1) = r$ admits infinitely many topological types. In fact, $MS(4, 1) \oplus nT$, $1 \le n < \omega$, give, with n varying, countably many topological types.

Being far away from locally compact spaces, we have the following results.

Theorem 2. Let X be a scattered countable metric space of type $(\alpha, \mathfrak{m}), 2 \leq \alpha < \omega_1, 1 \leq \mathfrak{m} \leq \omega$, having a rankwise uniform type Φ . Assume

(*)
$$\Phi(\beta) = \Phi(\beta + 1) = r$$
 does not occur.

(1) In the exceptional case where α is a non-limit ordinal, $\mathfrak{m} < \omega$ and $\Phi(\alpha - 1) = r$, then X has precisely two topological types.

(2) If otherwise, the topological type of X is uniquely determined.

Corollary 1. Let X be a scattered countable metric space of type (α, \mathfrak{m}) , $2 \leq \alpha$, $1 \leq \mathfrak{m} \leq \omega$, with the rankwise uniform type Φ taking the value s constantly. Then the topological type of X is uniquely determined.

Remark. Let X be a scattered countable metric space with a rankwise uniform type Φ satisfying (*) and U a clopen set of X of length $\beta \geq 2$. It follows from (a) in Preliminaries that U has the rankwise uniform type $\Phi|(0, \beta)$, the restriction to $(0, \beta)$ of Φ , and $\Phi|(0, \beta)$ satisfies (*) as well. This fact will be used here and there in the proof without explicit mention.

Proof of Theorem 2. We shall prove the theorem by the transfinite induction on length α . If $\alpha = 2$ the theorem is assured by Propositions 1,2 and 3. Let γ be an ordinal. Assume that the theorem has been proved for every $\alpha < \gamma$.

In case γ and $\gamma - 1$ are both non-limit ordinals and $\Phi(\gamma - 1) = \mathbf{s}$: Let X, Y be scattered countable metric spaces of type (γ, \mathfrak{m}) with a common rankwise uniform type Φ satisfying $\Phi(\gamma - 1) = \mathbf{s}$ and (*). To show that $X \approx Y$, first consider the case $\mathfrak{m} = 1$. Let a, b be the points of X, Y respectively having the highest rank $\gamma - 1$ and let

$$X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$$
 and $Y = V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$

be clopen neighborhood bases of a, b respectively satisfying

$$|(U_m - U_{m+1}) \cap X_{(\gamma-2)}| = \omega$$
 and $|(V_m - V_{m+1}) \cap Y_{(\gamma-2)}| = \omega$

for every m. Note that

type
$$(U_m - U_{m+1}) =$$
 type $(V_m - V_{m+1}) = (\gamma - 1, \omega),$

which implies that these sets are outside the exceptional case (1) even if $\Phi(\gamma - 2) = r$. The induction hypothesis is now applied to give $U_m - U_{m+1} \approx V_m - V_{m+1}$ for every m. Taking a homeomorphism $h_m : U_m - U_{m+1} \longrightarrow V_m - V_{m+1}$ we can define a homeomorphism $h : X \longrightarrow Y$ by

$$h(x) = \begin{cases} h_m(x) & \text{if } x \in U_m - U_{m+1} \\ b & \text{if } x = a. \end{cases}$$

The continuity of h at a (or of h^{-1} at b) is because $\{U_1, U_2, U_3, ...\}$ and $\{V_1, V_2, V_3, ...\}$ are open neighborhood bases of a, b respectively.

If $2 \leq \mathfrak{m} \leq \omega$, we can decompose X, using 0-dimensionality, as $X \approx \bigoplus_{\lambda \in \Lambda} X_{\lambda}$, where $|\Lambda| = \mathfrak{m}$ and each X_{λ} is of type $(\gamma, 1)$. Since, as proved above, each X_{λ} admits the unique topology, so does X. This completes the proof.

In case γ and $\gamma - 1$ are both non-limit ordinals and $\Phi(\gamma - 1) = \mathbf{r}$: Let X be a scattered countable metric space of type $(\gamma, 1)$ with a rankwise uniform type Φ satisfying $\Phi(\gamma - 1) = \mathbf{r}$ and (*). Since $\Phi(\gamma - 1) = \mathbf{r}$, one and only one of the following two cases occurs :

$$X_{(\gamma-1)} \cup X_{(\gamma-2)} \approx \mathbf{r} \quad \text{or} \quad \mathbf{r'}$$

Let us denote, for the time being, by R the X in which the former happens and by R' the X in which the latter happens. To show the uniqueness of R let X, Y be scattered countable metric spaces of type $(\gamma, 1)$ with the rankwise uniform type Φ satisfying

$$X_{(\gamma-1)} \cup X_{(\gamma-2)} \approx \mathbf{r} \approx Y_{(\gamma-1)} \cup Y_{(\gamma-2)}$$

Let a, b be the points of X, Y respectively having the highest rank $\gamma - 1$ and let

 $X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ and $Y = V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$

be clopen neighborhood bases of a, b respectively satisfying

$$|(U_m - U_{m+1}) \cap X_{(\gamma-2)}| = |(V_m - V_{m+1}) \cap Y_{(\gamma-2)}| = 1$$

for every m. Note that

$$type(U_m - U_{m+1}) = type(V_m - V_{m+1}) = (\gamma - 1, 1)$$

and $\Phi(\gamma - 2) = s$ by condition (*). This implies that these sets are outside the exceptional case (1) so that $U_m - U_{m+1} \approx V_m - V_{m+1}$ by the induction hypothesis. Now in a similar way to that in the preceding case, we can define a homeomorphism $h : X \longrightarrow Y$. The uniqueness of R has been thus assured.

To show the uniqueness of R', decompose R' as $R' \approx R \oplus J$ so that

type
$$R = (\gamma, 1), R_{(\gamma-1)} \cup R_{(\gamma-2)} \approx \boldsymbol{r}$$
 and type $J = (\gamma - 1, \omega).$

Then R is unique as proved above and J is unique by the induction hypothesis. Thus R' is unique as desired.

As for X of type (γ, n) , $1 \leq n < \omega$, write $X = \bigoplus_{i=1}^{n} X_i$ with X_i of type $(\gamma, 1)$. Then, as proved above, each X_i is homeomorphic to R or $R \oplus J$. If $X_i \approx R$ for every *i* then $X \approx nR$. If $X_i \approx R \oplus J$ for some *i*, note that the topological sum of finitely (or countably) many J's is homeomorphic to J because of its uniqueness. Thus $X \approx nR \oplus J$. Consequently X has precisely two topological types because nR can not absorb J.

To show the uniqueess of X of type (γ, ω) , write $X = \bigoplus_{i=1}^{\infty} X_i$ with $X_i \approx R$ or $R \oplus J$ so that $X \approx \omega R$ or $\omega R \oplus J$. To hide J into ωR , write $J = \bigoplus_{i=1}^{\infty} J_i$ with J_i of type $(\gamma - 1, 1)$.

Since type $(R \oplus J_i) = (\gamma, 1)$ and $(R \oplus J_i)_{(\gamma-1)} \cup (R \oplus J_i)_{(\gamma-2)} \approx \mathbf{r}$ it follows from the uniqueness of R that $R \oplus J_i \approx R$ which yields

$$\omega R \oplus J \approx \overbrace{(R \oplus J_1) \oplus (R \oplus J_2) \oplus (R \oplus J_3) \oplus \cdots}^{\omega} \approx \omega R$$

as desired. This completes the proof.

In case γ is a limit ordinal : Let X, Y be scattered countable metric spaces of length γ with a common rankwise uniform type Φ satisfying (*). Write for each $\beta < \gamma$

$$X - X^{(\beta)} = \bigcup_{m=1}^{\infty} U_m^{\beta}, \ Y - Y^{(\beta)} = \bigcup_{m=1}^{\infty} V_m^{\beta}$$

by clopen sets U_m^β , $m = 1, 2, 3, \ldots$, of X and V_m^β , $m = 1, 2, 3, \ldots$, of Y. Rewrite

$$\{U_m^\beta \mid \beta < \gamma, m = 1, 2, 3, ...\} = \{U_1, U_2, U_3, ...\},\$$

$$\{V_m^\beta \mid \beta < \gamma, m = 1, 2, 3, \dots\} = \{V_1, V_2, V_3, \dots\}$$

Then $\bigcup_{m=1}^{\infty} U_m = X$, $\bigcup_{m=1}^{\infty} V_m = Y$ and $\operatorname{leng}(U_m) < \gamma$ and $\operatorname{leng}(V_m) < \gamma$ for every m.

Put $\Sigma = \{ \sigma \in (0, \gamma) | \varPhi(\sigma) = s \}$. Note that Σ is cofinal in the interval $(0, \gamma)$ by the condition (*). We can thus take a function $\rho : \{1, 2, 3, ...\} \longrightarrow \Sigma$ satisfying

$$\rho(m) > \max\{\operatorname{leng}(U_m), \operatorname{leng}(V_m)\}$$
 and $\rho(m+1) > \rho(m)$ for every m

For each $\sigma \in \Sigma$, fix $x_{\sigma} \in X_{(\sigma)}$, $y_{\sigma} \in Y_{(\sigma)}$, a clopen set A_{σ} of X and a clopen set B_{σ} of Y so that

$$A_{\sigma} \cap X^{(\sigma)} = \{x_{\sigma}\} \text{ and } B_{\sigma} \cap Y^{(\sigma)} = \{y_{\sigma}\}.$$

Now define

$$\begin{split} E_1 &= U_1 \cup A_{\rho(1)}, \ E_m = (U_m \cup A_{\rho(m)}) - \cup_{i=1}^{m-1} (U_i \cup A_{\rho(i)}), \\ F_1 &= V_1 \cup B_{\rho(1)}, \ F_m = (V_m \cup B_{\rho(m)}) - \cup_{i=1}^{m-1} (V_i \cup B_{\rho(i)}), \end{split}$$

for each $m = 2, 3, 4, \ldots$ Then $\{E_1, E_2, E_3, \ldots\}$ and $\{F_1, F_2, F_3, \ldots\}$ are disjoint clopen covers of X and Y respectively. Note that $\operatorname{leng}(E_m) = \operatorname{leng}(F_m) = \rho(m) + 1 < \gamma$ and that $x_{\rho(m)}$ is the only point having the highest rank $\rho(m)$ in the space E_m and so is $y_{\rho(m)}$ in F_m . Thus we have type $E_m =$ type $F_m = (\rho(m) + 1, 1)$. Since $\Phi(\rho(m)) =$ s, E_m and F_m are outside the exceptional case. The induction hypothesis is now applied to obtain $E_m \approx F_m$ for every m, which yields $X \approx Y$. This completes the proof.

In case γ is a non-limit ordinal, $\gamma - 1$ is a limit ordinal and $\Phi(\gamma - 1) = \mathbf{r}$ Let X be a scattered countable metric space of type $(\gamma, 1)$ with a rankwise uniform type Φ satisfying $\Phi(\gamma - 1) = \mathbf{r}$ and (*). Let a be the point of X having the highest rank $\gamma - 1$. Since $\gamma - 1$ is a limit ordinal and $\Phi(\gamma - 1) = \mathbf{r}$, one and only one of the following two cases occurs :

(r) *a* has a clopen neighborhood base $X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ satisfying

$$leng(U_m - U_{m+1}) < \gamma - 1$$
 for every *m* or

(r') a has a clopen neighborhood base $X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ satisfying

 $\operatorname{leng}(U_1 - U_2) = \gamma - 1$ and $\operatorname{leng}(U_m - U_{m+1}) < \gamma - 1$ for every $m \ge 2$.

Let us denote, for the time being, by R the X in which the former happens and by R' the X in which the latter happens. To show the uniqueness of R let X, Y be scattered countable

metric spaces of type $(\gamma, 1)$ with the rankwise uniform type Φ and with a, b the points of X, Y respectively having the highest rank $\gamma - 1$, and let

$$X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$$
 and $Y = V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$

be clopen neighborhood bases of a, b respectively satisfying

$$leng(U_m - U_{m+1}) < \gamma - 1$$
 and $leng(V_m - V_{m+1}) < \gamma - 1$

for every m.

Hereafter the proof goes a way somewhat similar to that in the preceding case. Put $\Sigma = \{ \sigma \in (0, \gamma - 1) | \Phi(\sigma) = s \}$ and take a function $\rho : \{1, 2, 3, ...\} \longrightarrow \Sigma$ satisfying

$$\rho(m) > \max\{ \text{leng}(U_m - U_{m+1}), \text{ leng}(V_m - V_{m+1}) \} \text{ and } \rho(m+1) > \rho(m) \text{ for every } m.$$

For each $\sigma \in \Sigma$, fix $x_{\sigma} \in X_{(\sigma)}$, $y_{\sigma} \in Y_{(\sigma)}$, a clopen set A_{σ} of X and a clopen set B_{σ} of Y so that

$$A_{\sigma} \cap X^{(\sigma)} = \{x_{\sigma}\} \text{ and } B_{\sigma} \cap Y^{(\sigma)} = \{y_{\sigma}\}.$$

Putting $U'_m = U_m - U_{m+1}$ and $V'_m = V_m - V_{m+1}$, define

$$E_1 = U'_1 \cup A_{\rho(1)} , \ E_m = (U'_m \cup A_{\rho(m)}) - \bigcup_{i=1}^{m-1} (U'_i \cup A_{\rho(i)}),$$

 $F_1 = V'_1 \cup B_{\rho(1)}, \ F_m = (V'_m \cup B_{\rho(m)}) - \bigcup_{i=1}^{m-1} (V'_i \cup B_{\rho(i)}),$

for each $m = 2, 3, 4, \ldots$ Then $\{E_1, E_2, E_3, \ldots\}$ and $\{F_1, F_2, F_3, \ldots\}$ are disjoint families of clopen sets of X, Y respectively, and

$$\{X - \bigcup_{i=1}^{m} E_i \mid m = 1, 2, 3, \dots\}$$
 and $\{Y - \bigcup_{i=1}^{m} F_i \mid m = 1, 2, 3, \dots\}$

are clopen neighborhood bases of a, b respectively. Since type $E_m = \text{type } F_m = (\rho(m)+1, 1)$ and $\Phi(\rho(m)) = \text{s it follows from the induction hypothesis that } E_m \approx F_m$ for every m. Taking a homeomorphism $h_m : E_m \longrightarrow F_m$ we can define a homeomorphism $h : X \longrightarrow Y$ by

$$h(x) = \begin{cases} h_m(x) & \text{if } x \in E_n \\ b & \text{if } x = a. \end{cases}$$

Thus $X \approx Y$. The uniqueness of R has been verified.

To show the uniqueness of R' recall that, in (r') above, $\operatorname{leng}(U_1 - U_2) = \gamma - 1$ and $\gamma - 1$ is a limit ordinal. Thus $U_1 - U_2$ has the unique topological type by the induction hypothesis. Denoting this type of space by J, we have $R' \approx R \oplus J$ which assures the uniqueness of R'.

As for X of type (γ, n) , $1 \le n < \omega$, write $X = \bigoplus_{i=1}^{n} X_i$ with X_i of type $(\gamma, 1)$. Then, as proved above, each X_i is homeomorphic to R or $R \oplus J$. If $X_i \approx R$ for every *i* then $X \approx nR$. If $X_i \approx R \oplus J$ for some *i*, note that the topological sum of finitely (or countably) many *J*'s is homeomorphic to *J* because of its uniqueness. We thus have $X \approx nR \oplus J$. Consequently *X* has precisely two topological types because nR can not absorb *J*.

To show the uniqueness of X of type (γ, ω) , write $X = \bigoplus_{i=1}^{\infty} X_i$ with $X_i \approx R$ or $R \oplus J$ so that $X \approx \omega R$ or $\omega R \oplus J$. To vanish J, write $J = \bigoplus_{i=1}^{\infty} J_i$ with $\operatorname{leng}(J_i) < \gamma - 1$ (; as in the top of the preceding case with γ replaced by $\gamma - 1$, write $J = \bigcup_{m=1}^{\infty} U_m$ by clopen sets U_m with $\operatorname{leng}(U_m) < \gamma - 1$ and put $J_1 = U_1$ and $J_i = U_i - \bigcup_{m=1}^{i-1} U_m$ for $i \geq 2$). Since type $(R \oplus J_i) = (\gamma, 1)$ and the case (r) happens in $R \oplus J_i$ it follows from the uniqueness of R that $R \oplus J_i \approx R$ so that

$$\omega R \oplus J \approx \overbrace{(R \oplus J_1) \oplus (R \oplus J_2) \oplus (R \oplus J_3) \oplus \cdots}^{\omega} \approx \omega R$$

as desired.

In case γ is a non-limit ordinal, $\gamma - 1$ is a limit ordinal and $\Phi(\gamma - 1) = \mathbf{s}$: This is the easiest case. Let X be a scattered countable metric space of type $(\gamma, 1)$ with a rankwise uniform type Φ satisfying $\Phi(\gamma - 1) = \mathbf{s}$ and (*). Let $\{a\} = X^{(\gamma-1)}$ and take a clopen neighborhood base $X = U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ of a satisfying $\operatorname{leng}(U_m - U_{m+1}) = \gamma - 1$ for every m. Then by the induction hypothesis, each $U_m - U_{m+1}$ has the unique topological type so that X does.

As for the type (γ, \mathfrak{m}) , $2 \leq \mathfrak{m} \leq \omega$, we have only to decompose X as $X \approx \bigoplus_{\lambda \in \Lambda} X_{\lambda}$, where $|\Lambda| = \mathfrak{m}$ and each X_{λ} is of type $(\gamma, 1)$. The uniqueness of X_{λ} implies the uniqueness of X, which completes the proof.

Existence. Let α be an ordinal with $2 \leq \alpha < \omega_1$ and let $\Phi : (0, \alpha) \longrightarrow \{r, s\}$ be a function (which does not necessarily satisfy the condition (*)). A scattered countable metric space of length α with the rankwise uniform type Φ is given in the following way.

Let $\overline{\alpha}$ denote the first limit ordinal not smaller than α and let $\varphi : [0, \alpha) \longrightarrow [0, \overline{\alpha})$ be a function satisfying

- (1) $\varphi(0) = 0$,
- (2) if β is a non-limit ordinal, then

$$\varphi(\beta) = \begin{cases} \varphi(\beta-1) + 1 & \text{if } \Phi(\beta) = \mathbf{r} \\ \varphi(\beta-1) + 2 & \text{if } \Phi(\beta) = \mathbf{s} \end{cases}$$

(3) if β is a limit ordinal, then

$$\varphi(\beta) = \begin{cases} \beta & \text{if } \Phi(\beta) = \mathbf{r} \\ \beta + 1 & \text{if } \Phi(\beta) = \mathbf{s}. \end{cases}$$

It is easily proved that such a function φ exists and is unique. Putting $K = MS(\overline{\alpha} + 1, 1)$, define

$$X = \bigcup_{\beta \in [0, \alpha)} K_{(\varphi(\beta))}$$

with the topology induced from K. Then X has the rankwise uniform type Φ , leng $X = \alpha$, and type $X = (\alpha, \omega)$ if α is a non-limit ordinal.

To obtain X' of type (α, m) with α a non-limit ordinal and $1 \leq m < \omega$, take m many points x_1, x_2, \ldots, x_m in $K_{(\varphi(\alpha-1))}$ and take a clopen set U of K so that

$$U \cap K_{(\varphi(\alpha-1))} = \{x_1, \, x_2, \, \dots, \, x_m\}.$$

Put $X' = U \cap X$.

As for our exceptional case, the spaces R in the proof of Theorem 2 can be obtained in this way. If one requires the spaces $R \oplus J$, define

$$X'' = X' \oplus (\bigcup_{\beta \in [0, \alpha - 1)} K_{(\varphi(\beta))}).$$

We have thus finished the proof of Theorem 2.

Remark. Mazurkiewicz and Sierpiński constructed in [2] 2^{\aleph_0} many distinct scattered countable metric spaces of length ω by using the notion of 'lacune'. However the spaces constructed there do not have rankwise uniform types in our terminology.

References

- [1] K. Kuratowski, Topology vol. II, Academic Press (1968).
- [2] S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
- [3] S. Oka, Topological classification of the scattered countable metric spaces of length 3, to appear.

Addresses: First author:

Faculty of Education, Kagawa University, Saiwai-cho, Takamatsu 760-8522, Japan E-mail: fukaishi@ed.kagawa-u.ac.jp

Second author:

Faculty of Education, Kagawa University, Saiwai-cho, Takamatsu 760-8522, Japan