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Abstract. The compact countable metric spaces are topologically classi�ed simply

by the classical Mazurkiewicz-Sierpi�nski theorem. Our concern is non-compact case.

After viewing the scattered countable metric spaces of length 2 and the locally compact

countable metric spaces, we shall prove Theorem 2, the main theorem of the present

paper. Theorem 2 presents a topological classi�cation of a class of scattered countable

metric spaces which is far from the class of locally compact countable metric spaces.

1. Preliminaries. Let X be a topological space. The following is Cantor's well-known

process of deriving which is done by trans�nite induction. (cf. Kuratowski [1])

Let X(0) = X and X(0) the set of the isolated points of X(0). If � is a non-limit ordinal,

let X(�) = X(��1)
� X(��1) and X(�) the set of the isolated points of X(�), where � � 1

means the ordinal preceding �. If � is a limit ordinal, let X(�) = \<�X
() and X(�) the

set of the isolated points of X(�).

Each X(�) is a closed subset of X, and each X(�) is a discrete open subset of X(�).

A space X is called scattered if X(�) = ; for some �. A scattered space is also charac-

terized as a space in which every non-empty (closed) subspace has an isolated point. The

�rst ordinal � for which X(�) vanishes is called the length of the scattered space X and is

denoted by leng(X). For a point x of X, we write rankx = � if x 2 X(�). A scattered space

X has the following properties which will be used in this paper implicitly and frequently.

Let � be an ordinal and U an open set of X.

(a) X(�)
\ U = U (�) and X(�) \ U = U(�) (and hence we have the following two).

(b) leng(U) = � if and only if U \X(�) = ; and U \X()
6= ; for every  < �.

(c) X(�) is dense in X
(�).

A scattered countable metric spaceX of length � has in addition the following properties.

(d) The length � is a countable or �nite ordinal. ( For compact case, � is in addition a

non-limit ordinal )

(e) If � + 1 < � then jX(�)j = ! with ! the �rst countable ordinal. If � + 1 = � then

jX(�)
j = jX(�)j � !. ( For compact case, jX(�)

j = jX(�)j < !.)

If the length � > 0 is a non-limit ordinal and jX(��1)
j = m; 1 � m � !, we write

typeX = (�; m).

The following is the well-known Mazurkiewicz-Sierpi�nski theorem which caused and led

us to write the present paper.

Theorem 1. (Mazurkiewicz-Sierpi�nski [2]) A compact countable metric space X of type

(�; n) is homeomorphic to the ordinals (0; !��1n ] with the order topology. Hence the
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topological type of a compact countable metric space is uniquely deternined by its type (�; n),

and the number of topological types of compact countable metric spaces is @1.

The compact countable metric space of type (�; n) is denoted by MS(�; n).

2. Scattered countable metric spaces of length 2. We start with type (2; 1).

Proposition 1. Let X be a scattered countable metric space of type (2; 1) with X(1) =

X(1) = f p g. Then X admits precisely three topological types. Each type is characterized by

the existence of a clopen neighborhood base X = U1 � U2 � U3 � � � � of p satisfying

(r) jUm � Um+1j = 1 for every m, or

(r') jU1 �U2j = ! and jUm � Um+1j = 1 for every m � 2, or

(s) jUm � Um+1j = ! for every m.

The X 's which admit clopen neighborhood bases satisfying (r), (r'), (s) are respectively

denoted by r; r0; s. Typical spaces are as follows :

r r
0

s

MS(2; 1) ; MS(2; 1) �N ; MS(3; 1) �MS(3; 1)(1) ;

[ 0; !] [ 0; !2]� f! g [ 0; !2]� f!n j 1 � n < ! g

, where � means the topological sum and N denotes the countable discrete space.

If 1 � n < !, the space of the form

nz }| {
r � r � � � � � r (resp

nz }| {
s� s � � � � � s)

is denoted by nr (resp ns) and the space of the form

!z }| {
r � r � r � � � � (resp

!z }| {
s� s � s � � � �)

by !r (resp !s).

De�nition 1. A space X is said to absorb a space Y if X � X � Y , where � means the

left side is homeomorphic to the right side.

A �nite points space is absorbed by nr; !r; ns; !s. The countable discrete space N is

absorbed by !r; ns; !s but not by nr.

Proposition 2. Let X be a scattered countable metric space of type (2; n) ; 1 � n < !.

Then X admits precisely n+ 2 topological types as follows :

nr; ns; kr � (n � k)s; 1 � k � n� 1; nr �N:

Proposition 3. Let X be a scattered countable metric space of type (2; !). Then X is

homeomorphic to one and only one of the following spaces :

!r; !s; kr � !s; 1 � k < !; ks� !r; 1 � k < !; !r � !s:
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Proof. Using 0-dimensionality we can take a discrete family fUx : x 2 X(1)
g of clopen

sets of X so that Ux \X
(1) = fxg. We may assume Ux � r or s. Put U = [x2X(1) Ux and

R = X �U . Then R is homeomorphic to ;, a �nite points space or N. A �nite points space

is absorbed by U and can be vanished. The residue N is not absorbed by U only when

U � nr. This complets the proof.

3. Non-compact locally compact countable metric spaces. The non-compact locally

compact countable metric spaces can be topologically classi�ed easily by using Alexandrov's

one-point compacti�cation X� = X [ fpg.

Proposition 4. If � is a limit ordinal with � < !1, then a locally compact countable metric

space X of length � has the unique topological type.

Proof. In this case, type X� = (�+1; 1) and the point p has the highest rank � in X�.

Theorem 1 says that X� has the unique topological type so that X does because the rank

of a point is preserved under homeomorphisms. This completes the proof.

Proposition 5. If � is a non-limit ordinal with 0 < � < !1, then a locally compact

countable metric space X of type (�; !) has the unique topological type.

Proof. In this case, it is also true that type X� = (� + 1; 1) and the point p has the

highest rank � in X� because if not, X(��1) would not have an accumulation point in the

compact space X�. Theorem 1 says again that X� has the unique topological type so that

X does. This completes the proof.

If � is a limit ordinal (resp a non-limit ordinal) , LC(�) denotes the unique locally

compact countable metric space of length � (resp of type (�; !) ) assured by the propositions

above. LC(0) denotes the empty set for convenience.

Proposition 6. Let � be a non-limit ordinal with 0 < � < !1 and let X be a non-compact

locally compact countable metric space X of type (�; n); 1 � n < !. Then the topological

type of X is uniquely determined by the rank of p in X�

and is homeomorphic to

MS(�; n) �LC(�); � < �;

with � the rank of p.

Proof. Taking a clopen set U of X� so that U \ (X�)(�) = fpg we have

X� = (X�

� U) [ U �MS(�; n)�MS(� + 1; 1)

which implies X � X�

� fpg �MS(�; n)� LC(�). This completes the proof.

Remark. Though a detailed description as above was not given in [2] , it was proved

there that the number of topological types of locally compact countable metric spaces is

@1 because every locally compact countable metric space is obtained from MS(�; n); � <

!1; 1 � n < !; by removing a point.

4. Main theorem.

De�nition 2. Let X be a scattered countable metric space. A non-isolated point x of X

whose rank � is a non-limit ordinal is called a regular point if x has a clopen neighborhood
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base U1 � U2 � U3 � � � � satisfying

j(Um � Um+1) \X(��1)j < ! for every m:

If not, x is called a singular point.

A point x of X whose rank � is a limit ordinal is called a regular point if x has a clopen

neighborhood base U1 � U2 � U3 � � � � in X satisfying

leng(Um � Um+1) < � for every m:

If not, x is called a singular point.

Remark. If a point x, whose rank � is a non-limit ordinal, is a regular point, then using

0-dimensionality we can choose Um so that

j(Um � Um+1) \X(��1)j = 1 for every m:

If a point x, whose rank � is a non-limit ordinal, is a singular point, then we can also

choose Um so that

j(Um � Um+1) \X(��1)j = ! for every m:

If a point x, whose rank � is a limit ordinal, is a singular point, then we can choose Um
so that

leng(Um � Um+1) = � for every m:

The term `regular' comes from the following fact.

Proposition 7. Every non-isolated point of a locally compact countable metric space X is

a regular point.

Proof. Let x be a non-isolated point of X. If rankx = � is a non-limit ordinal, take

a compact clopen set U so that U \ X(�) = fxg and take a clopen neighborhood base

U = U1 � U2 � U3 � � � � of x. Then j(Um � Um+1) \ X(��1)j < ! for every m, because

if j(Um � Um+1) \ X(��1)j = ! for some m then (Um � Um+1) \ X(��1) would not have

an accumulation point. If � is a limit ordinal, take U and Um; m = 1; 2; 3; : : : ; as above.

Then each Um � Um+1 is compact so that leng(Um � Um+1) is a non-limit ordinal. Thus

leng(Um � Um+1) < � for every m. This completes the proof.

De�nition 3. Let X be a scattered countable metric space of length � � 2. Let � be a

function , with no continuity assumed, of the interval (0; �) to the two points set fr; sg.

We de�ne X to have rankwise uniform type � if�
every point of X(�) is a regular point if �(�) = r;

every point of X(�) is a singular point if �(�) = s:

Let X be a scattered countable metric space of length � having rankwise uniform type

�. Propositins 1, 2 and 3 tell us the following : For each non-limit ordinal 0 < � < �,

�(�) = r is equivalent to�
X(�) [X(��1) � nr or nr �N if � + 1 = � and jX(�)

j = n ; 1 � n < ! ;

X(�) [X(��1) � !r if otherwise;

and �(�) = s is equivalent to�
X(�) [X(��1) � ns if � + 1 = � and jX(�)

j = n ; 1 � n < ! ;

X(�) [X(��1) � !s if otherwise:
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Remark. By Proposition 7 every locally compact countable metric space has the rankwise

uniform type � taking the value r constantly. To go beyond the length 2, one might expect

that this kind of rankwise uniform type is easy to deal with. Unfortunately this is not so.

Indeed, a scattered countable metric space of type (3; 1) with the rankwise uniform type

�(2) = �(1) = r admits just �ve topological types (see [3, Table 1]), three of which are

locally compact and the other non-locally compact two are described as below :

T = [ 0; !2]� f!(2n� 1) j 1 � n < ! g;

T 0 = [ 0; !22)� f!(2n� 1) j 1 � n < ! g;

with the topologies induced from the order topology of [ 0; !1). Furthermore a scattered

countable metric space of type (4; 1) with the rankwise uniform type �(3) = �(2) = �(1) = r

admits in�nitely many topological types. In fact, MS(4; 1)� nT; 1 � n < !; give, with n

varying, countably many topological types.

Being far away from locally compact spaces, we have the following results.

Theorem 2. Let X be a scattered countable metric space of type (�; m); 2 � � < !1; 1 �

m � !; having a rankwise uniform type �. Assume

(*) �(�) = �(� + 1) = r does not occur.

(1) In the exceptional case where � is a non-limit ordinal, m < ! and �(� � 1) = r,

then X has precisely two topological types.

(2) If otherwise, the topological type of X is uniquely determined.

Corollary 1. Let X be a scattered countable metric space of type (�; m); 2 � �; 1 � m � !;

with the rankwise uniform type � taking the value s constantly. Then the topological type

of X is uniquely determined.

Remark. Let X be a scattered countable metric space with a rankwise uniform type �

satisfying (*) and U a clopen set of X of length � � 2. It follows from (a) in Preliminaries

that U has the rankwise uniform type �j(0; �), the restriction to (0; �) of �, and �j(0; �)

satis�es (*) as well. This fact will be used here and there in the proof without explicit

mention.

Proof of Theorem 2. We shall prove the theorem by the trans�nite induction on length

�. If � = 2 the theorem is assured by Propositions 1,2 and 3. Let  be an ordinal. Assume

that the theorem has been proved for every � < .

In case  and  � 1 are both non-limit ordinals and �( � 1) = s : Let X; Y be

scattered countable metric spaces of type (; m) with a common rankwise uniform type �

satisfying �( � 1) = s and (*). To show that X � Y , �rst consider the case m = 1. Let

a; b be the points of X; Y respectively having the highest rank  � 1 and let

X = U1 � U2 � U3 � � � � and Y = V1 � V2 � V3 � � � �

be clopen neighborhood bases of a; b respectively satisfying

j(Um � Um+1) \X(�2)j = ! and j(Vm � Vm+1) \ Y(�2)j = !

for every m. Note that

type (Um �Um+1) = type (Vm � Vm+1) = ( � 1; !);
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which implies that these sets are outside the exceptional case (1) even if �( � 2) = r.

The induction hypothesis is now applied to give Um � Um+1 � Vm � Vm+1 for every m.

Taking a homeomorphism hm : Um�Um+1 �! Vm�Vm+1 we can de�ne a homeomorphism

h : X �! Y by

h(x) =

�
hm(x) if x 2 Um � Um+1

b if x = a:

The continuity of h at a (or of h�1 at b ) is because fU1; U2; U3; : : : g and fV1; V2; V3; : : : g

are open neighborhood bases of a; b respectively.

If 2 � m � ! , we can decompose X, using 0-dimensionality, as X � ��2�X�, where

j�j = m and each X� is of type (; 1). Since, as proved above, each X� admits the unique

topology, so does X. This completes the proof.

In case  and  � 1 are both non-limit ordinals and �( � 1) = r : Let X be a

scattered countable metric space of type (; 1) with a rankwise uniform type � satisfying

�(�1) = r and (*). Since �(�1) = r, one and only one of the following two cases occurs

:

X(�1) [X(�2) � r or r'

Let us denote, for the time being, by R the X in which the former happens and by R0 the X

in which the latter happens. To show the uniqueness of R let X; Y be scattered countable

metric spaces of type (; 1) with the rankwise uniform type � satisfying

X(�1) [X(�2) � r � Y(�1) [ Y(�2):

Let a; b be the points of X; Y respectively having the highest rank  � 1 and let

X = U1 � U2 � U3 � � � � and Y = V1 � V2 � V3 � � � �

be clopen neighborhood bases of a; b respectively satisfying

j(Um � Um+1) \X(�2)j = j(Vm � Vm+1) \ Y(�2)j = 1

for every m. Note that

type (Um � Um+1) = type (Vm � Vm+1) = ( � 1; 1)

and �( � 2) = s by condition (*). This implies that these sets are outside the exceptional

case (1) so that Um � Um+1 � Vm � Vm+1 by the induction hypothesis. Now in a simlar

way to that in the preceding case, we can de�ne a homeomorphism h : X �! Y . The

uniqueness of R has been thus assured.

To show the uniqueness of R0, decompose R0 as R0 � R � J so that

typeR = (; 1); R(�1) [R(�2) � r and type J = ( � 1; !):

Then R is unique as proved above and J is unique by the induction hypothesis. Thus R0 is

unique as desired.

As for X of type (; n); 1 � n < !; write X = �
n
i=1Xi with Xi of type (; 1). Then, as

proved above, each Xi is homeomorhic to R or R� J . If Xi � R for every i then X � nR.

If Xi � R�J for some i, note that the topological sum of �nitely (or countably) many J 's

is homeomorphic to J because of its uniqueness. Thus X � nR � J . Consequently X has

precisely two topological types because nR can not absorb J .

To show the uniquness of X of type (; !), write X = �
1

i=1Xi with Xi � R or R�J so

that X � !R or !R� J . To hide J into !R, write J = �
1

i=1 Ji with Ji of type ( � 1; 1).
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Since type(R � Ji) = (; 1) and (R � Ji)(�1) [ (R � Ji)(�2) � r it follows from the

uniqueness of R that R � Ji � R which yields

!R� J �

!z }| {
(R � J1) � (R� J2)� (R � J3)� � � � � !R

as desired. This completes the proof.

In case  is a limit ordinal : Let X; Y be scattered countable metric spaces of length

 with a common rankwise uniform type � satisfying (*) . Write for each � < 

X �X(�) = [
1

m=1 U
�
m; Y � Y (�) = [

1

m=1 V
�
m

by clopen sets U�
m ; m = 1; 2; 3; : : : , of X and V �

m ; m = 1; 2; 3; : : : ; of Y . Rewrite

fU�
m j� <  ; m = 1; 2; 3; : : : g = fU1; U2; U3; : : : g;

fV �
m j� <  ; m = 1; 2; 3; : : : g = fV1; V2; V3; : : : g:

Then [1m=1 Um = X, [1m=1 Vm = Y and leng(Um) <  and leng(Vm) <  for every m.

Put � = f� 2 (0; ) j�(�) = sg. Note that � is co�nal in the interval (0; ) by the

condition (*). We can thus take a function � : f1; 2; 3; : : : g �! � satisfying

�(m) > maxfleng(Um); leng(Vm)g and �(m+ 1) > �(m) for every m:

For each � 2 �, �x x� 2 X(�); y� 2 Y(�), a clopen set A� of X and a clopen set B� of Y

so that

A� \X
(�) = fx�g and B� \ Y

(�) = fy�g:

Now de�ne

E1 = U1 [A�(1); Em = (Um [A�(m)) � [
m�1
i=1 (Ui [A�(i));

F1 = V1 [B�(1); Fm = (Vm [B�(m)) � [
m�1
i=1 (Vi [B�(i));

for each m = 2; 3; 4; : : : . Then fE1; E2; E3; : : : g and fF1; F2; F3; : : : g are disjoint clopen

covers of X and Y respectively. Note that leng(Em) = leng(Fm) = �(m) + 1 <  and that

x�(m) is the only point having the highest rank �(m) in the space Em and so is y�(m) in Fm.

Thus we have type Em = type Fm = (�(m) + 1; 1). Since �(�(m)) = s, Em and Fm are

outside the exceptional case. The induction hypothesis is now applied to obtain Em � Fm
for every m, which yields X � Y . This completes the proof.

In case  is a non-limit ordinal,  � 1 is a limit ordinal and �( � 1) = r Let

X be a scattered countable metric space of type (; 1) with a rankwise uniform type �

satisfying �( � 1) = r and (*). Let a be the point of X having the highest rank  � 1.

Since  � 1 is a limit ordinal and �( � 1) = r, one and only one of the following two cases

occurs :

(r) a has a clopen neighborhood base X = U1 � U2 � U3 � � � � satisfying

leng(Um � Um+1) <  � 1 for every m or

(r') a has a clopen neighborhood base X = U1 � U2 � U3 � � � � satisfying

leng(U1 � U2) =  � 1 and leng(Um � Um+1) <  � 1 for every m � 2:

Let us denote, for the time being, by R the X in which the former happens and by R0 the X

in which the latter happens. To show the uniqueness of R let X; Y be scattered countable
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metric spaces of type (; 1) with the rankwise uniform type � and with a; b the points of

X; Y respectively having the highest rank  � 1, and let

X = U1 � U2 � U3 � � � � and Y = V1 � V2 � V3 � � � �

be clopen neighborhood bases of a; b respectively satisfying

leng(Um � Um+1) <  � 1 and leng(Vm � Vm+1) <  � 1

for every m.

Hereafter the proof goes a way somewhat similar to that in the preceding case. Put

� = f� 2 (0;  � 1) j�(�) = sg and take a function � : f1; 2; 3; : : : g �! � satisfying

�(m) > maxfleng(Um �Um+1); leng(Vm � Vm+1)g and �(m+ 1) > �(m) for every m:

For each � 2 �, �x x� 2 X(�); y� 2 Y(�), a clopen set A� of X and a clopen set B� of Y

so that

A� \X
(�) = fx�g and B� \ Y

(�) = fy�g:

Putting U 0m = Um � Um+1 and V 0

m = Vm � Vm+1, de�ne

E1 = U 01 [ A�(1) ; Em = (U 0m [A�(m)) �[
m�1
i=1 (U 0i [A�(i));

F1 = V 0

1 [B�(1); Fm = (V 0

m [B�(m)) � [
m�1
i=1 (V 0

i [B�(i));

for eachm = 2; 3; 4; : : : . Then fE1; E2; E3; : : : g and fF1; F2; F3; : : : g are disjoint families

of clopen sets of X; Y respectively, and

fX � [
m
i=1Ei jm = 1; 2; 3; : : : g and fY � [

m
i=1Fi jm = 1; 2; 3; : : : g

are clopen neighborhood bases of a; b respectively. Since type Em = type Fm = (�(m)+1; 1)

and �(�(m)) = s it follows from the induction hypothesis that Em � Fm for everym. Taking

a homeomorphism hm : Em �! Fm we can de�ne a homeomorphism h : X �! Y by

h(x) =

�
hm(x) if x 2 Em
b if x = a:

Thus X � Y . The uniqueness of R has been veri�ed.

To show the uniqueness of R0 recall that, in (r') above, leng(U1�U2) = �1 and �1 is

a limit ordinal. Thus U1�U2 has the unique topological type by the induction hypothesis.

Denoting this type of space by J , we have R0 � R� J which assures the uniqueness of R0.

As for X of type (; n); 1 � n < !; write X = �
n
i=1Xi with Xi of type (; 1). Then, as

proved above, each Xi is homeomorhic to R or R� J . If Xi � R for every i then X � nR.

If Xi � R�J for some i, note that the topological sum of �nitely (or countably) many J 's

is homeomorphic to J because of its uniqueness. We thus have X � nR� J . Consequently

X has precisely two topological types because nR can not absorb J .

To show the uniquness of X of type (; !), write X = �
1

i=1Xi with Xi � R or R� J

so that X � !R or !R� J . To vanish J , write J = �
1

i=1 Ji with leng(Ji) <  � 1 (; as in

the top of the preceding case with  replaced by  � 1, write J = [
1

m=1Um by clopen sets

Um with leng (Um) < � 1 and put J1 = U1 and Ji = Ui �[
i�1
m=1Um for i � 2 ). Since type

(R � Ji) = (; 1) and the case (r) happens in R � Ji it follows from the uniqueness of R

that R � Ji � R so that

!R � J �

!z }| {
(R � J1)� (R � J2) � (R� J3)� � � � � !R
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as desired.

In case  is a non-limit ordinal,  � 1 is a limit ordinal and �( � 1) = s :

This is the easiest case. Let X be a scattered countable metric space of type (; 1) with

a rankwise uniform type � satisfying �( � 1) = s and (*). Let fag = X(�1) and take a

clopen neighborhood baseX = U1 � U2 � U3 � � � � of a satisfying leng(Um�Um+1) = �1

for every m. Then by the induction hypothesis, each Um�Um+1 has the unique topological

type so that X does.

As for the type (; m); 2 � m � !; we have only to decompose X as X � ��2�X�,

where j�j = m and each X� is of type (; 1). The uniqueness of X� implies the uniqueness

of X, which completes the proof.

Existence. Let � be an ordinal with 2 � � < !1 and let � : (0; �) �! fr; sg be a function

(which does not necessarily satisfy the condition (*)). A scattered countable metric space

of length � with the rankwise uniform type � is given in the following way.

Let � denote the �rst limit ordinal not smaller than � and let ' : [ 0; �) �! [ 0; �) be

a function satisfying

(1) '(0) = 0;

(2) if � is a non-limit ordinal, then

'(�) =

�
'(� � 1) + 1 if �(�) = r

'(� � 1) + 2 if �(�) = s;

(3) if � is a limit ordinal, then

'(�) =

�
� if �(�) = r

� + 1 if �(�) = s:

It is easily proved that such a function ' exists and is unique. Putting K =MS(�+1; 1),

de�ne

X = [�2[ 0; �)K('(�))

with the topology induced from K. Then X has the rankwise uniform type �, lengX = �,

and typeX = (�; !) if � is a non-limit ordinal.

To obtain X 0 of type (�; m) with � a non-limit ordinal and 1 � m < !, take m many

points x1; x2; : : : ; xm in K('(��1)) and take a clopen set U of K so that

U \K('(��1)) = fx1; x2; : : : ; xmg:

Put X 0 = U \X.

As for our exceptional case, the spaces R in the proof of Theorem 2 can be obtained in

this way. If one requires the spaces R� J , de�ne

X 00 = X 0

� ([�2[ 0; ��1)K('(�))):

We have thus �nished the proof of Theorem 2.

Remark. Mazurkiewicz and Sierpi�nski constructed in [2] 2@0 many distinct scattered

countable metric spaces of length ! by using the notion of `lacune'. However the spaces

constructed there do not have rankwise uniform types in our terminology.
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