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ON FIBERING CERTAIN 3-MANIFOLDS OVER THE CIRCLE
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Abstract. The �bration of a certain 3-dimensionalmanifold over the circle is studied to

generalize celebrated Tollefson's theorem. It is proved that if the 3-dimensional manifold

admits the proper k-cyclic action, then it can be �bered over the circle. In addition, the

�bration of the orbit space over the circle is obtained.

1 Introduction. In this paper, we study the �bration of certain 3-dimensional manifolds

over the circle S1. In [2], J. L. Tollefson proved that if the 3-manifoldM3 admits the proper

Zk-action for some prime number k and H1(M
3=Zk;Z) is k-torsion free, then M3 can be

�bered over the circle S1. The main goal of the present work is to relax the conditions on

M3 and k in Tollefson's theorem mentioned above. In addition we obtain the �bering the

orbit space M3=Zk over S
1.

The contents of the present paper are as follows. In x2, we describe preliminary materials,

and state Theorem 1 which is the one of our main results concerned with a simple criteria for

the in�nite cyclic covering of given CW-complex to be dominated by a �nite CW-complex.

In x3, we prove several lemmas which are necessary to prove Theorem 1. x4 is devoted

to the proof of Theorem 1. In x5, applying Theorem 1, we clarify the condition for the

existence of the �bering map M3 ! S1. In x6, applying the result in x5, we consider the

�bration of the orbit 3-manifold M3=Zk.

2 Preliminaries and results. Let X be the topological space. Suppose that g : X ! S1

is the continuous map, and Pk : S1 ! S1 is the standard k-fold covering map de�ned by

Pk(t) = tk, where S1 is the circle. Wk denotes the k-fold covering of X induced by the map

g, that is,

Wk = f(x; t) 2 X � S1 j g(x) = Pk(t)g(1)

Then we have the commutative diagram

Wk
�2

����! S1

�1

??y ??yPk
X ����!

g
S1;

(2)

where �1(x; t) = x and �2(x; t) = t. We say that Wk admits the proper free Zk-action if a

generator of the covering Zk-action on Wk is homotopic to the identity IdWk
.
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Similarly to the above, we have the in�nite cyclic covering X of X induced via g by the

commutative diagram

X ����! R??y ??yex
X ����!

g
S1;

where ex;R! S1 is the universal covering map de�ned by ex(s) = exp(2�is).

We say that Y is dominated by Z if there exists a continuous maps � : Y ! Z and

 : Z ! Y such that  Æ � : Y ! Y is homotopic to the identity IdY .

Now we can state the �rst main result of the present paper.

Theorem 1. Let X be an arcwise connected �nite CW-complex and g : X ! S1 be a

continuous map such that g� : �1(X) ! �1(S
1) is an epimorphism. If Wk admits a proper

free Zk-action for some integer k � 2, then X is dominated by a �nite CW-complex.

3 Lemmas. In this section we prove �ve lemmas which are necessary to show Theorem1.

Firstly we de�ne the following two spaces;

X[m;n] = f(x; s) 2 X � [m;n] j g(x) = exp(2�is)g;

X[m;n]� = X[m;n]=(x;m) � (x; n);

that is, X[m;n]� is the space in which (x;m) is identi�ed with (x; n) for every x 2 X, where

m;n 2Zand m < n. Then we have the following.

Lemma 1. X[0; k]� is homeomorphic to Wk de�ned by (1);

X[0; k]� 'Wk:

Proof. Let us consider the maps

�1 :Wk �! X[0; k]�

and

 1 : X[0; k]� �!Wk

de�ned by

�1(x; t) = (x; ks)

for t = exp(2�is) 2 S1; (0 � s < 1), and

 1(x; s) = (x; exp

�
2�is

k

�
); (0 � s < k):

It is easy to see that the maps �1 and  1 are well de�ned and continuous. Moreover we

have

 1 Æ �1(x; t) =  1(x; ks) = (x; exp(2�is)) = (x; t);

where t = exp(2�is) 2 S1; (0 � s < 1), and

�1 Æ  1(x; s) = �1(x; exp

�
2�is

k

�
) = (x; s)

for 0 � s < 1. Hence �1 is the homeomorphism.

Let h be a generator of the proper free Zk-action onWk, that is, h is homotopic to IdWk
.

Let

H :Wk � I �!Wk

be a homotopy from IdWk
to h, where I = [0; 1].
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Put

H(x; t; j) = (h
(1)

j (x; t); h
(2)

j (x; t)); (x; t) 2Wk; j 2 I;

then we have

h
(1)

0 (x; t) = x; h
(2)

0 (x; t) = t; h
(1)

1 (x; t) = x; fh
(2)

1 (x; t)gk = tk:(3)

Let us consider

F = Pk Æ �2 ÆH :Wk � I �! S1;

where Pk is the standard k-fold covering map of S1 and �1(x; t) = x, �2(x; t) = t.

Wk � I
�

�
�

�
�

�
��9

�

�

�

�

�

��

H

F
Wk

�2
����! S1

�1

??y ??yPk
X ����!

g
S1

We have

F (x; t; j) = Pk Æ �2 ÆH(x; t; j) = Pk Æ �2(h
(1)

j (x; t); h
(2)

j (x; t))

= Pk(h
(2)

j (x; t)) = h
(2)

j (x; t)k = g(h
(1)

j (x; t)):
(4)

From (3) and (4), we have

F (x; t; 0) = (h
(2)

0 (x; t))k = tk

F (x; t; 1) = (h
(2)

1 (x; t))k = tk:

Hence, if we �x (x; t) 2Wk,

F (x; t; �) : I=f0; 1g ' S1 �! S1

de�nes the map from S1 to S1. On the one hand, note thatWk is connected. Thus F (x; t; j)

takes on only one non-zero degree c to every (x; t) 2Wk. Next we have

Lemma 2. De�ne ~h : X ! X by

~h(x; ks + km) = (x; ks + km+ c);

where 0 � s < 1; m 2 Z, c is the degree of F (x; t; j) mentioned above, and k is given in

Theorem 1. Then the identity map IdX is homotopic to ~h.

Proof. Let us consider the map

� : X 3 (x; ks + km) 7�! (x; ks) 2 X[0; k]� (0 � s < 1; m 2Z):

By the de�nition of the space X[0; k]�, it is easy to see that the map � is well de�ned and

continuous. Next we show that there exists a map eF such that the following diagram is

commutative.
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R

A

A

A

AU

�
�
�
�
�
�
�
�
�
�
�
�
�
��:~F

X � I
�� Id
����! X [0; k]� � I

�
�1

1
� Id

�����! Wk � I
F

����! S1

We have immediately

F Æ (��11 � Id) Æ (�� Id)(x; ks + km; j)

= F Æ (��11 � Id)(x; ks; j) = F (x; exp(2�is); j) = (h
(2)

j (x; exp(2�is))k :

In particular, for j = 0, we have

F Æ (��11 � Id) Æ (� � Id)(x; ks + km; 0)

= (h
(2)

0 (x; exp(2�is))k = (exp(2�is))k = exp(2�iks) = exp(2�i(ks + km)):

Let us de�ne the map eF0 : X � f0g ! R by

eF0(x; ks + km; 0) = ks+ km; 0 � s < 1; m 2Z;

then eF0 is the lifting of F Æ (��11 � Id) Æ (�� Id) jX�f0g. Hence, by the covering homotopy

property, there exists a continuous map eF : X � I ! R which is the extension of eF0 such

that the above diagram is commutative. We have immediately

exp(2�i( eF (x; ks + km; j)) = h
(2)

j (x; exp(2�is)k ;eF (x; ks + km; 0) = ks+ km;eF (x; ks + km; 1) = ks+ km+ c:

Let us de�ne the map eH : X � I ! X by

eH(x; ks+ km; j) = (h
(1)

j (x; exp(2�is)); eF (x; ks + km; j)):

Then the map eH turns out to be the homotopy from the identity IdX to ~h by the following

three facts (i), (ii) and (iii):

(i) eH is well de�ned, since

(h
(1)

j (x; exp(2�is)); eF (x; ks + km; j)) 2 X

holds by

g(h
(1)

j (x; exp(2�is)) = h
(2)

j (x; exp(2�is))k = exp(2�i eF (x; ks+ km; j)):

(ii) eH(x; ks + km; 0) = ((h
(1)

0 (x; exp(2�is)); eF (x; ks + km; 0)) = (x; ks+ km):

(iii) eH(x; ks + km; 1) = ((h
(1)

1 (x; exp(2�is)); eF (x; ks + km; 1)) = (x; ks + km+ c):

This completes the proof.

Remark. If c < 0, we de�ne ~h0 : X ! X by ~h0(x; s) = (x; s � c). Then it follows that

IdX is homotopic to ~h0. Hence, in what follows, we assume that the degree c ia a positive

integer.
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For the degree c, we consider the two spaces Wc and W c, where W c is the in�nite cyclic

covering of Wc induced by the following g;

Wc
g

����! S1??y ??yPc
X ����!

g
S1:

Next we have the following.

Lemma 3. X is homeomorphic to W c.

Proof. Let us consider the following commutative diagram;

W c ����! R??y ??yex
Wc

g
����! S1??y ??yPc

X ����!
g

S1:

We have

W c = f(x; t; s) 2Wc � j g(x; t) = exp(2�is)g

= f(x; t; s) 2 X � S1 �R j g(x) = tc; t = exp(2�is)g:

Hence W c is homeomorphic to the space

f(x; s) 2 X �R j g(x) = exp(2�ics)g:

On the other hand, we have

X = f(x; s) 2 X �R j g(x) = exp(2�is)g

Let us de�ne the maps �2 and  2 by �2(x; s) = (x; s=c) and  2(x; s) = (x; cs) respectively.

It is easily seen that the maps �2 and  2 are well-de�ned and continuous. Moreover, it

follows that  2 Æ �2(x; s) = (x; s) and �2 Æ  2(x; s) = (x; s). Hence �2 : X ! W c is the

homeomorphism.

Next we have the following.

Lemma 4. The map � :W c !W c de�ned by � (x; s) = (x; s + 1) is homotopic to IdW c
.

Proof. Let us de�ne the map eL by the commutative diagram

X � I
eH

����! X

�2�Id
??y ??y�2

W c � I ����!
eL

W c:

We have eL(x; s; 0) = �2 Æ eH Æ (�2 � Id)�1(x; s; 0)

= �2 Æ eH(x; cs; 0)

= �2(x; cs) = (x; s);
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and eL(x; s; 1) = �2 Æ eH Æ (�2 � Id)�1(x; s; 1)

= �2 Æ eH(x; cs; 1)

= �2(x; cs + c) = (x; s + 1):

Hence the map eL is the homotopy from IdW c
to � .

Next we have the following.

Lemma 5. W c is dominated by W c�
Z

R.

Proof. Put

W c�
Z

R=W c �R=(x; s; t) � (x; s +m; t�m); m 2Z:

Now let us de�ne the map � : W c ! W c�
Z

R by �(x; s) = [x; s; 0] 2 W c�
Z

R: Then � is

well-de�ned continuous map. In addition, let us de�ne the map  0 :W c �R!W c by

 0(x; s; t) = eL(x; s +m; r)

if t = m + r for 0 � r < 1 and m 2 Z. Then  0 is well-de�ned. If  0 is continuous at

(x; s; 0) 2 W c � R, then  0 turns out to be continuous at every point (x; s; t) 2 W c � R
by the de�nition of  0. Therefore it suÆces to show that  0 is continuous at (x; s; 0). Now

suppose that (x�; s�; "�) tends to (x; s; 0) in W c �R. We have

 0(x�; s�; "�) = eL(x�; s�; "�)
�! eL(x; s; 0) = (x; s)

as "� # 0. On the other hand, we have

 0(x�; s�; "�) = eL(x�; s�; "�)
= eL(x�; s� � 1; "� + 1)

= eL(x; s � 1; 1) = (x; s)

as "� " 0. Since

 0(x; s; 0) = eL(x; s; 0) = (x; s);

it is shown that  0 is continuous at (x; s; 0). Hence the map  0 is continuous. Since

 0(x; s; t) =  0(x; s +m; s�m) m 2Z

by the de�nition,  0 can be extended to the continuous map  :W c�
Z

R!W c. Since

 Æ �(x; s) =  (x; s; 0) = eL(x; s; 0) = (x; s);

 Æ � is the identity map of W c. This completes the proof.

4 Proof of Theorem 1. By using the above �ve lemmas, we can prove Theorem 1

immediately.

In fact, �rst of all, we have

X 'W c

by lemma 3. Next let us regard the in�nite covering W c as the principal Z-bundle. Then

there exists the associated principal R-bundle

R ����! W c�
Z

R ����! Wc:

On the other hand, by lemma 5,W c turns out to be dominated by W c�Z R. Since R is 1-

connected and Wc is the CW-complex, the associated principal R-bundle is trivial. Hence
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W c �Z R is homotopy equivalent to Wc. Hence X is dominated by the �nite CW-complex

Wc. This completes the proof of Theorem 1.

5 Fibering 3-manifold. In this section, we clarify the condition for the existence of the

�bering map M3 ! S1 for the 3-manifold M3.

Let us de�ne two classes C0 and C1 as follows. (X; g) 2 C0 if and only if X is the

arcwise connected �nite CW-complex and g : X ! S1 is the continuous map such that

g� : �1(X) ! �1(S
1) is the epimorphism. On the one hand, (X; g) 2 C1 if and only if

(X; g) 2 C0 and there exists an integer k � 2 such that a generator of coveringZk-action h

is homotopic to the identity map of Wk, where Wk is the k-fold covering over X which is

induced from the standard k-fold covering over S1 via g.

Here we briey mention the celebrated theorem due to Stallings concerned with the �bra-

tion of 3-manifold; Suppose that the topological 3-manifoldM3 is compact and irreducible.

If there exists the exact sequence

0 ����! G ����! �1(M
3) ����!

�
�1(S

1) ����! 0

such that G is �nitely generated and G 6= Z=2Z. Then there exists the �bering map

g :M3 ! S1 such that g� = �, and the �ber T is the connected 2-manifold with �1(T ) �= G.

Then we have the following

Theorem 2. Let the topological 3-manifold M3 be connected,compact and irreducible. Sup-

pose that there exists g : M3 ! S1 such that (M3; g) 2 C1. Moreover assume that

H1(M
3;Z) has no element of order 2. Then there exists the �bering map M3 ! S1 which

is homotopic to g.

Proof. By the commutative diagram

Z ����! Z??y ??y
M3 ����! R??y ??yex
M3 ����!

g
S1;

where M3 is the in�nite cyclic covering of M3 induced via g, we obtain the exact sequences

0 �! �1(R) �! �1(S
1) �! Z �! 0

" " g� k

0 �! �1(M3) �! �1(M
3) �! Z �! 0;

where g� is the epimorphism. Then we have the exact sequence

0 ����! �1(M3) ����! �1(M
3) ����!

g
�

�1(S
1) ����! 0:

Here �1(M3) corresponds to the group G in the �bering theorem due to Stallings men-

tioned above. Hence it suÆces for the proof to show that �1(M3) is �nitely generated and

�1(M3) 6=Z=2Z. By triangulating M3 as a �nite complex, M3 turns out to be dominated

by the �nite CW-complex from Theorem 1. By [3], �1(M3) is �nitely generated. On the

other hand, since H1(M
3;Z) is assumed to have no elements of order 2, we can coclude that

�1(M
3) has no elements of order 2 from Hurewicz homomorphism. Since �1(M3)! �1(M

3)

is the monomorphism, �1(M3) has also no elements of order 2. Thus we have shown that
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�1(M3) satis�es the condition of the �bering theorem due to Stallings. This completes the

proof.

6 Fibering the orbit 3-manifold. In this section, applying Theorem 2, we consider the

�bration of the orbit 3-manifold M=Zk. We have the following.

Theorem 3. Let the topological 3-manifold M3 be connected, compact and irreducible. Sup-

pose that there exists the free Zk-action (k � 2) on M3 such that there exists a generator h

of the Zk-action which is homotopic to IdM3. If H1(M
3=Zk;Z) has no elements of order 2

and order k, then both M3=Zk and M3 can be �bered over the circle.

For the proof of Theorem 3, it is necessary to show the following algebraic fact.

Lemma 6. Let F be the �nitely generated free module and p : F !Zk be the epimorphism.

Then there exists v 2 F such that p(v) 2Zk is the generator of Zk and there exists the basis

B of F such that v 2 B and B n fvg � p�1(0).

Note that if we �x the isomorphism F �=Zl, lemma 6 is equivalent to the following lemma

7 which is almost obvious.

Lemma 7. Let fe1;e2; � � � ;elg be the standard basis of Zl. If the greatest common measure

of integers m1;m2; � � � ;ml is 1, then there exists the basis of Zl which contains
Pl

j=1mjej .

Now we can prove Theorem 3.

Proof. Since M3 is compact and irreducible, M3=Zk is also compact and irreducible. Let

us consider the following diagram.

Zk ����! Zk??y ??y
M3 ����! E??y ??y

M3=Zk ����!
f

K(Zk; 1);

where Zk ! E ! K(Zk; 1) is the universal Zk-bundle. Hence there exists the bundle map

f :M3=Zk ! K(Zk; 1). Then we obtain the exact sequences

0

k

0 �! �1(E) �! Zk �! Zk �! 0

" " f� k
0 �! �1(M

3) �! �1(M
3=Zk) �! Zk �! 0:

By this diagram, it turns out that f� : �1(M
3=Zk) ! Zk is the epimorphism. Since Zk is

the abelian group, f� can be factored as f� = � � �, where � and � are de�ned by

�1(M
3=Zk)

f
�

����! Zk

�

??y x??�
H1(M

3=Zk;Z) ����!
Id

H1(M
3=Zk;Z);
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where � is Hurewicz homomorphism. Note that � and � are the epimorphisms, and

H1(M
3=Zk;Z) is k-torsion free. By lemma 6 and lemma 7, we obtain the following di-

agram from the above one.

�1(M
3=Zk)

f
�

����! Zk??y x??mod k-reduction

F �= �lZ ��������!
Projection

Z:

Hence we have the following diagram.

�1(M
3=Zk) ����!

f
�

Zk??y x??
Z ����!

Id
Z:

Since S1 and K(Zk; 1) are Eilenberg-Maclane spaces, there exist the bundle maps

M3 ����! S1 ����! E

p

??y Pk

??y ??y
M3=Zk ����!

g
S1 ����! K(Zk; 1);

where Pk is the standard k-fold covering and p is induced from Pk. Hence (M3=Zk;Z)

belongs to the class C1 and H1(M
3=Zk;Z) has no elements of order 2 by the assumption.

Therefore, by Theorem 2, there exists the �bering map which is homotopic to g. This

completes the proof.
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