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Abstract. The notion of a KS-�lter of a KS-algebra is introduced, and some related

properties are investigated. Conditions for a stable subset to be a KS-�lter. KS-�lters

containing a stable subset are established.

1. Introduction.

In 1993, Jun et al. [1] introduced a new class of algebras related to BCI=BCK-algebras

and semigroups, called a BCI=BCK-semigroup. In 1998, for the convenience of study,

Jun et al. renamed the BCI=BCK-semigroup as the IS/KS-algebra, and studied related

properties (see [2]). In this paper, we introduce the notion of KS-�lters in KS-algebras, and

investigates some of its properties. We give conditions for a stable subset to be a KS-�lter.

Given a stable subset F of a KS-algebra X, we establish KS-�lters containing F .

2. Preliminaries

We review some de�nitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X; �; 0) of type (2,0) satisfying the following

conditions:

� ((x � y) � (x � z)) � (z � y) = 0,

� (x � (x � y)) � y = 0,

� x � x = 0,

� x � y = 0 and y � x = 0 imply x = y

for all x; y; z 2 X. A BCI-algebra X satisfying 0 � x for all x 2 X is called a BCK-algebra.

In any BCK/BCI-algebra X one can de�ne a partial order \�" by putting x � y if and

only if x � y = 0.

De�nition 2.1. (Jun et al. [2]) A KS-algebra is a non-empty set X with two binary

operations \�" and \�" and constant 0 satisfying the axioms

� K(X) := (X; �; 0) is a BCK-algebra.

� S(X) := (X; �) is a semigroup.

� the operation \�" is distributive (on both sides) over the operation \�", that is, x � (y �

z) = (x � y) � (x � z) and (x � y) � z = (x � z) � (y � z) for all x; y; z 2 X.

Especially, if K(X) := (X; �; 0) is a BCI-algebra in De�nition 2.1, we say that X is an

IS-algebra. Note that every KS-algebra is an IS-algebra. We shall write the multiplication

x � y by xy, for convenience.

Proposition 2.2. (Jun et al. [1]) Let X be an IS-algebra. Then we have

(i) 0x = x0 = 0:

(ii) 8x; y 2 X; x � y ) xz � yz; zx � zy 8z 2 X:
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3. KS-filters

De�nition 3.1. A KS-algebra X is said to be bounded if there exists a special element

e 2 X such that x � e for all x 2 X. In this case, we call e the bound of X. A KS-algebra

X is said to be star-commutative (resp. dot-commutative) if x � (x � y) = y � (y � x) (resp.

xy = yx) for all x; y 2 X.

In what follows let X denote a bounded KS-algebra unless otherwise speci�ed, and we

will use the notation e(x) instead of e � x for all x 2 X and the bound e of X.

De�nition 3.2. A subset F of X is called a left (resp. right) KS-�lter of X if it satis�es:

(F1) F is a left (resp. right) stable subset of S(X),

(F2) F contains the bound e of X,

(F3) e(e(x) � e(y)) 2 F and y 2 F imply x 2 F .

In the sequel, a KS-�lter means a left KS-�lter, and a stable subset means a left stable

subset.

Proposition 3.3. Let F be a KS-�lter of X and let x 2 X. If there exists y 2 F such

that e(x) � e(y), then x 2 F .

Proof. The inequality e(x) � e(y) implies that

e(e(x) � e(y)) = e(0) = e � 0 = e 2 F;

and so x 2 F by (F3). This completes the proof.

Corollary 3.4. Let F be a KS-�lter of X and let x; y 2 X be such that y � x. If y 2 F ,

then x 2 F:

Proof. Let x; y 2 X be such that y � x. Then e(x) � e(y). It follows from Proposition 3.3

that x 2 F:

Proposition 3.5. Let X be star-commutative and let F be a KS-�lter of X. Then

8x; y 2 X; x; y 2 F ) glbfx; yg 2 F:

Proof. Note that glbfx; yg = x ^ y for all x; y 2 X, where x ^ y = y � (y � x): Let x; y 2 F .

Since

x = e(e(x)) � e(y � x) = e(y � (y � (y � x)))

= e(y � (x ^ y)) = e(e(x ^ y) � e(y));

it follows from Corollary 3.4 that e(e(x ^ y) � e(y)) 2 F so from (F3) that x ^ y 2 F: This

completes the proof.

Theorem 3.6. Let X be star-commutative and let F be a nonempty subset of X. Then F

is a KS-�lter of X if and only if it satis�es (F1), (F2) and

(F4) 8x; y 2 X; y 2 F; e(y � x) 2 F ) x 2 F:

Proof. The proof is straightarrow because e(e(x) � e(y)) = e(e(e(y)) � x) = e(y � x) for all

x; y 2 X:

We give conditions for a stable subset of S(X) to be a KS-�lter of X.

Theorem 3.7. Let X be star-commutative that satis�es the equality x � y = (x � y) � y for

all x; y 2 X. Let F be a stable subset of S(X) such that

(i) 8x; y 2 X; x 2 F; x � y ) y 2 F:

(ii) 8x; y 2 X; x; y 2 F ) glbfx; yg 2 F:

Then F is a KS-�lter of X.
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Proof. Since x � e for all x 2 X and hence x 2 F , it follows from (i) that F contains the

bound e of X. Let x; y 2 X be such that e(e(x) � e(y)) 2 F and y 2 F . Note that

x � y = (x � y) � y , y ^ x = x � e(y)

for all x; y 2 X. Thus

x ^ y = y � (y � x) = e(y � x) � e(y)

= e(y � x) ^ y = e(e(x) � e(y)) ^ y 2 F

by (ii). Since x ^ y � x; it follows from (i) that x 2 F . Hence F is a KS-�lter of X.

Lemma 3.8. For any r1; � � � ; rn; x; y; z 2 X; we have

rn(rn�1(� � � (r1x) � � � )) � rn(rn�1(� � � (r1y) � � � ))

) rn(rn�1(� � � (r1(x � z)) � � � )) � rn(rn�1(� � � (r1(y � z)) � � � )):

Proof. It is straightforward by the mathematical induction.

Theorem 3.9. Let X be dot-commutative such that e(kx) = ke(x) for all k; x 2 X and let

F be a stable subset of X. Then the set


1 := fx 2 X j bn(bn�1(� � � (b1((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � )) = 0

for some a1; a2; � � � ; an 2 F and b1; b2; � � � ; bn 2 X n f0gg

is a KS-�lter of X containing F .

Proof. Obviously, 
1 contains the bound e of X. Let k 2 X and x 2 
1. Then there exist

a1; a2; � � � ; an 2 F and r1; r2; � � � ; rn 2 X n f0g such that

rn(rn�1(� � � (r1((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � )) = 0:

Since F is stable, we have ka1; ka2; � � � ; kan 2 F . It follows that

rn(rn�1(� � � (r1((� � � ((e(kx) � e(ka1)) � e(ka2)) � � � � ) � e(kan))) � � � ))

= rn(rn�1(� � � (r1(k((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an)))) � � � ))

= k(rn(� � � (r1((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � ))

= k0 = 0:

Hence kx 2 
1, and so 
1 is stable. Assume that e(e(x) � e(y)) 2 
1 and y 2 
1. Then

there exist a1; � � � ; an; b1; � � � ; bm 2 F and r1; � � � ; rn; s1; � � � ; sm 2 X n f0g, where n � m;

such that

rn(rn�1(� � � (r1((� � � ((e(e(e(x) � e(y))) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � )) = 0;(1)

sm(sm�1(� � � (s1((� � � ((e(y) � e(b1)) � e(b2)) � � � � ) � e(bm))) � � � )) = 0:(2)

Note that (1) is equivalent to the following:

rn(rn�1(� � � (r1((� � � ((e(x) � e(y)) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � )) = 0;(3)

which implies that

0 = rn(rn�1(� � � (r1(((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) � e(y))) � � � ))

= rn(rn�1(� � � (r1((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � )) �

rn(rn�1(� � � (r1e(y)) � � � ));

that is,

rn(rn�1(� � � (r1((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � � � ))

� rn(rn�1(� � � (r1e(y)) � � � )):
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It follows from Lemma 3.8 that

rn(rn�1(� � � (r1((� � � (((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) �

e(b1)) � � � � ) � e(bm))) � � � ))

� rn(rn�1(� � � (r1((� � � (e(y) � e(b1)) � � � � ) � e(bm))) � � � � ))

so from Proposition 2.2(ii) that

sm(sm�1(� � � (s1(rn(rn�1(� � � (r1((� � � (((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) �

e(an)) � e(b1)) � � � � ) � e(bm))) � � � )))) � � � ))

� sm(sm�1(� � � (s1(rn(rn�1(� � � (r1((� � � (e(y) � e(b1)) � � � � ) � e(bm))) � � � )))) � � � ))

= rn(rn�1(� � � (r1(sm(sm�1(� � � (s1((� � � (e(y) � e(b1)) � � � � ) � e(bm))) � � � )))) � � � ))

= 0:

Hence

sm(sm�1(� � � (s1(rn(rn�1(� � � (r1((� � � (((� � � ((e(x) � e(a1)) � e(a2)) � � � � ) �

e(an)) � e(b1)) � � � � ) � e(bm))) � � � )))) � � � )) = 0;

which shows that x 2 
1. Therefore 
1 is a KS-�lter of X. It is clear that F � 
1. This

completes the proof.

Theorem 3.10. Let X be dot-commutative such that e(kx) = ke(x) for all k; x 2 X and

let F be a stable subset of X. Then the set


2 := fx 2 X j rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) = 0

for some r1; r2; � � � ; rn 2 X n f0g and a1; a2; � � � ; an 2 Fg

is a KS-�lter of X containing F .

Proof. Clearly, 
2 contains the bound e of X. Let x; y 2 X be such that e(e(x)�e(y)) 2 
2

and y 2 
2. Then there exist a1; a2; � � � ; an; b1; b2; � � � ; bm 2 F and r1; r2; � � � ; rn; s1;

s2; � � � ; sm 2 X n f0g; where n � m, such that

rn(� � � (r2(r1(e(e(e(x) � e(y))) � e(a1)) � e(a2)) � � � � ) � e(an)) = 0;(4)

sm(� � � (s2(s1(e(y) � e(b1)) � e(b2)) � � � � ) � e(bm)) = 0:(5)

Note that (4) is equivalent to the following:

rn(� � � (r2(r1((e(x) � e(y)) � e(a1)) � e(a2)) � � � � ) � e(an)) = 0;

which implies that

rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) � rn � � � r2r1e(y) = 0;

that is, rn(� � � (r2(r1(e(x)�e(a1))�e(a2))�� � � )�e(an)) � rn � � � r2r1e(y): Left \�"-multiplying

both sides of the above inequality by s1; we have

s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)))

� s1rn � � � r2r1e(y) = rn � � � r2r1s1e(y):

Right \�"-multiplying both sides of the above inequality by s1rn � � � r1e(b1); we get

s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an))) � s1rn � � � r1e(b1)

� rn � � � r2r1s1e(y) � s1rn � � � r1e(b1)

= rn � � � r2r1s1(e(y) � e(b1));
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and so

s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) � rn � � � r2r1e(b1))

� rn � � � r2r1s1(e(y) � e(b1)):

Left \�"-multiplying both sides of the above inequality by s2; we obtain

s2(s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) � rn � � � r2r1e(b1)))

� s2rn � � � r2r1s1(e(y) � e(b1)):

Right \�"-multiplying both sides of the above inequality by s2rn � � � r1e(b2); we get

s2(s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) �

rn � � � r2r1e(b1)) � rn � � � r1e(b2))

� rn � � � r2r1s2(s1(e(y) � e(b1)) � e(b2)):

Repeating the above argument m-times, we conclude that

sm(� � � (s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) �

rn � � � r1e(b1)) � � � � ) � rn � � � r1e(bm))

� rn � � � r1(sm(� � � (s2(s1(e(y) � e(b1)) � e(b2)) � � � � ) � e(bm))) = 0:

Consequently,

0 = sm(� � � (s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) �

rn � � � r1e(b1)) � � � � ) � rn � � � r1e(bm)

= sm(� � � (s1(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) � e(b1)) � � � � ) � e(bm));

which implies x 2 
2. Let k 2 X and x 2 
2. Then there exist a1; a2; � � � ; an 2 F and

r1; r2; � � � ; rn 2 X n f0g such that

rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)) = 0:

Since F is stable, ka1; ka2; � � � ; kan 2 F . Hence

rn(� � � (r2(r1(e(kx) � e(ka1)) � e(ka2)) � � � � ) � e(kan))

= rn(� � � (r2(r1(ke(x) � ke(a1)) � ke(a2)) � � � � ) � ke(an))

= k(rn(� � � (r2(r1(e(x) � e(a1)) � e(a2)) � � � � ) � e(an)))

= k0 = 0;

and so kx 2 
2, i.e., 
2 is stable. Obviously, F � 
2. Summarizing the above facts we

know that 
2 is a KS-�lter of X containing F . This completes the proof.
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