
Scientiae Mathematicae Japonicae Online, Vol. 8, (2003), 107{123 107

UNBOUNDED RADIALLY SYMMETRIC VISCOSITY SOLUTIONS

OF SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS

Kenji Maruo and Yoshihito Tomita

Received March 19, 2002; revised December 1, 2002

Abstract. We show the existence of radially symmetric unbounded viscosity solutions

of semilinear degenerate elliptic equationsand give the classi�cation of their solutions

according to the asymptotic behavior as jxj ! 1.

0 Introduction We consider the following semilinear degenerate elliptic equation :

(0:1) �g(j x j)�u(x) + u(x) j u(x) jp�1= f(j x j) in RN (N � 2)

where g : [0;1) ! [0;1) is a di�erentiable and nonnegative function and p > 1 is a con-

stant. We are concerned with the existence and structure of continuous viscosity solutions

of (0.1) which may not be bounded. In order to study structure of continuous viscosity

solutions of (0.1), it is important to investigate whether continuous viscosity solutions of

(0.1) are radially symmetry or not.

When f is zero and g > 0 there have been lots of works published in this direction,

see, for example [1,2,3,4,5,6,7]. For more general equations than our equations (0.1), Li and

Ni[5] proved that all bounded positive solutions are radially symmetric and S.D.Taliaferro

[6] showed that all solution satisfying limjxj!1 u(x) = 1 are also radially symmetric.

In [5] and [6], combining the asymptotic behavior of the solutions and the moving plane

technique, they investigated whether solutions are radially symmetric or not. However, as

our equations (0.1) are of degenerate elliptic equations we can not use the moving plane

method.

In recent year, we [8] showed the existence and uniqueness of a continuous viscosity

solution of Dirichlet problem for the degenerate elliptic equation (0.1) in an open ball with

the center at the origin and in [9] studied the existence and uniqueness of solutions of

quasilinear degenerate elliptic equations in the open ball. In [8] and [9] we showed that the

continuous viscosity solution is unique when a classical radial solution of (0.1) is unique

and proved the uniqueness. In this paper we will employ the method used in [8] and [9] to

establish the structure of continuous viscosity solutions of (0.1). Therefore, we will introduce

an ordinary di�erential equation associated with the radial solution of (0.1)

(0:2) �g(t)(
d
2
y

dt
2
(t) +

(N � 1)

t

dy

dt

(t)) + y(t)jy(t)jp�1 = f(t) on (0;1):

In case f is zero and g > 0, the structure of solutions of (0.2) has been studied by many

authors; see, for example [10,11,12,13,14]. For a quasilinear equation including our equation

(0.2), M.Mizukami, M.naito and H.Usami [9] and T.Tanigawa [12] made a deep investigation

the asymptotic behavior of positive solutions as jxj ! 1.
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In this paper, however, we consider the case where the equation is the degenerate type

and f 6= 0: Moreover, we study the continuous viscosity solution which makes assumptions

on neither the state of growth of u as jxj ! 1 nor the positivity of solution.

The main purpose of this paper is to establish the existence and structure of equations

(0.2) completely. Moreover, in corollaries of theorems we will state our assertion in respect

of continuous viscosity solutions.

Our plan of this paper is as follows. In section 1, we state assumptions and theorems.

In section 2, we list some notations and results which will be used throughout this paper.

In section 3, as the rate of the polynomial growth of g(t) at t ! 1 is smaller than 2, we

will show the uniqueness of the solution of (0.2) and state the uniqueness of the viscosity

solution of (0.1). In sections 4 and 5, as fthe rate of the growth of g(t)g > 2, we will give

the classi�cation of solutions of (0.2) associated with the asymptotic behavior at jxj ! 1

and state the properties of viscosity solutions of (0.1) according to the asymptotic behavior

of each viscosity solution of (0.1).

The authors would like to express their gratitude to Professor N.Yamada and the referee

for his kind and helpful advice.

Professor Tomita passed away soon after we began this joint work. The �rst author

would like to pray for the repose of his soul.

1 Assumptions and Theorems In this section we state assumptions and theorems.

We now list hypotheses on f and g :

(H1) f(t) 2 C
1([0;1)) and there exists the limit such that

lim
t!1

f(t)

t


=1 or nonnegative constant

for any  � 0:

(H'2) g 2 C
1([0;1)) and g(t) � 0 for any t 2 [0;1):

Throughout this paper we assume the conditions (H1) and (H'2).

Remark 1. (1) The limit in (H1) need not be nonnegative. But the proof of our asser-

tion becomes more complicated. Therefore, for simplicity, we assume that is nonnegative.

(2) Since the assumption (H'2) satis�es the assumption (H3) in [8], we can apply the

method of the proof of Theorem 2 in [8] to our assertions.

In order to state our theorems we introduce some notations. We denote the set of zero

points of g(t) by Z: Z = ft 2 [0;1)jg(t) = 0g and let '(t) be an implicit function of

y(t)jy(t)jp�1 � f(t) = 0:

In the case of supZ =1; using the similar method as in the proof of Theorem 2 in [8],

we have the following theorem.

Theorem 0 Let supZ =1: Then there exists a unique continuous viscosity solution u of

(0.1) . Moreover, it is the radially symmetric solution satisfying u(x) = '(jxj) for all x

such that g(jxj) = 0 where x 6= 0:

Hence, we have only to study the problem (0.1) under the assumption that supZ <1:

In this way we assume 0 < R = supZ <1:

From Theorem 2 in [8] we obtain that the continuous viscosity solution of the equation

(0.1) in fx 2 R
N ; jxj � Rg satis�es u(x) = '(R) for any x : jxj = R: On the other hand we

shall consider the following Dirichlet problem:
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(1:1)

�
�g(j x j)�u(x) + u(x) j u(x) jp�1= f(j x j) for any x : jxj > R

u(x) = '(R) for any x : jxj = R:

Connecting the continuous viscosity solutions of (1.1) and the continuous viscosity so-

lutions of the equation (0.1) in fx 2 R
N ; jxj � Rg; we can get all continuous viscosity

solutions of (0.1)(See [8]). Then, we have only to investigate the Dirichlet problem of (1.1).

Therefore, the equation (0.2) is replaced by the following equation:

(1:2)

�
�g(t)(�y(t) +

(N�1)

t
_y(t)) + y(t)jy(t)jp�1 = f(t) on (R;1);

y(R) = '(R):

In order to study the structure of solutions of (1.2) more in detail we introduce the following

assumption stronger than (H'2):

(H2) g 2 C
1([R;1)) and g(t) > 0 for any t 2 (R;1): Moreover,

g(t)�1 = d0t
�` +O(t�`�1) as t!1;

where ` and d0 are some positive numbers. For simplicity let d0 = 1:

Theorem 1 Let ` � 2: Under the assumptions (H1) and (H2) there exists a unique classical

solution of (1.2).

Corollary 1 Let the same conditions as in Theorem 1 be assumed. Then, there exists a

unique continuous viscosity solution of (0.1).

We next state our assertions in the case of ` > 2: We put

� =
`� 2

p� 1
:

Theorem 2 Let ` > 2: Assume limt!1

f(t)

t
�p

= 1 . Then our assertions as in Theorem

1 are valid.

Corollary 2 Let the same conditions as in Theorem 2 be assumed. Then, our assertions

as in Corollary 1 are valid.

It remains to consider the case limt!1

f(t)

t
�p

= �
p (0 � � <1).

To obtain the next theorems we assume the following condition of f(t) :

(H3) f(t) = �
p
t
�p +O(t�p�1) as t!1:

We now consider solutions of the following equation:

(1:3) XjXj
p�1

� �
p
� (�2 + (N � 2)�)X = 0:

The real solutions of the equation (1.3) satisfy one of the following three cases.

(C1) It is a positive single solution (!+).

(C2) These solutions are a positive single solution (!+) and nonpositive double solutions

(!0).

(C3) They are a positive single solution (!+) and two nonpositive single solutions (!0
and !�).

Remark 2 The case (C2) implies �2 + (N � 2)� � p j !0 j
p�1= 0 and the case (C3) has

�
2 + (N � 2)� � p j !0 j

p�1
> 0: After this we assume (H2) and (H3).
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Theorem 3 Let the solutions of (1.3) satisfy (C1). Then there is a unique classical solution

of (1.2). Moreover, this solution satis�es lim
t!1

y(t)

t
�

= !+:

Corollary 3 Under the same assumption as in Theorem 3 there exists a unique continuous

viscosity solution of (0.1).

Theorem 4 Let the solutions of (1.3) satisfy (C2) or (C3). Then there exist classical

solutions of (1.2). Moreover, they have the following asymptotic behavior.

(1) Let the solutions of (1.3) satisfy (C2). Then

lim
t!1

y(t)

t
�

= !+ or !0:

(2) Let the solutions of (1.3) satisfy (C3). Then

lim
t!1

y(t)

t
�

= !+ or !0 or !�:

Moreover, the solution satisfying lim
t!1

y(t)

t
�

= !+ or !� is only one respectively and a set

of solutions satisfying lim
t!1

y(t)

t
�

= !0 holds the cardinality of continuum.

Corollary 4 Under the same assumption as in Theorem 4 there exist continuous viscosity

solutions on (0.1) which hold the same asymptotic behavior as in Theorem 4.

2 Preliminaries At �rst, we show the properties of the classical solution y(t) of (1.2).

Lemma 2.1 There exist classical solutions y 2 C([R;Ty)) \ C
2((R;Ty)) of (1.2) where

Ty is the life span of a solution y.

Proof. This lemma is a consequence of Proposition 3.4 in [8].

Lemma 2.2 For the solution y(�) in Lemma 2.1 it holds that limt!Ty y(t) exists. (i.e

limt!Ty y(t) = �1 or Const:)

Proof. Combining the maximum(or minimum) principle and the assumption (H1) we

can prove this lemma.

Lemma 2.3 Let � be any real number and any P > R. Then there exists a unique solution

y�;P (t) of (1.2) satisfying y(P ) = �.

Proof. This lemma is also a consequence of [8].

We denote the life span Ty�;P by T�;P .

Lemma 2.4 Let Æ0 > 0; Æ1 > 0; and let w(t) be a nonnegative continuous function on

C([T1; Tw)) satisfying

w(t) � Æ0 + Æ1

Z t

T1

s
�(N�1)

Z s

T1

r
N�3

w(r)drds:

Then we have

w(t) �
Æ0

(�1 + �2)
(�2(

t

T1

)�1 + �1(
t

T1

)��2)

where �1;��2(�1 > ��2) are solutions of the following quadratic equation: �2+(N �2)��

Æ1 = 0.
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Proof. We consider the following equation:�
t
2�z(t) + t(N � 1) _z(t) � Æ1z(t) = 0;

z(T1) = Æ0; _z(T1) = 0:

Then we have

z(t) =
Æ0

(�1 + �2)
(�2(

t

T1

)�1 + �1(
t

T1

)��2):

Using the comparability theorem we prove this lemma.

Lemma 2.5 We assume the same conditions as in Lemma 2.4. Moreover,

w(t) � Æ0 + Æ1

Z t

P

s
�(N�1)

Z s

P

r
N�3

w(r)pdrds:

If Tw =1 we have

lim
t!1

w(t)

t
q

=1

where q is any positive number.

Proof. From w(t) � Æ0 we have w(t)
p
� (small number)w(t): From lemma 2.4 it follows

that limt!1w(t) = 1: Replacing P by a suÆciently large number T1 we see w(t)p �

(large Constant)w(t) on [T1;1). Using the same method as in the proof of Lemma 2.4 we

get lim
t!1

w(t)

t
q

=1:

We recall Tw is the life span of w:

Lemma 2.6 Let e(t) 2 C
1([T;1)) be positive and let t2�e(t) be an increasing or decreasing

function where � > 1: Suppose that w(t) 2 C
2([T; Tw)) satis�es the following hypothesis:

(2:1)

�
_w(t) > 0; w(t) > 0 and min(e1=2(t); s��)w(p�1)=2��(t) 62 L1(T; Tw)

�w(t) + �

t
_w(t) � e(t)w(t)p

where 0 < � < (p� 1)=2: Then the life span Tw of w(t) is �nite.

Proof. To prove Tw <1 by the contradiction we suppose Tw =1:

We multiply (2.1) by t
2� _w(t) and integrate over [T; t] to �nd(

t
2�( _w(t))2 � T

2�( _w(T ))2 �
2

p+1
(t2�e(t)wp+1(t) � T

2�
e(T )wp+1(T ))

�
2

p+1

R t
T
( d
ds
s
2�
e(s))wp+1(s)ds = I1 + I2:

If
d

ds

s
2�
e(s) > 0, from _w(t) > 0; we observe that

I2 � �

2

p+ 1
(t2�e(t) � T

2�
e(T ))wp+1(t):

Similarly, if
d

ds

s
2�
e(s) < 0, we have

I2 � �

2

p+ 1
(t2�e(t) � T

2�
e(T ))wp+1(T ):
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Then

_w2(t) > t
�2�(I1 + I2) �

2t�2�

(p+ 1)
min(t2�e(t); T 2�

e(T ))wp+1(t)(1 � (
w(T )

w(t)
)p+1):

Since w(t) is increasing there exists T1 such that T1 > T and
w(T )

w(T1)
< 1� Æ where Æ is the

positive suÆciently small constant.

Thus

_w(t)

w
1+�(t)

� (
2

p + 1
)1=2(1 � (1� Æ)p+1)t��min(t�e(t)1=2; T �

e(T )1=2)w(p�1)=2��(t):

Integrating over [T1; t] we get

(2:2)
1

�

1

w(T1)�
� C

Z
t

T1

min(e(s)1=2; s��)w(p�1)=2��(s)ds:

where C is independent of w and t:

Since the right hand side of (2.2) tends to 1 as t!1 we get the contradiction.

Lemma 2.7 There are positive constants �0 and K such that

(2:3) xjxj
p�1

� yjyj
p�1

� �0(x � y)(jxjp�1 + jyj
p�1)

and

xjxj
p�1

� yjyj
p�1

� K(x � y)(jxjp�1 + jyjp�1)

for any x � y 2 R:

Proof. The proof is standard and easy and so we omit it.

3 Proof of Theorem 1 In this section we shall prove Theorem 1. We recall that the

function y�;P is the solution of (1.2) satisfying y(P ) = � and T�;P is the life span of the

solution y�;P of (1.2).

De�nition 1 We de�ne S++; S�� and S by8<
:

S
++ = f� : limt!T�;P y�;P (t) =1; T�;P <1g

S
�� = f� : limt!T�;P y�;P (t) = �1; T�;P <1g

S = f� : T�;P =1g

where P = R + 1:

Lemma 3.1 Let ` � 2. Then there exist a and b such that �1 < b � a <1 and

S
++ = (a;1); S = [b; a] and S

�� = (�1; b):

Proof. From lemma 2.2 we know that S++ [ S [ S
�� = (�1;1):

To prove S++ 6= � by the contradiction we assume S++ = �. We now choose increasing

sequences ftng and f�ng such that

lim
n!1

tn =1; lim
n!1

�n =1 and �n > max
R+1�t�tn

2j'(t)j+ 2:
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For simplicity we denote by yn(t) = y�n;R+1(t) and f(t; y) = yjyj
p�1

� f(t):

Let n be a suÆciently large number. From the maximum principle it follows that _yn(R +

1) � 0: Combining �n > maxR+1�t�tn 2j'(t)j+ 2 and (2.3) we have f(t; �n) > �0(�n �

'(t))(j�nj
p�1 + j'(t)jp�1) > 0 for any t 2 [R + 1; tn]: If there exists t0 2 (R + 1; tn] such

that yn(t
0) < �n, yn(t) takes its the maximum at a point t" on [R + 1; t0] and satisfy

yn(t") � �n. This is the contradiction from the maximum principle. Then, yn(t) � �n for

any t : R+1 � t � tn: Thus, it follows that f(t; yn(t)) �
�0

2
y
p

n
(t) from yn(t)�'(t) �

1

2
jyn(t)j:

Recall that ` is smaller than 2. Combining the integral equation associated with (1.2) and

the inequality (2.3) we have, for any t 2 [R + 1; tn],

(3:1) yn(t) � �n + Æ1�
p�1
n

Z
t

R+1

s
�(N�1)

Z
s

R+1

r
N�3

yn(r)drds

and

(3:2) t
N�1 _yn(t) � Æ1

Z
t

R+1

s
N�1�`

y
p

n
(s)ds;

where Æ1 is a positive constant independent of n; t: By Lemma 2.4, the inequality (3.1) yields

yn(t) �
�n

2
(t=(R+1))�1(n) for any (R+1) � t � tn; where �1(n)!1 as n!1: Then, it

follows that yn(t) > t
�1(n)=2 for any t : (R+1)2 < t < tn: Therefore, t

�`+N�1
y
(p�1)=2��
n (t) �

1 for suÆciently large n and small � > 0:

From f(t; yn(t)) �
�0

2
y
p

n(t); the equation (1.2) implies

�yn(t) +
(N � 1)

t

_yn(t) � Æt
�`
y
p

n
:

From (3.2) it follows that _yn(t) > 0 for large t. Using the similar method to the proof of

Lemma 2.6, we have
1

�

1

yn((R + 1)2)
� Const(tn � (R+ 1)2):

For the suÆciently large n the above inequality is a contradiction. Then S
++

6= �:

The similar method used in the proof of S++ 6= � implies that S�� 6= �:

Assume that sup
�2S++

T�;P = T is �nite. Replacing P by T + 1 and using the similar

method to the above mentioned argument, we know that there exists a solution of (1.2)

with the �nite life span > T + 1: It is the contradiction. Then sup�2S++ T� = 1: Let

� 2 S
++ and � > �: Then we see � 2 S

++ for any � � � from the comparability theorem.

Second we shall prove that S++ is an open set by contradiction. Suppose S++ is a closed

set. From S
��

6= � there exists �0 3 S
++ such that �0 = minS++: Then it follows that

T�0;P � sup�2S++ T�;P : This contradicts sup�2S++ T�;P = 1: Thus S++ is an open set.

S
�� is also an open set. Therefore S is not empty and a closed set.

Proposition 3.2 S is one point set.

Proof. Assume �1; and �2 2 S such that �1 > �2: Putting w(t) = y�1(t) � y�2(t); we

get

w(t) > 0;
dw

dt

(t) > 0; and

�w(t) +
(N � 1)

t

_w = g(t)�1(f(t; y�1 (t)) � f(t; y�2 (t))):



114 K.MARUO and T.TOMITA

From (2.3) it follows that

g(t)�1(f(t; y�1 ) � f(t; y�2 )) > Æ1t
�`(y�1 � y�2

)(jyp�1
�1

j+ jy�2 j
p�1)

> Æ2t
�`
jy�1 � y�2

j
p
:

Using Lemma 2.4 and Lemma 2.5, we see t�`+N�1w(p�1)=2��
� 1 for suÆciently large t and

small �: Applying Lemma 2.6 to w(t) we obtain that the life span of w(t) is �nite. This is

a contradiction.

The proofs of Theorem 1 and Corollary 1 are thus accomplished from Proposition 3.2

and Proposition A-3 in Appendix.

4 Proof of Theorem 2 In this section we shall study the case of ` > 2 and lim
t!1

'(t)

t
�

= 1: Let y(t) be the solution of (1.2). We put y(t) = t
�
v(t); '(t) = t

�
�(t) and r0 =

�
2 + (N � 2)�: From (1.2) we have

(4:1)

(
�v(t) +

2� + (N � 1)

t

_v(t) =
1

t
2
(g(t)�1t`(vjvjp�1 � �

p(t)) � r0v(t));

v(R) = �(R):

We shall show that there exists a unique solution of (4.1) on [R;1):

We shall de�ne S
++
4 ; S

��

4 and S4 of solutions fv�g of the equation (4.1) by S
++ =

f� : limt!T�;R+1 v�;R+1(t) = 1; T�;R+1 < 1g; S
�� = f� : limt!T�;R+1 v�;R+1(t) =

�1; T�;R+1 <1g and S = f� : T�;R+1 =1g:

Lemma 4.1 S

++
4 and S

��

4 are not empty.

Proof. Assume S++4 = �: From (H2) we have inft�R g(t)
�1
t
`
� �2 > 0: Let Q0 be a

number larger than maxfmaxR�t�R+1 2j�(t)j
p�1

; (
4r0

�2

)1�pg: Let L0 = R + 1. We choose

increasing sequences fLng and fQng such that, for any n = 1; 2; � � � ;

(1) L0 < Ln; Q0 < Qn and limn!1Ln =1; limn!1Qn =1:

(2) Qn � 2maxL0�t�Ln j�(t)j+ 2:

Let n be a suÆciently large number and vn(t) be solutions of (4.1) which are connected

(R;�(R)) with (L0; Qn): The argument used in the proof of Lemma 3.1 imply that vn(t) �

Qn: Then, it follows that

g(t)�1t`(vn(t)jvn(t)j
p�1

� �
p(t)) � r0vn(t) >

�2

2
(vn(t)jvn(t)j

p�1
� �

p(t)) >
�2

4
Q
p

n

for any t : L0 � t � Ln:

Thus, the equation (4.1) yields

�vn(t) +
2� + (N � 1)

t

_vn(t) �
�2

4

vn(t)
p

t
2

where any L0 � t � Ln: The above inequality implies _vn(t) > 0 from _vn(L0) � 0: By the

analogous argument in Lemma 3.1 we have a contradiction. Then S

++
4 6= �: Similarly, we

have S��4 6= �:

We recall that S++; S�� and S are as in De�nition 1. On the other hand, it is clear,

by the de�nition of S++4 ; S
��

4 and S4 , that S++ = (R + 1)�S++4 ; S
�� = (R + 1)�S��4

and S = (R + 1)�S4:

Lemma 4.2 S4 is a nonempty closed set.
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Proof. From Lemma 4.1 it follows that S
++ and S

�� are nonempty sets. Using the

analogous argument in Lemma 3.1 we know that S++ and S
�� are open sets. Thus it

follows that S is the nonempty closed set. Therefore, S4 is a nonempty closed set.

We denote by v0(t) the solution of (4.1) satisfying v(L0) 2 S4:

Lemma 4.3 We have limt!1 v0(t) =1:

Proof. This lemma is proved by contradiction. Let E be any large number. From

limt!1 �(t) =1 we can choose a constant L such that 2E + 1 < mint>L �(t):

Assume v0(L) < E: If there exists L1 such that v0(L1) = v0(L) and v0(L) > v0(t) for any

L < t < L1, v0(t) holds a locally minimum point. On the other hand, from (2.3), it follows

that

the right hand side of (4:1) �

1

t
2
f�0�2(v0(t) � �(t))(j v0(t) j

p�1 +j�(t)jp�1) + r0jv0(t)jg:

Since (��0�2E
p�1+2r0) < 0 for suÆciently large E, there exists a positive constant Æ0 such

that

(4:2) �v0(t) +
2� + (N � 1)

t

_v0(t) �
Æ0

4t2
(v0(t) � �(t))Ep�1

�

�Æ0E
p

2t2

for any t : L < t < L1 where Æ0 = �0�2: The existence of the locally minimum point

contradicts the inequality of (4.2). Let v0(t) < v0(L) < E for any t > L: Hence, the

inequality (4.2) holds good for any t � L and it follows that _v0(L) � 0: Solving the

inequality (4.2) we have

v0(t) � C1 �
Æ0E

p

2� +N � 2
log

t

L

where C1 is a positive constant independent of t. Thus, we know limt!1 v0(t) = �1:

Hence, there exists L1 such that L1 > L and v0(t) < 0 for any t � L1: Moreover,

�v0(t) +
2� + (N � 1)

t

_v0(t) �

Æ0

2t2
(v0(t)� �(t))(j v0(t) j

p�1 +j�(t)jp�1)

�

Æ0

2t2
v0(t) j v0(t) j

p�1

for any t > L1: If L1 is suÆciently large, the above inequality yields _v0(t) < 0 for any

t > L1:

From the analogous argument in Lemma 3.1 it follows that the life span of v0(t) is �nite.

This is a contradiction. Hence, we have v0(L) � E: Assume v(t0) < E for some t0 > L.

Repeating the argument of the above, we get the contradiction. Thus the proof of the

lemma is completed.

Proposition 4.4 We assume that ` > 2 and lim
t!1

'(t)

t
�

=1: Then there exists a unique

solution of (1.2).

Proof. From Lemma 4.2 we know the existence of the solution of (1.2). For the proof

of uniqueness of the solution by contradiction we put v(t) =
y1(t) � y2(t)

t
�

where y1 and y2

are solutions of (1.2). From the comparison theorem we can assume y1(t) > y2(t) for any

t > R: Then, it follows that v(t) > 0 for any t > R: Noting (2.3) we have the following

inequality:

�v(t) +
2� + (N � 1)

t

_v(t) +
�
2 + (N � 2)�

t
2

v(t) �
Æ0

t
2
v(t)(jv1(t)j

p�1 + jv2(t)j
p�1)
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where vi(t) =
yi(t)

t
�
; i = 1; 2 and Æ0 = �0�2:

Let L be a suÆciently large number. Then, Lemma 4.3 and the above inequality implies

�v(t) +
2� + (N � 1)

t

_v(t) �
Æ0

4t2
v(t)(jv1(t)j

p�1 + jv2(t)j
p�1)

for any t : t � L: This inequality implies _v(t) > 0 for any t : t � L: Noting jv1(t)j
p�1 +

jv2(t)j
p�1

> Const v(t)p�1 and using the analogous argument to the proof of Lemma 3.1

we know that the life span of v(t) is �nite. This is a contradiction. The proofs of Theorem

2 and Corollary 2 are now accomplished by Proposition 4.4 and Proposition A-3.

5 Proofs of Theorems 3,4 and Corollaries 3,4 Throughout this section we assume

that ` > 2; lim
t!1

'(t)

t
�

= �: We shall use the analogous argument to the proof of Theorem

2.

We remark S++; S�� and S are as in De�nition 1.

Lemma 5.1 S
++

; S
�� are nonempty open sets and S is a nonempty closed set.

Proof. By the same reason as in Lemmas 4.1 and 4.2 we can prove this lemma.

Let y(t) be the solution of (1.2). We put y(t) = v(t)t� and '(t) = �(t)t�: Then our

assumptions (H2) and (H3) imply g(t)�1t` = 1 +O(t�1) and �(t) = �+O(t�1) as t!1:

Thus the equation (4.1) is replaced with the following equation:

(5:1) �v(t) +
2� + (N � 1)

t

_v(t) =
1

t
2
fvjvj

p�1
� �

p
� (�2 + (N � 2)�)v(t) +

f2(t; v)

t

g

for any t : t � R+ 1 where jf2(t; v)j � Const(jv(t)jp + 1):

Lemma 5.2 Let y(R+ 1) 2 S, then we see v(t) 2 L
1(R+ 1;1).

Proof. To prove this, we shall use contradiction. Let M be a suÆciently large number. We

assume there exists a large number t0 such that v(t0) �M: Then we may assume _v(t0) � 0:

If there exists t1 > t0 such that v(t1) = v(t0) and v(t) > v(t0) for any t : t0 � t � t1; we

have a locally maximum point t2 in (t0; t1): As the right hand term of (5.1) is positive for

t = t2, the above result contradicts the maximum principle. Then, v(t) �M for any t � t0:

Thus, we see

�v(t) +
2� + (N � 1)

t

_v(t) �
Æ0

t
2
jv(t)jp

for any t � t0: Using the analogous argument as in lemma 2.6 we obtain that the life span

of v(t) is �nite. This is a contradiction. Then, v(t) is upper bounded. Likewise, we obtain

that v(t) is lower bounded. The proof is complete.

For simplicity we denote F (z) = fzjzj
p�1

� �
p
� (�2 + (N � 2)�)zg.

Lemma 5.3 Assume that the life span of the solution y is in�nite. Then we have

limt!1v(t) � !+:

If !� exists we have

lim
t!1

v(t) � !�:
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Proof. We will show limt!1v(t) � !+ by contradiction. We assume that

limt!1v(t) � !++ �0: Then, the solution v(t) is larger than !+ + �0=2 for large t; or there

exists a sequence ftng such that limn!1 tn = 1; v(tn) � !+ + �=2 and tn are locally

maximum points of v(t): We �rst consider the former case. Since v(t) > !+ + �0=2 for

large t; it follows that F (v(t)) > Æ0 > 0: On the other hand, from Lemma 5.2, there exists

a constant M such that jf2(t; v(t))j < M for large t: Then, the right hand side of (5.1) is

larger than (Æ0 �M=t)=t2 > Æ0=(2t
2): Then, it follows that

�v(t) +
2� + (N � 1)

t

_v(t) � Æ0=(2t
2):

Solving the inequality we get v(t) > C1 + C2 log t for large t: This contradicts Lemma 5.2.

Second, let the sequence ftng exist. If n is suÆciently large, it follows that F (v(tn)) �

M=tn > 0: By the maximum principle we see that the existence of locally maximum points

tn contradicts that the right hand part of (5.1) is positive. Thus we have limt!1v(t) � !+:

Similarly, we also get lim
t!1

v(t) � !�:

Proposition 5.4 Let the solutions of the equation (1.3) satisfy with (C1). Then there

exists a unique solution y(t) of (1.2). Moreover, the solution satis�es lim
t!1

y(t)

t
�

= !+:

Proof. From Lemma 5.1 it is trivial to prove the existence of the solution. Then, we

will show lim
t!1

y(t)

t
�

= !+: Since Lemma 5.3 implies limt!1

y(t)

t
�
� !+ it suÆces to verify

lim
t!1

y(t)

t
�

� !+: Replacing !� by !+ and using the similar argument as the proof of

lim
t!1v(t) � !� in Lemma 5.3, we have our assertion. We will next show the uniqueness.

Assume there exist di�erent two solutions yi(t) of (1.2) satisfying lim
t!1

yi(t)

t
�

= !+(i = 1; 2):

Let v(t) =
y1(t) � y2(t)

t
�

and vi(t) =
yi(t)

t
�

: Then we have

�v(t) +
2� + (N � 1)

t

_v(t) +
�
2 + (N � 2)�

t
2

v(t)

= g(t)�1t�p��(v1(t)(jv1(t)j
p�1

� v2(t)jv2(t)j
p�1) = I:

On the other hand we see v(t) > 0 and _v(t) > 0 for any t > R from the maximum

principle. Moreover, since a sole value of tangent linear of (1.3) at X = !+ is positive we

see pj!+j
p�1

�(�2+(N�2)�) > 0: Thus, using g(t)�1t` = 1+O(t�1) and limt!1 vi(t) = !+

we see that there are positive small constant Æ and large number M such that

I � v(t)(pj!+j
p�1

� (�2 + (N � 2)�) � Æ �

M

t

):

Therefore, pj!+j
p�1

� (�2 + (N � 2)�) > 0 implies

�v(t) +
2� + (N � 1)

t

_v(t) � (
Æ0

t
2
�

M

t
3
)v(t) �

Æ0

2t2
v(t)

for the suÆciently large number t where Æ0 is a small positive number. From Lemma 2.4

we have limt!1 v(t) =1: This is a contradiction.

The proofs of Theorem 3 and Corollary 3 are now accomplished by Proposition 5.4 and

Proposition A-3 in Appendix.
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Lemma 5.5 Let the solution of the equation (1.3) satisfy with (C2) or (C3). If y(R+1) 2 S

there exist solutions of (1.2) respectively. Moreover, these solutions satisfy:

lim
t!1

y(t)

t
�

= !+ or !0 = !� in (C2) case

and

lim
t!1

y(t)

t
�

= !+ or !0 or !� in (C3) case:

Proof. From Lemma 5.1 it suÆces to show the behavior of the solutions as t ! 1:

Recall that v(t) =
y(t)

t
�

where y(t) and v(t) are solutions of the equations (1.2) and (5.1)

respectively. Using the integral representation of _v(t) and noting Lemma 5.3 we have

j t
� _v(t)(t) � t

�

0 _v(t0) j� Const

Z
t

t0

s
��2

ds

where � = (2� + (N � 1)): Then from � > 1 we know jt _v(t)j < Const for suÆciently large

number t:

Putting t = e
s and v

�(s) = v(t), the equation (5.1) is rewritten in the following equation:

(5:2)
�v�(s) + (� � 1) _v�(s)

= fv
�
jv
�
j
p�1(s) � �

p
� (�2 + (N � 2)�)v�(s)g +

f2(s; v
�)

e
s

:

We next show lim
s!1

_v�(s) = 0: Let s1 < s2 be large numbers. We �rst remark that

Z s2

s1

F (v�(s)) _v�(s)ds =

Z v
�(s2)

v�(s1)

F (w)dw:

Moreover, jf2(t; v
�(s)) _v�(s)j < M from Lemma 5.3 and j _v�(s)j = jt _v(t)j < Const.

Multiplying (5.2) by _v�(s) and integrating this equation over (s1; s2) we have

(5:3)

j ( _v�(s2)
2

� _v�(s1)
2)=2 + (� � 1)

R
s2

s1
_v�(�)2d�

�

Z v
�(s2)

v�(s1)

(wjwjp�1 � �
p
� (�2 + (N � 2)�)wdw j

�M

Z s2

s1

e
�s
ds:

Since

Z v
�(s2)

v�(s1)

F (w)dw is bounded for any s2; s1, from Lemma 5.3, we get

j

Z s

s1

_v�(�)2d� j� Const:

for any s2 > s1: Thus it follows that

(5:4) lim
s2;s1!1

Z s2

s1

_v�(�)2d� = 0:

By contradiction we will show lim
s!1

_v�(s) = 0:

We assume that lims!1 _v�(s) < lims!1 _v�(s). Then, there exist sequences fs1;ng and

fs2;ng such that s0 < s1;n < s2;n < s1;n+1 and

Æ0 � _v�(s2;n)� _v�(s1;n) and j _v�(s)j � Æ1 for any s 2 (s1;n; s2;n)



UNBOUNDED VISCOSITY SOLUTIONS 119

where s0 is the suÆciently large number and Æ0; Æ1 are suÆciently small positive numbers

independent of n. Since jf2(s; v
�)j � Const, the equation (5.2) implies j�v�(s)j � Const for

any s > s0. Then, it follows that

Æ0 < j _v�(s2;n) � _v�(s1;n)j = j�v�(�)(s2;n � s1;n)j � C0(s2;n � s1;n):

Then, since

Const �

Z
1

s1

_v�(s)2ds >

1X
n=1

Z
s2;n

s1;n

_v�(s)2ds �

1X
n=1

Æ
2
1

Æ0

C0

=1;

we have a contradiction. Thus, we have lims!1 _v�(s) = C: If C 6= 0 we have a contradic-

tion form (5.4). Therefore, we obtain

(5:5) lim
s!1

_v�(s) = 0:

We next show the claim in this lemma. Let � be any positive number. From (5.3),(5.4) and

(5.5) there exists a large number s0 such that

(5:6) j

Z v
�(s2)

v�(s1)

F (w)dw j� � for any s2; s1 > s0:

We assume a = lims!1v
�(s) > lim

s!1
v
�(s) = b:

From (5.6) we have j

Z
a

b

F (w)dw j< 2�: Then it follows that j

Z
a

b

F (w)dw j= 0: On the

other hand Lemma 5.3 yields !� � b < a � !+:

We �rst consider the case (C2). Since F (w) < 0 for any w : b < w < a it follows thatZ a

b

F (w)dw < 0: Then it is a contradiction. Thus, we have a = b:

We second study the case (C3). Since j

Z a

b

F (w)dw j= 0 we �nd that !� � b < !0 < a �

!+: Let Æ be a positive suÆciently small number. Then, there exist suÆciently large numbers

s1; s2; s3 such that s0 < s1 < s3 < s2 and v
�(s1) = b + Æ < v

�(s3) = !0 < a � Æ = v
�(s2):

Then, we get j

Z
v
�(s2)

v�(s3)

F (w)dw j � Const or j

Z
v
�(s3)

v�(s1)

F (w)dw j � Const: This contradicts

the inequality (5.6). Then it follows that a = b:

Thus there exists lims!1 v
�(s) = a: If F (a) 6= 0 we know that lims!1 �v�(s) = F (a) 6= 0

from (5.2) and (5.5). Then, lims!1 v
�(s) =1 or �1: This is a contradiction. Therefore,

F (a) = 0.

De�nition 2 We de�ne S+; S� and S
0 by8>>>><

>>>>:

S
+ = f� 2 S : limt!1

y�(t)

t
�

= !+g

S
0 = f� 2 S : limt!1

y�(t)

t
�

= !0g

S
� = f� 2 S : limt!1

y�(t)

t
�

= !�g:

Proposition 5.6 Assume !� < !0: Then we have

(1) S+(resp:)S�) is a nonempty one point set = f�+g(resp:f��g )

(2) S0 is a nonempty open set = (��; �+).
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Proof. We �rst show that S+ is nonempty. Let �1 > �2 2 S
++

: By the maximum

principle it follows that y�1(t) > y�2
(t) for any t 2 (R;minfT�1 ; T�2g): In the proof of

Lemma 3.1 sup
�2S++

T� =1 was shown. On the other hand, noting lim
t!1

'(t) � 0 and

using the minimal principle we get that there exists a constant L independent of � 2 S
++

and t > R such that y�(t) > �L: Hence, it follows that

lim
�!�0

y�(t) = y�0(t) locally uniformly on [R;1)

where �0 = inf�2S++ �. Moreover, y�0(t) is a solution of (1.2) and y�0
(t) � �L: Thus it

follows that �0 2 S
+ form Lemma 5.5.

Second we will show that S+ is one point set by contradiction. Let be �1 > �2 2 S
+
:

For the simplicity we denote y�i
= yi(i = 1; 2): From the comparison theorem we have

y1(t) � y2(t) = Æ(t) > 0; _y1(t) � _y2(t) > 0 for any t 2 (R;1) where Æ(t) is the increasing

continuous function on (R;1): The mean value theorem implies

y1(t)jy1(t)j
p�1

� y2(t)jy2(t)j
p�1 = pj�(t)jp�1t�(y1(t)� y2(t))

where y1(t) < �(t)t� < y2(t): Since j�(t)j > !+ � �0 for suÆciently small �0 and large t,

it follows that there exists a small positive constant � such that

g(t)�1(y1(t)jy1(t)j
p�1

� y2(t)jy2(t)j
p�1) >

1

t
2
(1� �)p!

p�1
+ (y1(t)� y2(t)):

Hence, from the integral equation associated with (1.2), we get

y1(t) � y2(t) � Æ(t1) + (1� �)p!
p�1
+

Z t

t1

s
�(N�1)

Z s

t1

r
N�3(y1 � y2)(r)drds

where t1 is suÆciently large number. Then, Lemma 2.4 yields

(5:7) y1(t) � y2(t) � c0(
t

t1

)�1

where �1 is a positive solution of the equation �
2+(N�2)��p!

p�1
+ (1��) = 0: Since a slope

value of a tangent line of (1.3) atX = !+ is positive, we get p!
p�1
+ (1��)�(�2+(N�2)�) > 0:

Then, �1 > �: On the other hand, since y1(R + 1) and y2(R + 1) belong to S
+
; it follows

that y1(t)� y2(t) = O(t�): This contradicts the inequality (5.7). Thus S+ is one point set.

In a similar way, we also obtain that S� is at most one point.

Next, we will show that S� is not empty by contradiction.

We assume S� is empty. If S0 is also empty, there exist �+ 2 S
+ and a sequence f�ng �

S
�� such that

limn!1 y�n(t) = y�+(t)

limn!1 _y�n (t) = _y�+(t) locally uniformly on [R;1):

Then, for a suÆciently large n, we �nd that y�n(t0) > 0 and _y�n(t0) > 0 where t0 is a

suÆciently large number. On the other hand we may assume that y�(t) =
1

2
(w0 + w�1)t

�

is an super solution of (1.2) on [t0;1). Moreover, we see that y�(t0) < 0 and _y�(t0) < 0.

Then, y�n(t)�y
�(t) holds the maximum point in (t0; T�n) where T�n is the life span of y�n

This contradicts the maximum principle. Hence, S0 is not empty.

We next assume that S0 is closed. Then, �0 = inf S0 belongs to S0:

Thus, limt!1

y�0 (t)

t
�

= !0: From Cauchy's mean value theorem there exists a sequence
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ftmg such that limm!1

_y�0(tm)

t
��1
m

= �!0: On the other hand, we have there exists a sequence

f�ng � S
�� such that fy�ng and f _y�ng are locally uniformly convergent to y�0 and _y�0 on

[R;1) respectively. Then, we obtain that there exist suÆciently large numbers n and m

such that y�n(tm) >
1

2
(!� + !0)t

�

m and _y�n(tm) >
�

2
(!� + !0)t

��1
m : Thus, it follows that

y�n (t) � y
�

0(t) holds the maximum point in (t0; T�n): We remark that y�0(t) is the super

solution of (1.2) on [t0;1): This contradicts the maximum principle theorem. Thus, S0 is

open. Therefore, S is not the closed set. This results contradicts Lemma 5.1 Thus S� is

not empty.

Proposition 5.7 Let !� = !0:

(1) S+ = f�+g is a nonempty one point set,

(2) S = [��:�+) is a nonempty set .

Proof. From the similar argument in Proposition 5.6, (1) is trivial.

We �rst consider in the case of
1

2
< � or N > 2. Let K and t1 be suÆciently large number.

We denote by y+(t) = !0t
�+Kt

��1. We will show that y+(t) is an super solution of (1.2).

Since a slope value of a tangent line of (1.3) at X = !0 is zero, we �nd

!0j!0j
p�1

� �
p
� (�2 + (N � 2)�)!0) = 0 and pj!0j

p�1
� (�2 + (N � 2)�) = 0:

Then, it follows that pj!0j
p�1

�((��1)2+(N�2)(��1)) > 0: Hence, noting (1�t�`g(t)) =

O(1=t) and ((f(t)=t�p)� �
p) = O(1=t) and using the Taylor expansion theorem we see

�g(t)(�y+(t) +
(N�1)

t
_y+(t)) + y+(t)jy+(t)j

p�1
� f(t)

> t
��3+`

fK(pj!0j
p�1

� ((� � 1)2 + (N � 2)(� � 1)))

�M1 �M2

K

t

�M3

K
2

t

g

where Mi(i = 1; 2; 3) are constants independent of K and t: If K is suÆciently large and
K

2

t

is suÆciently small, the right hand side of the above inequality is positive. Then y+(t)

is the super solution of (1.2).

We second consider in the case of 0 < � �

1

2
and N = 2. We denote by y+(t) = !0t

�+log t:

We use the similar method as the case of the above. Then, we have

�g(t)(�y+(t) +
1
t
_y+(t)) + y+(t)jy+(t)j

p�1
� f(t)

> pj!0j
p�1

t
�p�� log t�M1t

��3+`
�M2t

�p�1
�M3t

�p�2�(log t)2

>

1

2
pj!0j

p�1
t
�p�� log t

for the large t where Mi(i = 1; 2; 3) are positive constants independent of t: Then y+(t) is

the super solution of (1.2).

Therefore, in both cases there exists the super solution of (1.2) such that lim
t!1

y+(t)

t
�

= !+:

Using the similar argument of the proof of Proposition 5.6, we complete the proof.

The proofs of Theorem 4 and Corollary 4 are now accomplished by Proposition 5.6 and

Proposition 5.7.

Appendix. We shall prove that the uniqueness of a classical solution implies the uniqueness
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of a continuous viscosity solution. As this argument is in our paper [8] we will give an outline

of the proof in this paper.

Lemma A-1 There exists a solution y of (1.2) satisfying y(T1) = � and y(T2) = � where

any T1; T2 : R < T1 < T2 and any �; � 2 R
1
: If T1 = R, we have the solution of (1.2) such

that y(T1) = '(R) and y(T2) = �:

Proof. See Proposition 3.1 and Lemma 3.2 in [8].

Let u(x) 2 C(RN
� BR) be an arbitrary viscosity solution of (0.1). De�ne for x 2

R
N
�BR

U(x) = supfu(Qx);Q 2 O(N)g and U(x) = inffu(Qx);Q 2 O(N)g;

whereO(N) denotes the set of orthogonalN�N matrices. SinceO(N) is compact and closed

(in the matrix norm), we see U (x) = maxfu(Qx);Q 2 O(N)g and U (x) = minfu(Qx);Q 2

O(N)g.

Lemma A-2 U (x) and U (x) are continuous on R
N
�BR. Moreover,

(i) U is a radial viscosity subsolution of (0.1).

(ii) U is a radial viscosity supersolution of (0.1).

Proof. See Section 4 in [8].

As U (x) and U(x) are radial functions we denote by U (jxj) = U (x) and U(jxj) = U (x).

Proposition A-3 Suppose that the solution of (1.2) is unique. Then, the continuous vis-

cosity solution (0.1) is also unique.

Proof. Connecting the continuous viscosity solution of (0.1) and thecontinuous viscosity

solution in [8] we can get all continuous viscosity solutions of (0.1). (See [8]) Then, we have

only to study in case of the domain D = fx 2 R
N ; jxj � Rg and the boundary condition

u(x) = '(R) for any jxj = R: Then we shall consider the following equation:

(A � 1)

�
�g(j x j)�u(x) +u(x) j u(x) jp�1= f(jxj) on any jxj > R

u(x) = '(R) on any jxj = R:

Let U(x) and U(x) be functions associated with the solution of (A-1). We shall prove

U (x) = U (x) by contradiction. Assume that U(t1) > U(t1) where t1 > R: From Lemma A-1

there exist solutions y1(t) and y2 of (1.2) such that y1(R) = '(R); y1(t1) =
1

3
(U (t1)+2U(t1))

and y2(R) = '(R); y2(t1) =
1

3
(2U (t1) + U (t1)) respectively. From the maximum principle

and the minimum principle it follows that U(t) > y2(t) > y1(t) > U(t) for any t : t > t1:

Then the life spans of y1(t) and y2(t) are in�nity. The existence of solutions y2(t) > y1(t)

on [R;1) contradicts the hypothesis in this proposition.

Proposition A-4 A continuous radial viscosity solution u(t) of (0.1) is a classical solution

of (0.2).

Proof. Let R < T1 < T2: We denote the radial solution of (1.2) connected (T1; u(T1)) and

(T2; u(T2)) by y1;2. Since y1;2 is a viscosity solution 2 C
2 of (0.1) on x : T1 < jxj < T2, by

the maximum principle, it follows that u(x) = y1;2(jxj): Then, the proof is complete.
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