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Abstract. In this paper we consider the bounded risk point estimation problem for

the power of scale parameter �r of a negative exponential distribution where r 6= 0

is any given number and the location parameter � and scale parameter � both are

unknown. For a preassigned error bound w > 0 we want to estimate �r by using a

random sample of the smallest size such that the risk associated with an estimator is

not greater than w. We propose a fully sequential procedure and give the asymptotic

expansions of its average sample size and risk. We aso consider a class of sequential

estimators based on the idea of bias-correction and make a comparison from the point

of view of risk.

1. INTRODUCTION

Let X1;X2;X3; : : : be independent and identically distributed (i.i.d.) random variables

with the probability density function (p.d.f.)

f�; �(x) =
1

�
exp

�
�
x� �

�

�
I(x��) ;(1.1)

where both � 2 (�1; 1) and � 2 (0; 1) are unknown and I(A) denotes the indicator

function of the set A. For any given r 6= 0 we want to estimate the power of the scale

parameter �r. Let Æn = Æn(X1; : : : ;Xn) be an estimator of �r based on a random sample

X1; : : : ;Xn of size n. Then as a loss function we use the squared error loss de�ned by Ln =

(Æn � �r)2. The risk associated with the estimator Æn is given by Rn = Rn(Æn) = E(Ln).

Let w > 0 be a preassigned error bound for the risk. We want to �nd the smallest sample

size n = n0 which satis�es that Rn � w. For n � 2 set

Tn = minfX1; : : : ;Xng and �n = (n� 1)�1
nX
i=1

(Xi � Tn):

We can show that as a function of c the risk of c�rn takes the minimal value at c = cn �
(n � 1)r�(r + n � 1)=�(2r + n � 1) provided n > maxf1; 1 � 2rg and that the risk of

�r
n
is equal to that of cn�

r

n
up to the order term O(n�2). Thus the estimator �r

n
is an

asymptotically optimal one in this sense. Further, the calculation of �rn is easier than that

of cn�
r
n. Therefore we use �rn as an estimator of �r in this paper. Our goal is to �nd an

asymptotically smallest sample size n0 satisfying that Rn = E(�rn � �r)2 � w.

Estimation of � and �2 are of great importance. For r = 1, namely, for the estimation of

the standard deviation by �n, Isogai, Saito and Uno (1999a,b) dealt with this bounded risk
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point estimation problem under the squared error and weighted loss functions. Minimum

risk point estimation problems for r = 1 were considered by Mukhopadhyay and Ekwo

(1987), Ghosh and Mukhopadhyay (1989) and Isogai and Uno (1994). Starr and Woodroofe

(1972) treated the same problem for r = 2. Uno and Isogai (2002) proposed a fully sequential

procedure for the estimation of �r with normal scale parameter �. Isogai, Ali and Uno (2003)

considered the bounded risk point estimation problem of �r with normal scale parameter �

and the minimum risk one with exponential scale parameter. For a review one may refer to

Mukhopadhyay (1988), Ghosh and Sen (1991) and Ghosh, Mukhopadhyay and Sen (1997).

When we want to estimate the hazard rate ��1 of the negative exponential distribution

with p.d.f. in (1.1) we need an estimator of �r with r = �1. Also, it is of interest to

measure mean � = �+� in ��units and hence to estimate ���1. For a normal distribution

with mean � and variance �2 both unknown, Sriram (1990) considered the sequential point

estimation problem for ���1 by using an estimator of ��1.
We shall now compute the risk Rn = E(�r

n
� �r)2 to �nd n0. We can show that for

n > maxf1; 1� 2rg

Rn <1 and Rn = r2�2rn�1 +O(n�2) as n!1:

Ignoring the order term above, we can �nd the asymptotically smallest sample size n0
satisfying that Rn � w. Suppose

r2�2rn�1 � w; or equivalently, n �
r2�2r

w
= n� (say):(1.2)

For simplicity n� is assumed to be an integer. Then n0 = n� is the asymptotically best

�xed sample size if � is known. Unfortunately, the asymptotically best �xed sample size

procedure n0 cannot be used since � is unknown. Further, by Takada (1986,1998) there is

no �xed sample size procedure satisfying our condition. Thus we need to �nd a sequential

sampling rule.

In Section 2 we shall propose a fully sequential procedure for this estimation problem

and give two theorems concerning the second order approximation to its average sample

size and risk associated with our procedure. We shall also consider a class of sequential

estimators derived on the basis of the idea of bias-correction and compare them from the

point of view of risk. Moreover, we shall provide brief simulation results. Final section will

give all proofs of the results in Section 2.

2. RESULTS

In this section we shall propose a fully sequential procedure N motivated by the form of

n� in (1.2) and give two theorems concerning the second order approximation to its average

sample size E(N) and risk RN = E(�r
N
� �r)2 as w ! 0. We shall also consider a class

of sequential estimators, including the ordinary estimator �r
N
, based on the idea of bias-

correction. The comparison will be made from the point of view of risk. It will turn out

that we can �nd an appropriate sequential estimator to reduce the risk associated with the

ordinary one. Finally, we shall provide brief simulation results.

In this paper we propose the stopping rule de�ned by

N = Nw(r) = inf

�
n � m : n �

r2�2rn
w

ln

�
;(2.1)
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where m is a starting sample size satisfying that m > maxf2; 1 � 2rg and lx is a given

positive function of x on (0;1) such that

lx = 1 +
l0

x
+ o

�
1

x

�
as x!1 with a constant l0:(2.2)

In Section 3 it will be shown that P (Nw(r) < 1) = 1 for all w > 0 and r 6= 0. Once the

sampling stops at the Nth stage, we estimate �r by �r
N
. Then the risk associated with �r

N

is given by RN = E(�r
N
� �r)2: The following two theorems are concerned with the second

order approximation to the average sample size and risk.

Theorem 1. If m > m1(r), then as w! 0

E(N) = n� + �+ l0 � r(2r + 1) + o(1);

where

m1(r) =

�
maxf2; 1 + 2rg if r > 0

maxf2; 1� 2rg if r < 0

and � is the constant given in (3.19) with 0 � � � 1
2
+ 2r2.

Theorem 2. If m > m2(r); then as w! 0

n�
�
RN

w
� 1

�
= 11r2 + 8r + 1 +

3

4
(r � 1)

2 � �� l0 + o(1);

where

m2(r) =

�
max f1 + 10r; 7 + 8rg if r > 0

7� 14r if r < 0:

Remark 1. (i) If we take an arbitrary constant l0 such that

l0 > 11r2 + 8r + 1 +
3

4
(r � 1)2 � �;(2.3)

then from Theorem 2 we have that RN < w for suÆciently small w > 0. Thus our condition

on the risk is satis�ed. (ii) Theorem 2.1 of Isogai, Saito and Uno (1999a) with a = 0 and

b = 1 is the same as Theorems 1 and 2 with r = 1 except for the condition on the starting

sample size. The di�erence of this condition is caused by the fact that this paper deals with

all powers. Further, the methods of the proofs are di�erent.

We shall here evaluate the bias of �r
N
.

Proposition 1. If m > m3(r), then as w! 0

E(�r
N
) � �r = �

1

2
sign(r)(3r + 1)(n�)�1=2w1=2 + o(w);

where

sign(r) =

�
1 if r > 0

�1 if r < 0
and m3(r) =

�
maxf1 + 4r; 3 + 3rg if r > 0

3� 5r if r < 0:
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Taking Proposition 1 into account, we consider a class of sequential estimators f�r
N
(k);

k 2 (�1; 1)g for �r de�ned by

�rN (k) = �rN + k N�1=2w1=2:(2.4)

Then we get the following proposition concerning the bias of �r
N
(k).

Proposition 2. If m > m3(r); then as w! 0

E(�r
N
(k)) = �r + fk � 1

2
sign(r)(3r + 1)g(n�)�1=2w1=2 + o(w):

For k = 1
2
sign(r)(3r + 1), �r

N
(k) is a second-order asymptotically unbiased estimator.

We shall now compare the risk of �r
N
(k) with that of �r

N
. Let RN (k) = E(�r

N
(k) � �r)2.

Theorem 3. If m > m2(r); then as w! 0

n�

w
(RN (k)�RN ) = k2 � sign(r)(5r + 1)k + o(1):

Remark 2. Let k = 1
2
sign(r)(5r + 1) for r 6= 0. Then we have

RN(k) < RN for suÆciently small w > 0 if r 6= �1
5
:

Thus bias-correction is asymptotically e�ective in the reduction of the risk for all r 6= 0 with

using �r
N
+ 1

2
sign(r)(5r+1)N�1=2w1=2 which is not a second-order asymptotically unbiased

estimator.

Simulation Results. We shall give brief simulation results which are based on 100,000

repetitions. We choose the constant l0 satisfying the inequality in (2.3) in Tables 1{3. In

Tables 4 and 5 we choose l0 such that the average sample size E(N) approximately equals

the optimal one n�. Since we do not know any approximate value of � between 0 and
1
2
+ 2r2, we use here � = 0 or � = 1

2
+ 2r2 as �. Table 5 shows that the smaller E(N) is,

the larger RN is, which justi�es Theorems 1 and 2. From these simulation results we might

need to improve the stopping rule N in (2.1).

Table 1. � = 0, l0 > 11r2 + 8r + 1 + 3
4
(r � 1)2 � �

n� = 100 r = �1 r = 1 r = 2

� = 0; � = 1 w = 0:01 w = 0:01 w = 0:04

m = 22 m = 16 m = 24

ln = 1 + l0=n l0 = 8 l0 = 21 l0 = 62

k = 2 k = 3 k = 5:5

E(N) 108.630260 116.346200 137.330710

E(�r
N
) 0.991965 0.983436 0.951511

E(�r
N
(k)) 1.011400 1.011567 1.048849

RN=w 0.963153 0.984520 0.949165

RN (k)=w 0.934459 0.921439 0.800041

n�(RN (k)�RN )=w -2.869400 -6.308015 -14.912360
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Table 2. r = �1, � = 1
2
+ 2r2 = 2:5, l0 > 11r2 + 8r + 1 + 3

4
(r � 1)2 � � = 4:5

n� = 40 � = 0:5 � = 1 � = 2

� = 0, l0 = 5 w = 0:1 w = 0:025 w = 0:00625

m = 22, k = 2 �r = 2 �r = 1 �r = 0:5

E(N) 45.752540 45.700810 45.738710

E(�r
N
) 1.965109 0.982012 0.491141

E(�r
N
(k)) 2.061243 1.030103 0.515186

RN=w 0.918271 0.914489 0.925572

RN (k)=w 0.865381 0.859792 0.870948

n�(RN (k)�RN )=w -2.115595 -2.187878 -2.184982

Table 3. r = 1, � = 1
2
+ 2r2 = 2:5, l0 > 11r2 + 8r + 1 + 3

4
(r � 1)2 � � = 17:5

n� = 40 � = 0:5 � = 1 � = 2

� = 0, l0 = 18 w = 0:00625 w = 0:025 w = 0:1

m = 16, k = 3 �r = 0:5 �r = 1 �r = 2

E(N) 52.049260 52.088870 52.200480

E(�r
N
) 0.481075 0.962627 1.928253

E(�r
N
(k)) 0.514786 1.030025 2.062843

RN=w 1.004848 1.002715 0.984277

RN (k)=w 0.870552 0.871007 0.862504

n�(RN (k)�RN )=w -5.371849 -5.268332 -4.870901

Table 4. r = �1, � = 1
2
+ 2r2 = 2:5, l0 � r(2r + 1)� � = �1:5

n� = 40 � = 0:5 � = 1 � = 2

� = 0, l0 = �2 w = 0:1 w = 0:025 w = 0:00625

m = 22, k = 2 �r = 2 �r = 1 �r = 0:5

E(N) 39.236610 39.303210 39.232770

E(�r
N
) 1.951794 0.976822 0.487953

E(�r
N
(k)) 2.056594 1.029155 0.514149

RN=w 1.034014 1.018080 1.026389

RN (k)=w 0.942045 0.931146 0.935053

n�(RN (k)�RN )=w -3.678757 -3.477360 -3.653437
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Table 5. r = 1, � = 1
2
+ 2r2 = 2:5, l0 � r(2r + 1)� � = 0:5

n� = 40 � = 0:5 � = 1 � = 2

� = 0, l0 = 0 w = 0:00625 w = 0:025 w = 0:1

m = 16, k = 3 �r = 0:5 �r = 1 �r = 2

E(N) 37.647620 37.596930 37.616820

E(�r
N
) 0.468557 0.936478 1.873344

E(�r
N
(k)) 0.509244 1.017909 2.036156

RN=w 1.470935 1.470930 1.473031

RN (k)=w 1.107491 1.103551 1.106660

n�(RN (k)�RN )=w -14.537765 -14.695145 -14.654831

3. PROOFS

In this section we shall give all the proofs of the results in Section 2. First we shall

present �ve lemmas which are useful in proving the results. Throughout this section let M

denote a generic positive constant andW1;W2;W3; : : : be i.i.d. random variables with p.d.f.

f0;1 in (1.1). Set Wn = n�1
Pn

i=1Wi and Yin = ��1(n � i + 1)(Xn(i) � Xn(i�1)) for i =
2; : : : ; n, where Xn(1) � Xn(2) � : : : � Xn(n) are the order statistics of X1; : : : ;Xn. Then

Y2n; Y3n; : : : ; Ynn are i.i.d. random variables with p.d.f. f0;1 and �n=� = (n�1)�1
P

n

i=2 Yin.

Isogai and Uno (2001) gives the following lemma.

Lemma 1. The following results hold.

(i) E
�
supn�1(Wn)

q
	
<1 for all q > 0.

(ii) E
�
sup

n�m�1(Wn)
�q	 <1 if m� 1 > maxf1; qg for any given q > 0.

Let

t = tw(r) = inf

�
n � m� 1 :

n+ 1

ln+1
(Wn)

�2r � n�
�

for any r 6= 0

= inf

(
n �m� 1 :

nX
i=1

Wi � cn�L(n)

)
for any r > 0;(3.1)

wherem�1 > maxf1; �2rg, c = (n�)�1=2r, � = 1+ 1
2r
, L(n) = 1+L0

n
+o( 1

n
) and L0 =

1�l0
2r

.

Let

Zn =
n+ 1

ln+1
(Wn)

�2r for n �m� 1 > maxf1; �2rg:(3.2)

Since n+1
ln+1

= n+ (1� l0) + o(1) as n!1, it follows from Taylor's theorem that

Zn = n� 2r

nX
i=1

(Wi � 1) + �n;(3.3)

where

�n = (1� l0) � 2r(1 � l0)(W n � 1) + r(2r + 1)(n+ 1� l0)(W n � 1)2��2(r+1)n

+

�
n+ 1

ln+1
� (n+ 1� l0)

�
(Wn)

�2r :(3.4)
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Here �n is a random variable such that j�n � 1j <
��Wn � 1

��. From Lemma 4.1 and Corollary

1.4 of Woodroofe (1982) and the strong law of large numbers (SLLN) we obtain

P (tw(r) <1) = 1 for all w > 0 and r 6= 0; t=n� a:s:�! 1 as w! 0;

W t

a:s:�! 1 and (n�)1=2(W t � 1)
d�! Z as w! 0;(3.5)

where
a:s:�! and

d�! denote almost sure convergence and convergence in distribution, respec-

tively, and Z is a random variable according to the standard normal distribution N(0; 1)

throughout Section 3. It is known that N
d
= t + 1 for all w > 0 where X

d
= Y means that

X and Y have the same distribution, which, together with the above results, yields that

P (Nw(r) <1) = 1 for all w > 0 and r 6= 0. From the de�nition of t in (3.1) we get

(t=n�)�p �
�
t+ 1

tlt+1

�p
(W t)

�2rp �M(W t)
�2rp(3.6)

if m > maxf2; 1 � 2rg and that t=n� � lt(W t�1)2rIft�mg +((m � 1)=n�)Ift=m�1g �
M(W t�1)2rIft�mg +m for 0 < w � w0, where w0 satis�es that n

� � 1 for all 0 < w � w0.

Thus by using cr-inequality we obtain

(t=n�)p �M(W t�1)2rpIft�mg +M:(3.7)

From (3.6), (3.7) and Lemma 1 we obtain

Lemma 2. Let p > 0. Then

(i) f(t=n�)�p; w > 0g is uniformly integrable if m > maxf2; 1 + 2rp; 1� 2rg.
(ii) For some w0 > 0, f(t=n�)p; 0 < w � w0g is uniformly integrable if m > maxf2; 1 �
2rp; 1� 2rg.

From Theorem 2 of Chow, Hsiung and Lai (1979) we have

Lemma 3. For p > 1, if m > maxf2; 1� 2rp; 1� 2rg thenn�
(n�)�

1
2

���Pt

i=1(Wi � 1)
����p ; 0 < w � w0

o
is uniformly integrable for some w0 > 0.

Lemma 4.5 of Isogai and Uno (2001) gives

Lemma 4. Let �t be any random variable lying between 1 and W t. Then for any s

sup
w>0

E(�st ) �M if m > maxf2; 1� 2r; 1� sg:

We shall now give the lemma concerning all the conditions (C1)-(C6) of Aras and Woodroofe

(1993).

Remark 3. In the notation of Aras and Woodroofe (1993) set

b = 1; c = �2r; Xi =Wi � 1, a = n�, � = 1; � = 1� l0 + r(2r + 1)Z2

and Sn =
P

n

i=1(Wi � 1).

Lemma 5. If m > m0(r; p), then all the conditions (C1){(C6) of Aras and Woodroofe

(1993) with any p � 3, � � 3=2 and 0 < "0; "1 < 1 are satis�ed, where m0(r; p) =

maxf2; 1 + 2pr; 1� 2rg:
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Proof. It is obvious that (C1) is satis�ed for all p � 3. By making use of Example 1.8,

4.1(i) and Lemmas 1.4 and 4.1 of Woodroofe (1982) and the central limit theorem (CLT)

we can show that �n; n � 1, are slowly changing where �n is de�ned by (3.4), from which

(C4) holds. We shall show (C5). Let any � 2 [ 3
2
;1) and any " 2 (0; 1) be �xed. Let An

0

denote the complement of An � fjWn�1j � "g. By the Marcinkiewicz-Zygmund inequality

we get

E
��Wn � 1

��q �M n�q=2 for any q � 2:(3.8)

Since fWn � 1; n � 1g is a reverse martingale, it follows from Doob's maximal inequality,

Markov's inequality and (3.8) that P
�S1

k=nA
0

k

�
� "�5E

�
sup

k�n jW k � 1j5
	
� M n�5=2;

which yields the �rst assertion of (C5). Next we shall show the second assertion of (C5).

From (3.4) we get

max
k�n

j�n+kIAn+kj
�

� M

�
j1� l0j�max

k�n
IAn+k + 2�jr(1 � l0)j�max

k�n

�
jWn+k � 1jIAn+k

��
+jr(2r + 1)j�max

k�n

���(n + k + 1� l0)(Wn+k � 1)2�
�2(r+1)
n+k IAn+k

����
+ max

k�n

����
�
n+ k + 1

ln+k+1
� (n+ k + 1� l0)

�
(W n+k)

�2rIAn+k

����
� �

� M [J1n + 2� jr(1 � l0)j
�
J2n + jr(2r + 1)j� J3n + J4n] ; say:(3.9)

Clearly fJ1n; n � 1g is uniformly integrable. We can easily show that J2n � n��maxk�2n���Pk

i=1(Wi � 1)
����, which implies Ef(J2n)2g � n�2�E

n
maxk�2n j

Pk

i=1(Wi � 1)j2�
o
: Since

f
P

k

i=1(Wi � 1); 1 � k � 2ng is a martingale, by using Doob's maximal inequality and

(3.8) we have that supn�1Ef(J2n)2g � M supn�1 n
�2�Efj

P2n

i=1(Wi � 1)j2�g � M: Thus

fJ2n; n � 1g is uniformly integrable. Since j�n�1j < jWn�1j, we get that on the set An+k

�
�2(r+1)
n+k < (1 � �)�2(r+1) for r � �1 and that �

�2(r+1)
n+k < (1 + �)�2(r+1) for r < �1. Set

C1 = maxf(1 � ")�2(r+1); (1 + ")�2(r+1)g(> 0). Then we have that 0 < �
�2(r+1)
n+k < C1 on

An+k; which gives

J3n � C�

1 max
k�n

jn+ k + 1� l0j�jWn+k � 1j2�

� M max
k�n

��(n + k)(W n+k � 1)2
��� �M max

k�2n

����� 1
p
2n

kX
i=1

(Wi � 1)

�����
2�

:

Thus from Proposition 1 of Aras and Woodroofe (1993) fJ3n; n � 1g is uniformly integrable.

Set C2 = maxf(1�")�2r ; (1+")�2rg(> 0). Then since 0 < (Wn+k)
�2r � C2 onAn+k, we get

that J4n �M for all n � 1. Hence, fJ4n; n � 1g is uniformly integrable. Therefore, from the

uniform integrabilities of fJin; n � 1g (i = 1; 2; 3; 4) and (3.9), fmaxk�n j�n+kIAn+k j�; n �
1g is uniformly integrable which concludes the second assertion of (C5). We shall show

(C3). Let any "1 � " 2 (0; 1) be �xed and let

J1n = �2r(1 � l0)(Wn � 1); J2n = r(2r + 1)(n+ 1� l0)(W n � 1)2��2(r+1)n

and J3n =

�
n+ 1

ln+1
� (n+ 1� l0)

�
(Wn)

�2r :
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Then we get that �n = (1� l0) + J1n + J2n + J3n in (3.4) and

Pf�n < �(1� �)ng � Pf1� l0 < �1
4
(1� ")ng+

P3

k=1 PfJkn < � 1
4
(1� ")ng

� K0n +

3X
i=1

Kin; say.(3.10)

It is obvious that

1X
n=1

nK0n <1:(3.11)

From (3.8) we get that K1n �Mn�3, which gives

1X
n=1

nK1n <1:(3.12)

For r > 0 or r � �1
2
it is clear that K2n = 0 for large n, which yields

1X
n=1

nK2n <1:(3.13)

Let � 1
2
< r < 0. It is easy to see that K2n � ME

n
(Wn � 1)6�

�6(r+1)
n

o
. Cauchy-

Schwarz's inequality, (3.8), convexity and Lemma 1 give that E
n
(Wn � 1)6�

�6(r+1)
n

o
�

Mn�3
n
E
�
�
�12(r+1)
n

�o1=2
�M n�3 if n > 12(r+1). Hence we get (3.13). From Lemma 1

we have that K3n � P
�
M(W n)

�2r � 1
4
(1� ")n

	
� Mn�3E

�
(W n)

�6r	 � Mn�3, which
gives

1X
n=1

nK3n <1:(3.14)

Combining (3.10){(3.14) we obtain (C3). We shall show (C2). Let any p � 3 and "0 � " 2
(0; 1) be �xed. From (3.2) and cr-inequality we have

��
Zn �

n

"

�+�p

� M
n
n
�
(Wn)

�2r � "�1
�+op

+M

(�
n+ 1

ln+1
� n

�+

(W n)
�2r
)p

� M J1n +M J2n; say for all n �m� 1;(3.15)

where x+ = max(0; x). We shall prove the uniform integrability of fJ1n; n � m � 1g. Let
s > p and u > 1 with u�1 + v�1 = 1. Then it follows from H�older's inequality that

sup
n�m�1

Ef(J1n)s=pg � sup
n�m�1

nsE
�
f(Wn)

�2rI((Wn)
�2r � "�1)gs

�

�
�

sup
n�m�1

E
�
(W n)

�2sur	�1=u � sup
n�m�1

n
ns
�
Pf(Wn)

�2r � "�1g
�1=vo

:(3.16)

Let r > 0. Since m � 1 > maxf1; 2prg, we can choose s > p and u > 1 such that

m�1 > maxf1; 2surg. Letting Æ = 1� "1=2r(> 0), it follows from (3.8) that Pf(Wn)
�2r �
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"�1g � PfjWn�1j � Æg �Mn�sv for all n � 1. Hence from Lemma 1 and (3.16) we get the

uniform integrability of fJ1n; n �m� 1g. Similarly, we can show the uniform integrability

of fJ1n; n � m � 1g for r < 0. In the same way we can show the uniform integrability of

fJ2n; n �m� 1g. Thus, from (3.15) (C2) is satis�ed. Finally we shall show (C6). Let any

(u; v) 6= (0; 0) be �xed. Set Sn =
P

n

i=1(Wi � 1) and S�
n
= Snp

n
. From (2.2) and (3.4) we

have

uS�n + v�n = uS�n + vf1� l0 + r(2r + 1)(S�n)
2g

+vr(2r + 1)(S�
n
)2
��

1 +
1� l0

n

�
��2(r+1)
n

� 1

�
+ op(1) :(3.17)

Since S�
n

d�! Z and �n
a:s:�! 1 as n ! 1, from (3.17) we have that uS�

n
+ v�n

d�! uZ +

vf1 � l0 + r(2r + 1)Z2g as n ! 1. Thus by the Cram�er-Wold device we obtain that

(S�n; �n)
d�! (Z; �) as n ! 1, which shows (C6). Therefore the proof of Lemma 5 is

complete. 2

We are now in a position to prove all the results of Section 2. Throughout the proof below

set p = 3 and � = 3=2 in Lemma 5.

Proof of Theorem 1. Let r > 0. From the results of Woodroofe (1977) we get

E(N) = E(t) + 1 = n� + �� � + 1 + o(1) as w! 0;(3.18)

where

� =
1

2
+ 2r2 �

1X
k=1

1

k
E
�
fk � 2rk(W k � 1)g�

�
with x� � max(0;�x)(3.19)

and hence 0 � � � 1
2
+ 2r2. Let r < 0. From Theorem 1 of Aras and Woodroofe (1993)

with m0(r; 3) in Lemma 5 and Remark 3 we have (3.18). Therefore the proof of Theorem

1 is complete. 2

Proof of Theorem 2. It follows from Lemma 3.4 of Isogai, Saito and Uno (1999a) that

P
�
�k

�
� xjN = k

	
= P

�
W k�1 � xjt = k � 1

	
for all x > 0. Hence by (1.2) we have

RN

w
=

n�

r2
Ef(W t)

r � 1g2 :(3.20)

By using Taylor's theorem we get

Ef(W t)
r � 1g2 = r2E(W t � 1)2 + 2�rrE(W t � 1)3 + �2rE(W t � 1)4

+2rrEf(W t � 1)4�r�3
t

g+ 2�rrEf(W t � 1)5�r�3
t

g

+2rEf(W t � 1)6�
2(r�3)
t g;(3.21)

where �r =
1
2
r(r�1); r =

1
6
r(r�1)(r�2) and �t is a random variable such that j�t � 1j <
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��W t � 1
��. From (3.20) and (3.21) we have

n�
�
RN

w
� 1

�
= f(n�)2E(W t � 1)2 � n�g+

2

r
�r(n

�)2E(W t � 1)3

+
1

r2
�2
r
(n�)2E(W t � 1)4 +

2

r
r(n

�)2Ef(W t � 1)4�r�3
t

g

+
2

r2
�rr(n

�)2Ef(W t � 1)5�r�3
t

g

+
1

r2
2
r
(n�)2Ef(W t � 1)6�

2(r�3)
t

g :(3.22)

It follows from Corollary 1 of Aras and Woodroofe (1993), Remark 3 and (3.18) that

(n�)2E(W t � 1)2 � n� = 22r2 � 3r + 1� �� l0 + o(1) as w! 0(3.23)

if m > m0(r; 3). By Theorem 3 of Aras and Woodroofe (1993) we have that as w! 0

(n�)2E(W t � 1)3 = �12r + 2 + o(1) and (n�)2E(W t � 1)4 = 3 + o(1) :(3.24)

It follows from (3.5) that (n�)2(W t�1)4�r�3
t

d�! Z4 as w! 0. If f(n�)2(W t�1)4�r�3
t

; 0 <

w � w0g is uniformly integrable for some w0 > 0 when m > m4(r), then we have

(n�)2Ef(W t � 1)4�r�3t g = 3 + o(1) as w! 0 if m > m4(r);(3.25)

where

m4(r) =

�
maxf1 + 8r; 4 + 7rg if r > 0

4� 9r if r < 0 :

To prove the uniform integrability it is suÆcient to show that for all r 6= 0

sup
0<w�w0

E
��(n�)2(W t � 1)4�r�3t

��� <1 for some � > 1 :(3.26)

Let � > 1; s > 1 with s�1+ u�1 = 1 and v > 1 with v�1+ q�1 = 1. By H�older's inequality

we get

sup
0<w�w0

E
��(n�)2(W t � 1)4�r�3

t

���

� sup
0<w�w0

�
E(t=n�)�4�sv

	1=sv
� sup

0<w�w0

8<
:E

 
(n�)�1=2

�����
tX

i=1

(Wi � 1)

�����
!4�sq

9=
;

1=sq

� sup
0<w�w0

n
E
�
�
(r�3)�u
t

�o1=u
:(3.27)

Let r � 3: Since m > 1+8r, we can choose � > 1; (s; u) and (v; q) such that m > 1+8r�sv.

Hence by Lemmas 2{4 and (3.27) we have (3.26) for some w0 > 0. Setting s = 1+(3�r)=(8r)
and u = 1 + 8r=(3 � r) for 0 < r < 3 and s = 1� (3 � r)=(8r) and u = 1 � 8r=(3 � r) for

r < 0, we can show (3.26) for some w0 > 0 by the same way as above. Thus (3.26) holds

for all r 6= 0. Similarly, we can show

(n�)2E
n
(W t � 1)6�

2(r�3)
t

o
= o(1) as w! 0 if m > m2(r)(3.28)
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and

(n�)2E
��(W � 1)5�r�3

t

�� = o(1) as w! 0 if m > m4(r):(3.29)

Combining (3.22){(3.25), (3.28), (3.29) and the fact that m2(r) > m4(r) > m0(r; 3) we

obtain Theorem 2. Therefore the proof is complete. 2

Proof of Proposition 1. By Taylor's theorem and (1.2) we have

E(�r
N
) � �r =

1

jrj
(n�)�1=2w1=2

�
rn�E(W t � 1)

+ 1
2
r(r � 1)n�Ef(W t � 1)2�r�2t g

�
;(3.30)

where �t is a random variable such that j�t � 1j < jW t � 1j. Let r > 0. By Wald's

equation we get that n�E(W t � 1) = �Eft�1(t � n�)(St � t)g. It follows from the results

of Woodroofe (1977) and Lemmas 2 and 3 that t�1(t� n�)(St � t)
d�! 2rZ2 as w! 0 and

that ft�1(t�n�)(St� t); 0 < w � w0g is uniformly integrable if m > maxf2; 1+3rg. Thus
we have

n�E(W t � 1) = �2r + o(1) as w! 0(3.31)

if m > maxf2; 1+ 3rg for r > 0. For r < 0 Theorem 2 of Aras and Woodroofe (1993) gives

(3.31) if m > maxf2; 1 � 2rg. Since from (3.5) n�(W t � 1)2�r�2
t

d�! Z2 as w ! 0, we

can show

n�Ef(W t � 1)2�r�2t g = 1 + o(1) as w! 0 if m > m3(r):(3.32)

Thus, combining (3.30){(3.32) we obtain Proposition 1. 2

Proof of Proposition 2. Let m > m3(r). From Proposition 1 we have

E(�r
N
(k)) = �r +

�
kE
n
((t+ 1)=n�)�1=2

o
� style

1

2
sign(r)(3r + 1)

�
� (n�)�1=2w1=2 + o(w) as w! 0:(3.33)

By using Lemma 2, the inequality that ((t + 1)=n�)�1=2 � (t=n�)�1=2 and (3.5) we have

that E
�
((t + 1)=n�)�1=2

	
= 1 + o(1) as w! 0. Thus, from (3.33) we obtain Proposition

2. 2

Proof of Theorem 3. Let m > m2(r) (> m3(r)). By using (2.4) we can easily see

n�

w
(RN (k) �RN ) = 2k n�w�1=2Ef(�rN � �r)N�1=2g+ k2n�E(N�1)

� I1 + I2; say.(3.34)

Since E
�
(N=n�)�1

	
= E

�
((t + 1)=n�)�1

	
= 1 + o(1), we get

I2 = k2 + o(1) as w! 0:(3.35)

It is easy to see

I1 = 2k(n�)1=2w�1=2
h
E
n�

(N=n�)�1=2 � 1
�
(�rN � �r)

o
+E(�rN � �r)

i
� 2k(n�)1=2w�1=2(I11 + I12); say.(3.36)
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From Proposition 1

2k(n�)1=2w�1=2I12 = �k sign(r)(3r + 1) + o(1) as w! 0:(3.37)

We shall evaluate I11. Taking the conditional expectation into consideration, we obtain

I11 =
1

jrj
(n�)1=2w1=2E

hn
((t+ 1)=n�)�1=2 � 1

o�
(Wt)

r � 1
	i

:

Hence

2k(n�)1=2w�1=2I11 = �k sign(r)E
�
�
2n�

r

n
((t+ 1)=n�)�1=2 � 1

o�
(Wt)

r � 1
	�

� �k sign(r)E(J); say.(3.38)

By Taylor's theorem we haven
((t + 1)=n�)�1=2 � 1

o�
(Wt)

r � 1)
	
= �

r

2
(n�)�1(t+ 1� n�)(Wt � 1)'

�3=2
t �r�1t ;

where 't and �t are random variables such that

j't � 1j < j(t+ 1)=n� � 1j and j�t � 1j < jWt � 1j:(3.39)

Thus we get that J = (t + 1� n�)(Wt � 1)'
�3=2
t �r�1t : Let Qw = Zt � n�. Then (3.3) gives

that t+ 1� n� = 2rt(Wt � 1) + (Qw � �t + 1); which yields

J = 2rt(Wt � 1)2'
�3=2
t �r�1t + (Qw � �t + 1)(Wt � 1)'

�3=2
t �r�1t :(3.40)

From Proposition 3 of Aras and Woodroofe (1993) with � = E(R) we have that Qw � �t +

1
d�! R� � + 1 as w ! 0: Hence, by (3.5), (3.39) and (3.40) we obtain that J

d�! 2rZ2

as w ! 0. Suppose that fJ; 0 < w � w0g is uniformly integrable for some w0 > 0.

Then we get that E(J) = 2r + o(1) as w ! 0; which, together with (3.38), yields that

2k(n�)1=2w�1=2I11 = �2kr sign(r)+o(1) as w! 0: Thus, combining this result and (3.34){

(3.37) we obtain Theorem 3. In the remainder of this proof we shall show the uniform

integrability of fJ; 0 < w � w0g. Let t� � (n�)�1=2(t � n� + 1). From Proposition 8 of

Aras and Woodroofe (1993) fjt�j; 0 < w � w0g for any  2 (0; 2] is uniformly integrable

for some w0 2 (0;1). We can show that '
�3=2
t � (t=n�)�3=2 on f(t + 1)=n� � 1=2g and

that (t=n�)�1'�3=2
t

< 8 on f(t+ 1)=n� > 1=2g. Thus

jJ j = jJ jI((t+ 1)=n� � 1=2) + jJ jI((t+ 1)=n� > 1=2)

� (t=n�)�5=2jt�j

�����(n�)�1=2
tX

i=1

(Wi � 1)

����� �r�1t +M jt�j

�����(n�)�1=2
tX

i=1

(Wi � 1)

����� �r�1t

� J1 + J2; say.

It is suÆcient to show that fJi; 0 < w � w0g for i = 1; 2 are uniformly integrable. Let

� > 1; s > 1 with s�1 + u�1 = 1 and v > 1 with v�1 + q�1 = 1. By H�older's inequality we

get

sup
0<w�w0

EjJ2j�

� sup
0<w�w0

fEjt�j�svg1=sv � sup
0<w�w0

(
E

 
(n�)�1=2

�����
tX

i=1

(Wi � 1)

�����
!�sq)1=sq

� sup
0<w�w0

n
E
�
�
(r�1)�u
t

�o1=u
:
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Let

m5(r) =

�
2 if r > 0

3� 6r if r < 0:

By Lemmas 3 and 4 and an argument similar to that in (3.25) we can show the uniform

integrability of fJ2; 0 < w � w0g if m > m5(r). Let

m6(r) =

�
maxf1 + 10r; 3 + 8rg if r > 0

3� 6r if r < 0:

Then, similarly we can show the uniform integrability of fJ1; 0 < w � w0g if m > m6(r).

It is clear that m2(r) � m6(r) � m5(r). Therefore the proof of Theorem 3 is complete.

2
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