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ABSTRACT. In this paper we give a topological representation of distributive meet-
semilattice with last element 1. We study the notion of irreducible, weakly-irreducible
filter and order-ideal in a meet-semilattice. We show a characterization of distributive
semilatices by means of weakly-irreducible filters. These results are applied to give a
topological representation by means of ordered topological spaces. Finally, we show
a duality between meet-hemimorphism of distributive meet-semilattices and certain
relations. In particular, we obtain a duality for homomorphism of distributive meet-
semilattices by means of binary relations.

1 Introduction

In [3] George Gratzer introduces the class of distributive join-semilattice and gives a topo-
logical representation extending the known topological representation of Stone for distribu-
tive lattices and Boolean algebras. He mentioned that it is possible to give a topological
representation for homomorphisms of join-semilattices, but such representation is not given.
Our purposeis to develop a topological representation for distributive meet-semilattices with
last element 1 using ordered topological spaces. This approach is useful especially to give a
duality for homomorphism of distributive meet-semilattices.

In Section 2 we introduce the definitions and necessary notions to develop this paper. In
Section 3 we study the irreducible filters of a meet-semilattice and we give a characterization
of them. We introduce the notion of order-ideal and weakly irreducible filters and we
prove that a meet-semilattice is distributive if and only if the set of irreducible filters
agrees with the set of weakly irreducible filters. In Section 4 we present the topological
representation of a distributive meet-semilattice by means of ordered topological spaces.
The representation given in this work is a modification of the results of G. Gratzer on the
topological representation for distributive join-semilattices. In Section 5 we introduce the
notion of meet-hemimorphism. We prove that there exists a duality between this type of
mapping and certain (n + 1)-ary relations. In the case n = 1 we have the usual notion
of homomorphism. Consequently, we have that the dual of a homomorphism between two
distributive meet-semilattices is a binary relation defined between the dual spaces instead
of a function defined between the dual spaces.

2 Preliminaries

Let us recall that a meet-semilattice with last element is an algebra (A,A,1) of type
(2,1) such that the operation A is idempotent, commutative, associative, and a A1 = q, for
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all @ € A. As usual, the binary relation < defined by a < b if and only if a Ab = a is an
order. In what follows we will say semilattices instead of meet-semilattice.

A filter of a semilattice A is a subset FF C A such that 1 € F, if @ < b and a € F, then
b€ F, and if a,b € F, then a Ab € F. The filter generated by a subset H C A we will
denoted by F (H). If H = {a}, then we will write F'(a). We will denote by Fi(A) the set
of all filters of A.

Let X be a set. The set of all subsets of X is denoted by P (X). A subset K C P (X)
is called dually directed if for any U,V € K there exists W € K such that W CUNV.

Let us consider a poset (X, <). A subset U C X is said to be increasing (decreasing)
if for all #,y € X such that x € U (y € U) and @ < y, we have y € U (¢ € U). The set
of all increasing subsets of X is denoted by P; (X). We note that if (X, <) is a poset then
(Pi(X),N,X) is a semilattice. For each ¥ C X, the increasing (decreasing) set generated
byYis[V)={r e X:dyeV :y<z} (YV]={reX:qyeV :z<y}) Y ={y}, then
we will write [y) and (y] instead of [{y}) and ({y}], respectively.

Let (X, T) be a topological space. We will denote by KO (X)) the set of all compact and
open subsets of X and by D the set {U :U°=X —-U € KO (X)}.

Let us recall that an ordered topological space is a triple (X, <,7T) where (X,T) is a
topological space and (X, <) is a poset.

3 Distributive semilattices

A semilattice A is distributive if for all a,b,¢c € A such that a A b < ¢ there exist ay,
by € A such that a < a7, b < by and ¢ = a1 A by. Consequently, the set Fi(A) is a lattice.
We will denote by DS the class of distributive semilattices. The following result was proved
by G. Grétzer in [3] for distributive join-semilattices.

Theorem 1 [3] Let A be a semilattice. Then A is distributive if and only if the set Fi(A),
considered as a lattice, 1s distributive.

Definition 2 Let A be a semilattice. A proper filter F of A is irreducible if for all Fy, Fy €
Fi(A) such that F = Fy N Fy, then F = Fy or F = Fj.

Definition 3 Let A be a semilattice. A subset I of A is called an order-ideal of A if:
ID! Itbel and a <b, then a € I.
ID2 1f a,b € I then there exists an element ¢ € I such that @ < ¢ and b < c.

Definition 4 Let A be a semilattice. A proper filter F' of A is weakly irreducible if [ =
Fe={x e A:x ¢ F} is an order-ideal.

We will denote by X (A4), X, (A) and Id(A) the set of irreducible filters, weakly irre-

ducible filters and proper order-ideals of A, respectively.

Lemma 5 Let A be a semilattice. Then every weakly irreducible filter is an irreducible

filter.

Proof. Let F € Xy, (A). Let Fi, F, € Fi(A)suchthat F = FyNF,. f F # F, and F # F;,
then there exists « € Fy — F and b € F, — F. As F € X,, (A), there exists ¢ € A such that
a < ¢ and b < ¢. But this implies that ¢ € Fy N F, = F, which is a contradiction. Thus, F
is irreducible. [ |
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Lemma 6 Let A be a semilattice. Let F be a proper filter of A. Then F is irreducible if
and only if for every a,b ¢ F there existsc ¢ F and f € F such that aAf < c and bAf < c.

Proof. =)Leta,b¢ F. Let us consider the filters F, = F (F U {a}) and F, = F (F U {b}).
If F=F,NFy, then F = F, or F = F}, which is a contradiction. So, F C F, N Fy. It follows
that there exists ¢ € F, N Fj and ¢ ¢ F. Then there are f1, fo € F such that a A f; < ¢ and
b A fa <ec. Since Fis afilter, f = fi A fo € F and consequently a A f <cand bA f <e.
<) Let F, F\,F, € Fi(A) such that FF = Fy N Fy, F # F, and F # F,. Then there
exist a € Fy — F and b € F, — F. By the assumption, there exists ¢ ¢ F and f € F such
that a A f < cand b A f <ec.Since f € Fy N Fy, then a A f € Fy and bA f € Fy. It follows
that ¢ € Fy N Fy = F, which is a contradiction. [ |

Lemma 7 Let A be a semilattice. Let F be a proper filter of A. Then F is weakly irreducible
if and only if for all Fy, F5 € Fi(A) such that Fy N Fy C F, then Fy CF or F, C F.

Proof.  Assume that F' is weakly irreducible. Let Fy, Fy € Fi(A) such that Fy N Fy, C F.
If i ¢ F and Fy G F, then there exists a € Fy — F and there exists b € F, — F. So, there
exists ¢ ¢ F such that a < ¢ and b < ¢. But this implies that ¢ € F; N Fy C F, which is a
contradiction. Thus, F} C F or F5, C F.

Let a,b ¢ F. Then F(a) & F and F(b) ¢ F. By assumption, F'(a) N F (b) & F, i.e.,
there exists ¢ € A such that a <c¢,b<candc¢ F. [ |

The Prime Filter theorem is one of the most important results in the theory of distribu-
tive lattices. In [3] a similar result was established for distributive join-semilattices. Now,
we shall give an analogous theorem for semilattices.

Theorem 8 Let A be a semilattice. Let F € Fi(A) and I € Id(A) such that F NI = {.
Then there exists P € X (A) such that F C P and PN 1 ={.

Proof. Let us consider the set F = {H € Fi(A): FC H and HNI =0}. Since F € F,
then F # (). Tt is clear that the union of a chain of elements of F is also in F. So, by Zorn’s
lemma, there exists a filter P maximal in F. We prove that P € X (A). Let a,b ¢ P and
let us consider the filters P, = F(P U {a}) and P, = F (P U{b}). Clearly, P C P, and
P C Py. Then, P,, P, ¢ F. Thus, P, NI # ) and P, NI # (. Tt follows that there exist
p1,p2 € P and there exist x,y € I such that p;y Aps Aa < 2 and py Apa Ab < y. Since
I is an order-ideal, there exists ¢ € I such that 2 < ¢ and y < ¢. So, p1t Ap2 Aa < ¢ and
p1 A p2 Ab < e. Therefore, by Lemma 6, we conclude that P € X (4). |

Corollary 9 In a semilattice A every proper filter is the intersection of irreducible filters.

Proof. Let F be a proper filter of A. For each a ¢ F, we have F N (a] = ). Since
(a] € Id(A), then there exists P, € X (A) such that FF C P, and a ¢ P,. Thus,
F=N{P,: P, X(A),a¢ F}. [ |

In a distributive lattice, a filter is prime if and only if is an irreducible one (see [1]).
Also, it is known that a lattice is distributive if and only if every irreducible filter is prime.
In the case of distributive semilattices we can give a similar result, using irreducible filters
and weakly irreducible filters.

Theorem 10 Let A be a semailattice. Then the following conditions are equivalent:

1 X (A) = X, (A).
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2. A 1s distributive.

Proof. 1 = 2. Using Theorem 1 we prove that the set F7(A), considered as a lattice, is
distributive. Let Fy, Fy , F5 € Fi(A). It is enough to prove that that :

FN(FRVE)C(FNFR)V(FNF).

Suppose the contrary. Then there exists a € Fy N (Fy V F3) — (Fy N Fy) V (Fy N Fy). So, by
Theorem 8, there exists P € X,, (A) such that (Fy N F,) VvV (Fy N F;) C P and a ¢ P. So,
FiNF, CPand FiNF, CP. By Lemma 7, F; C Por F, C Pand F; C Por F3 C P.
Since @ € Fy and @ ¢ P, then F, C P and F3 C P. So, F; V F3 C P and consequently
a € Fi N (Fy Vv Fy) C P, which is a contradiction.

2 = 1. It is clear that X,, (A) C X (A). Let P € X (A) and Fy, F, € Fi(A) such that
Fy N Fy, C P. Then, since Fi (A) is distributive, P = (Fi N F2)V P = (F; V P)N(F, V P).
As Pe X(A), P=F,VPor P=F,V P, which implies that F; C P or F» C P. Thus, by
Lemma 7, P € X,, (4). |

4 Topological Representation

We shall modify the topological representation for distributive join-semilattice given by
G. Grétzer [3] introducing an order in the topology. First, we shall give a representation
theorem for semilattices. Let us recall that if (X, <) is a poset then (P; (X),N, X) is a
semilattice

Let A € DS. Let us consider the poset (X (A),C) and let us consider the mapping

Ba:A—=Pi(X(A)
defined by 84 (a) ={P € X (A):a € P}.Let B4 (A)" ={Ba(a):aec A}.

Theorem 11 (Representation theorem) Let A € DS. Then, A is isomorphic to the
subalgebra B4 (A) = {84 (a) 1 a € A} of P; (X (4)).

Proof . It is clear that 84 (a) € P; (X (4)) for all a € A, Ba(aAb) = B4 (a)NBa(b) and
Ba (1) =X (A). The injectivity of §4 follows by Theorem 8. Thus, A = 54 (A). [ |

Proposition 12 Let A € DS. Then:
1. X(A)=U{Ba(a) :ae A}.

2. For any a,b € A and for any P € X (A) such that P € B4 (a)" N B4 (b)" there exists
c € A such that P € B4 (c)" C Ba(a) NpBa(b).

3. For every a € A and for every B C A if B4 (a) = ({84 (b) : b € B}, then there exists
o finite subset By of B such that 8 (a) = ({84 (b) :b € Bo}.

Proof. 1. It is immediate, because any irreducible filter is proper. The assertion 2. follows
by the definition of weakly irreducible filter.

3. Let a € Aandlet B C Asuchthat 34 (a) = ({34 (b): b€ B}.Let F(B) be thefilter
generated by B. Then, a € F (B), because in the opposite case, by Theorem 8, there exists
P € X (A) such that F(B) C P and a ¢ P. But this implies that P € ({84 (b) : b € B}
and P ¢ (34 (a), which is impossible. Thus, there exists By = {b1,...,b,} C B such that
by Ao Aby < a. So, Ba(bi Ao Abp) = Ba(b) N o Ba(by) C Bala). It is clear that
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Ba (a) C (Ba (b1> N..NGa (bn) . Thus, 84 (bl) N...NGxa (bn) =04 (a) . |
Let A € DS. By 1. of the previous theorem we have that the family
Ba (A)c = {/BA (a)c =X (A) —[Ba (a) a € A}

is a subbasis for a topology defined on X (A). By 2. of the previous theorem we have that
Ba(A)° is a base for a topology on X (A). So, the structure F (A) = (X (A),C,B4 (A4))
can be considered as an ordered topological space where 34 (A)° is a base for the topology.
This space will be called the dual space of A.

Proposition 13 Let A € DS. Let F(A) be the dual space of A. Then:

1. A subset U C X (A) is open in F (A) if and only if there exists a filter F of A such
that U = B4 (F)°, where B4 (F)={P € X (A): FC P}.

2. A subset U C X (A) 1s a compact-open in F (A) if and only if there exists a € A such
that U = B4 (a).

3. Let F be a closed subset in F (A) and let K = {U; :1 € I} be a dually directed sub-
family of compact-open subsets such that F NU; £ O for any i € I. Then, F N

N{U:ieI}£0.

Proof. 1. Let U be an open subset in F (A). Since 84 (4) is a base of the space F (A),
U={Bal(a):ae BCA}. Let us consider the filter F = F (B). It is easy to see that
U=pa(F)°.

On the other hand it is immediate to check that if F' is a filter of A, then 84 (F) =
N{Ba(a):ac F}. Thus, B4 (F)° is open in F (A).

2. Let U be a compact-open in F (A). By 1 above ,

U=pa(F) =J{Ba(a) :acF}
for some filter F' of A. Since U is compact, there exists {ay,...,a,} C F such that

U=73a4 (al)c U...UpBa (an)C =(Balar)N...N B4 (an))c =0a(ar1 Ao A an)c.

The other direction follows by 3 of Proposition 12.

3. Let F be a closed subset in F(A) and let K = {U;:i € I} be a family of dually
directed compact-open subsets of F (A) such that F N U; # () for any ¢ € I. By 2. above,
for each 7 € I there exists a; € A such that U; = (84 (ai)c. Let us consider the set H =
{a, € A:U; = fBa (ai)c} and let us consider the decreasing subset generated by H:

(Hl={z € A:ax<cforsomece H}.

We prove that (H] is an order-ideal of A. Let a,b € (H]. Then there exist ¢1,¢2 € H such
that @ < ¢; and b < co. Since B4 (c1)°, 84 (c2)® € K, then there exists ¢ € H such that
Ba(c)” C Baler) N Balc2). So, a < cand b < ¢ and thus (H] € Id(A). Since F is a
closedsubset, using the assertion 1. above we have F = 84 (D) for some D € Fi(A). We
prove that

Dn(H]=0.

Suppose the contrary. Then there exists ¢ € D and ¢ € H such that a < ¢. By hypothesis,
Ba(D)NBa(c)" # 0. So, there exists P € X (A) such that D C P and ¢ ¢ P. But as a € D,
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a € P and consequently ¢ € P, which is a contradiction. Thus, D N (H] = 0. By Theorem
8, there exists P € X (D) such that D C P and H N P = (. Therefore, P € 84(D) = F
and P e N{U;:7€I}. u

Guided by the previous result we introduce the following definition.
Definition 14 An DS-space is an ordered topological space F = (X, <,T) such that:

1. The set of all compact and open subsets KO (X) forms a basis for the topology.
2. All closed subsets are increasing.
5. For every x,y € X, if « £ y, then there exists U € D such that « € U and y ¢ U.

4. If F is a closed subset and K = {U; : i € I} is a dually directed subfamily of KO (X)
such that FNU; # 0 for all ¢ € I, then FN (" U; # 0.

We note that by the condition 2 of the above definition we have that
D={U:U°e€KO(X)} CP:(X). It is clear that if F = (X,<,7T) is a DS-space then
(D,N, X) is a distributive semilattice.

An ordered topological space (X, <,T) where KO (X) is a basis for the topology 7 will
be denoted by (X, <, D).

Lemma 15 Let F = (X,<,D) be a DS-space. Then for each x € X, the set Hx () =
{U € D:x U} belongs to X (D). Thus, the mapping Hx : X — X (D) is well-defined.

Proof.  Let x € X. It is clear that Hx () is a filter of D. We prove that is it irreducible.
Let U,V € D such that « € U°NV . As U°NV° is open and KO (X) is a basis, then there
exists O¢ € KO (X) such that t € O° CU*NV® . So, Hx () is an irreducible filter. [ ]

Proposition 16 Let F = (X,<,D) be a DS-space. Then the following conditions are
equivalents:

1. Hx 1s onto

2. For every closed subset F and for every dually directed subfamily K = {U; :7 € I}
of KO(X) such that FNU; # 0 for alli € I, then

Fr({Ui:ieI} #0.

Proof. 1= 2. Let F be a closed andlet K ={U;: i € I} be a dually directed subfamily
of KO (X) such that F NU; # 0 for all ¢ € I. Since F€ is open and KO (X) is a basis,
then = ({U :U € B C D} . Let us consider the set H = {Uf : U; € K} C D. Since K is
dually directed, then the decreasing subset (H] is an order-ideal of D. We prove that

F(B)n(H]=10.

Suppose the contrary. Then, there exists Uy € H and there exist Uy, ...,U, € B such that
Uyn..nU, CU;. Since F N U, # 0, there exists ¢ € X such that 2 € F and 2 € Uy. So,
€U N...NU, CU;, which is a contradiction. Thus, there exists P € X (D) such that
F(B) C Pand PN (H] = 0. As Hx is onto, there exists * € X such that P = Hx (z).
Thus, 2 € FN({U;:ie€I}.
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2=1.Let P € X (D). Let us consider the set i = {U; :Uj ¢ P} CKO(X). The set
F=N{U;:U; € P}is closed and FNUf # () for U € K, because in the opposite case

v Ui v,

and since U7 is compact, then Uf C Us UUF U...UU;, ie,, Uy N...NU, C Uj. It follows

that U; € P, which is a contradiction. By assumption, F N[ {U]? :Uj ¢ P} = (. So, there
exists v € {U; : U; € PN () {ch U; ¢ P} , which implies that P = Hx (). u

Theorem 17 Let A € DS. Then F(A) = (X (A4),C,84(A)) 1s a DS-space and the
mapping Ba: A— B4 (A) is a DS-isomorphism.

Theorem 18 Let F = (X, <,D) be a DS-space. Then the mapping Hx : X — X (D) is

an order-isomorphism and a homeomorphism.

Proof. By the condition 4 of Definition 14 it follows that Hx is an order-isomorphism.
By Proposition 16, Hx is onto. Thus, it is enough to check that if U is an open subset in
X (D), then Hy' (U) is open in X. By Proposition 13, given an open U there exists a filter
F of D such that U¢ = gp (F). Let V.= ({0 : O € F}. Then, V is closed in X. It is easy
to see that V¢ = Hy' (U). Thus, Hx is a homeomorphism. [ |

By the two previous theorems we can assert that there exists a duality between distribu-
tive semilattices and DS-spaces.

5 Duality for Homomorphisms

Let Xi,..., X, be sets. The Cartesian product of the family {X,;:1 < i< n} is the set
Mo, Xi={Z=(z1,....,2n) 17 € X;}. [ X; = X, we will write [[i_, X; =X".
The sum of the sets X1,..., X, is the set

X1+ +Xn={f=(v1,..,2,): (AL <i<n) z €X}.

Definition 19 Let A, A;,...., A, € DS. Amappingh : [[_, A; — Ais a meet-hemimorphism
if

HI. h(zy, .y, @n) AR (21,000 by oy m) = h(21, 00, a A Dy Ty
H2. h(xy,...,1,..,2,) =1

We note that a meet-hemimorphism h is monotonic in each variable, i.e., if a < b,
then A (@1,., ;s @n) < R(21,.00,b, .0y 2,) . We will denote by MH ([, Ai, A) the set
of all meet-hemimorphism of [[;_, 4; into A . A homomorphism between two distributive
semilattices A and B is an element of MH (A, B)

Our next aim is to prove a duality for meet-hemimorphism of distributive semilattices.
In the context of lattices theory this type of mapping plays an important role in the theory
of distributive lattices with operators (see [4] or [5]). Following the lines of the work [5], we
shall prove a duality between meet-hemimorphism and certain (n 4 1)-ary relations. The
following example is crucial in the next results.

Example 20 Let F, Fi,...,F, be DS-spaces. Let RC X x Xy X ... x X, be an (n + 1)-
ary relation. For each v € X, let R(x) = {7 € [[\_, Xi : (z,7) € R}. Define the mapping
hR : H?:l D,j — D by

hr(Uy,..,U,)={2 e X :R(z) CU +..4U,}.
It is easy to check that hg € MH ([[;_, D:, D).
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Proposition 21 Let F, Fi....,Fy, be DS-spaces. Let R C X x X7 x ... x Xy, be an (n + 1)-
ary relation. Suppose that for every (Uy,....,Uy) € [1i, Di, hg(U1,...,Uy,) € D. Then the
following conditions are equivalent:

1. R(z)=({Uhi + ...+ Up : R(2) CUL + ... + Uyn}, for all x € X.

2. For allx € X and for all 7 € [[i_, X,,
(z,7) € R if and only if h;zl (Hx (v)) C Hx, (z1) + ... + Hx, (vn),
where h? (Hx (z)) = {ﬁ €], Di: hr (ﬁ) € Hy (x)}

If 1. or 2. is valid, then for all v,y € X, R(y) C R(z) when x < y.

Proof. 1 = 2. Suppose that there exist # € X and @ € [] X; such that (v,7) ¢ R. Then

=1
there exist U; € D; for 1 < i <n,suchthat R(2) CUs+..4U, and x; ¢ U; foralll <i <n.
Thus, = € hg (Ur,...,Uy) and £ ¢ Uy + ...+ Uy, i.e., h;zl (H(2)) € Hi (1) + ... + Ho(z4).
2 = 1. It is easy and left to the reader. |

Definition 22 Let F, Fi,...,F, be DS-spaces. We shall say that a subset R C X x X; x

.. x X,, is a meet-relation, if:

1. For every (Uy,...,U,) € [[ Di, hr (Uy,...,U,) € D,
=1

2. R(:c) = ﬂ{Ul + ...+ U,: R(l) CU + ...+ Up}, for allz € X.

Let A, A1,...,A, € DS. Let h € MH([[\, Ai,A). Define an (n + 1)-ary relation
Ry C X'(A) X X (A1) x ... x X (4,) by:

(P,Pi,...Py) € Ry & h™' (P) C P + ...+ Py,
where h™1 (P) = {7 €[], A; : h (Z) € P}.
Proposition 23 Let h € MH([[/_, Ai, A).

1. For all P € X (A) and for all @ € [[;_, Ai, h(@) ¢ P if and only if there exists
P € X (A;) for 1 <i<mn, suchthat (P,Py,...,P,) € R, and a; ¢ P; for all1 <i <n.

2. The relation Ry 1s a meet-relation.

3. The mapping hg, : B4, (A1) x. ><54 (An) — Ba(A) defined as in the example 20 sat-
isfies hg, (Ba, (a1),..., B4, (an)) = Ba (h(a1,...,an)), for all (ay,...,a,) € []i_, Ai.

Proof. 1. We prove first the case n = 1. Let P € X (A) and h(a) ¢ P. Since h is a
homomorphism, h~" (P) is a filter of A;. So, there exists Py € X (A;) such that 7~ (P) C
Py and a ¢ Py.

We assume that n > 1. Let P € X (A) and let d@ € [[;_, A; such that h(d) ¢ P. We
shall determine filters F1, ..., F,, and irreducible filters Py, .. /P in Ay, ..., A,, respectively,
by recursion as follows. Let

Fr={x€ A :h(z,az,....,a,) € P}.
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Then, Fy € F;(A). Indeed, since h(1,az,....,a,) =1 € P, 1 € Fy. Let 2 <y and = € F}.
Since h is increasing in each coordinate, y € Fy. If 2,y € Fy, by H1 of Definition 19, it
follows that x Ay € Fy. Thus, F} is a filter of A;. Moreover, as h(ay,az,....,a,) ¢ P, a; ¢ F}.
Consequently there exists P; € X (Ay) such that F; C Py and a1 ¢ Pi.

Suppose that we have determinated filters Fi, ..., F} and irreducible filters Py, ..., Py in
Ay, ..., A, respectively, such that

1. F; C P; and a; ¢ P; for 1 <1 <k, and
2. Fp={s € Ap : h(x1, ..., Th—1,T,Qky1, ..., ay) € P for some z; ¢ P;,1 <1<k —1}.
Let us define the set

Fiy1 ={v € Apy1 : h(v1, .., Thy 2, akyo, ..., ay) € P for some x; ¢ P;,1 <i<k}.

We prove that Fri1 € Fi(Agy1). Let x,y € Fry1. Then there exists z;,y; ¢ P; for each
1 <17 < k such that:

h(T1y ey Thy Ty Qpg2y ooy @) € P and h(x1, ..., Tk, Y, aiga, ..., an) € P.

Since each P; is an irreducible filter, then there exists ¢; ¢ P; such that z;,y; < ¢; for
each 1 <7 < k. As h is increasing in each coordinate, h(cy,...,cp, T, ap42,...,a,) € P and
h(cty .. Chy®,agqa,...,a,) € P. Then,

B(CLy ey Chy Ty Qg 2y e @ ) A R(CLy ooy Cly Yy Qg2 y ooy Q) =
h(ety s Cly® AN Y, Qpt2, ... Gpn) € P

So, « ANy € Fjyy, and thus Fyiq is a filter of Agyy. Since agt1 ¢ Fryr, there exists
Pry1 € X (Ag41) such that Fpyq C Pryq and agy1 ¢ Pryi1. Therefore, we have filters
Fy, ..., F, and irreducible filters Py ,....P, in Ay, ..., A,, respectively, such that a; ¢ P; for
1<i1<n,and

(1) EF,={zeA, h(z1,...,xp_1,2) € P for some 1 ¢ Py,..,xp_1 ¢ Pr_1}

It is clear that @ ¢ Py 4+ --- + P,. Moreover, if h(by,....,b,) € P and b; ¢ P; for 1 <1 <
n — 1, then by (1), we get b, € P, and this implies that (by,...,0,) € Py + --- + P,, i.e.,
R~Y(P)C P+ -+ P,.

The other direction is immediate.
2. By 1. it follows that Ry (P) = ({84, (a1) +---+ B4, (an) : R (a1,...,an) € P}. Thus,
we have proved 2. The assertion 3. also follows by 1. ]

Let A Ay,..., A, € DS. By Proposition 21, for each h € H, (H Ai,A) there exists a
i=1

meet- relation Ry C X (A)xX (A1) x---xX (Ay) suchthat B4 (h (@) = hp, (84, (a1),..., 84, (an)) .
And if F,Fy,...,F, are DS-spaces then for each meet relation R C X x X7 x --- x X,
there exists hg € H, (H Di./D> such that (z,7) € R if and only if h;zl (Hx (z)) C

=1
Hx, (z1)+ ...+ Hx, (z). In particular, we deduce that there exists a duality between the
category of distributive semilattices with homomorphisms and the category of DS-spaces
with meet binary relations.

We finish this section characterizing the injective and surjective homomorphisms of
distributive semilattices. Let A and B € DS. Let h : A — B be a homomorphism. It is
easy to see that, for each P € X (A), the subset of B defined by

(h(P)) = {y € By <h(p) for some p ¢ P}

is an order-ideal of B. This fact will be used in the following results.



50 SERGIO A. CELANI

Theorem 24 Let A and B be € DS and let h: A — B be a homomorphism. Then

1. h is injective if and only if VP € X (A) 3Q € X (B) such that R, (Q) = [P), i.e.,
Q) = P

2. h is surjective if and only if VQ € X (B)3P € X (A) such that Ry, (Q) = [P) and
VP,Q € X (B) if R (Q) C Ry (P), then P C Q.

Proof. 1. =) Let P € X (A). Let us consider the filter F' (h (P)). Since h is injective it is
easy to see that F (h(P)) N (h(P¢)] = (). Thus, by Theorem 8, there exists @ € X (B) such
that h(P) C Q and h(P)NQ =0, ie,h 1 (Q)=P.

<) Let a,b € A. Suppose that a £ b. Then there exists P € X (4) such that a € P and
b ¢ P. By assumption, there exists @ € X (B) such that P = h™! (Q). Then, h(a) € Q
and h (b) ¢ Q. It follows that h(a) £ h(b), which implies that h is injective.

2. It is easy to check that the cond1t10n VQ € X (B)3P € X (A) such that R (Q) = [P)
is equivalent to the condition VQ € X (B), h=1(Q) € X (A) .

=) Let Q € X (B). Since h is a homomorphism, h ! (Q) is a filter. Let a,b € A such
that h(a),h(b) ¢ Q. Then there exists ¢ ¢ @ such that h(a) < ¢ and h (b) < c. Since h is
surjective, there exists d € A such that ¢ = h(d). So, h(a) < h(d) and h (b) < h(d) with
d¢ h ' (Q). Thus, h 1 (Q) € X (A).

Let P,Q) € X (B). We note that R, (Q) C Ry (P) if and only if b (P) C h™ 1 (Q).
Suppose then that A~! (P) C h'(Q). So it is easy to check that P C Q.

<) Let b € B and assume that b ¢ h(A) = {h(a):a € A}. Let us consider the filter
F (h (hil (F (b)))) . Since b ¢ h(A), then it is easy to check that

F(h (k" (F(b)))) N (b] = 0.

So, by Theorem 8, there exists P € X (B) such that h (h™1 (F(b))) C P and b ¢ P. We

prove now that
(P°Nh(A)]={y € B:y <z forsomexec P°Nh(A)}

is an order-ideal of B. It is enough to prove that if z.y € P° N h(A), then there exists
c € P°Nh(A) such that z < cand y < c. Let z,y € P°Nh(A). Then v = h(a) and
y = h(b) for some a,b € A. Since a,b ¢ h~' (P) and by assumption, k' (P) € X (B),
there exists ¢ ¢ h™' (P) such that @ < ¢ and b < ¢. So, 2 < h(c) and y < h(c). Thus,
(P°N h(A)] is an order-ideal of B.

We prove that

F(b) N (P Ah(A)] =0.

Suppose the contrary. Then there exists ¢ € P¢ and z € A such that b < ¢ = h(z).
Thus, h(z) € F(b). It follows that = € h™1 (F (b)) C h™1(P). So h(z) € P, which is a
contradiction. Thus, by Theorem 8, there exists @) € X (B) such that Qn Pc Nh(A) =10
and b € Q. So, h(A)NQ C h(A )ﬂ P, and this implies that A= (Q) C h™! (P) and by
hyphotesis we conclude that @ C P. Thus, b € P, which is a contradiction. So b € h(A)
and therefore h is surjective. ]



TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE SEMILATTICES 51

REFERENCES

[1] G. BirkaoFF AND O. FRINK, Representations of Lattices by Sets, Trans. Amer. Math. Soc.
Vol (1948), pp. 299-316.

[2] B. A. DavEy AND H.A. PRIESTLEY, Introduction to Lattices and Order, Cambridge
University Press, Cambridge 1990.

[3] G. GRATZER, General Lattice Theory, second edition, Birkhauser Verlag, 1998.

[4] GEHRKE M. AND B. JénssoN, Bounded distributive lattices with operators, Math. Japonica
40, 2, (1994), 207-215.

[5] GOLDBLATT, R, Varieties of Complex algebras, Ann. Pure Appl. Logic 44 (1989), 173-242.

SERGIO ARTURO CELANI
DEPARTAMENTO DE MATEMATICA
FAacuLTAD DE CIENCIAS EXACTAS
UNIVERSIDAD NACIONAL DEL CENTRO
PiNTO 399

7000 TANDIL. ARGENTINA.

E:mail: scelani@exa.unicen.edu.ar



