
Scientiae Mathematicae Japonicae Online, Vol. 8, (2003), 41{51 41

TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE

SEMILATTICES

Sergio A. Celani�

Received September 21, 2001; revised September 24, 2002

Abstract. In this paper we give a topological representation of distributive meet-

semilattice with last element 1. We study the notion of irreducible, weakly-irreducible

�lter and order-ideal in a meet-semilattice. We show a characterization of distributive

semilatices by means of weakly-irreducible �lters. These results are applied to give a

topological representation by means of ordered topological spaces. Finally, we show

a duality between meet-hemimorphism of distributive meet-semilattices and certain

relations. In particular, we obtain a duality for homomorphism of distributive meet-

semilattices by means of binary relations.

1 Introduction

In [3] George Gr�atzer introduces the class of distributive join-semilattice and gives a topo-

logical representation extending the known topological representation of Stone for distribu-

tive lattices and Boolean algebras. He mentioned that it is possible to give a topological

representation for homomorphisms of join-semilattices, but such representation is not given.

Our purpose is to develop a topological representation for distributive meet-semilattices with

last element 1 using ordered topological spaces. This approach is useful especially to give a

duality for homomorphism of distributive meet-semilattices.

In Section 2 we introduce the de�nitions and necessary notions to develop this paper. In

Section 3 we study the irreducible �lters of a meet-semilattice and we give a characterization

of them. We introduce the notion of order-ideal and weakly irreducible �lters and we

prove that a meet-semilattice is distributive if and only if the set of irreducible �lters

agrees with the set of weakly irreducible �lters. In Section 4 we present the topological

representation of a distributive meet-semilattice by means of ordered topological spaces.

The representation given in this work is a modi�cation of the results of G. Gr�atzer on the

topological representation for distributive join-semilattices. In Section 5 we introduce the

notion of meet-hemimorphism. We prove that there exists a duality between this type of

mapping and certain (n+ 1)-ary relations. In the case n = 1 we have the usual notion

of homomorphism. Consequently, we have that the dual of a homomorphism between two

distributive meet-semilattices is a binary relation de�ned between the dual spaces instead

of a function de�ned between the dual spaces.

2 Preliminaries

Let us recall that a meet-semilattice with last element is an algebra hA;^; 1i of type

(2; 1) such that the operation ^ is idempotent, commutative, associative, and a^ 1 = a, for
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all a 2 A: As usual, the binary relation � de�ned by a � b if and only if a ^ b = a is an

order. In what follows we will say semilattices instead of meet-semilattice.

A �lter of a semilattice A is a subset F � A such that 1 2 F; if a � b and a 2 F , then
b 2 F; and if a; b 2 F; then a ^ b 2 F . The �lter generated by a subset H � A we will

denoted by F (H) : If H = fag; then we will write F (a) : We will denote by Fi (A) the set
of all �lters of A:

Let X be a set. The set of all subsets of X is denoted by P (X). A subset K � P (X)

is called dually directed if for any U; V 2 K there exists W 2 K such that W � U \ V:
Let us consider a poset hX;�i. A subset U � X is said to be increasing (decreasing)

if for all x; y 2 X such that x 2 U (y 2 U) and x � y, we have y 2 U (x 2 U). The set

of all increasing subsets of X is denoted by Pi (X). We note that if hX;�i is a poset then

hPi (X) ;\;Xi is a semilattice. For each Y � X; the increasing (decreasing) set generated

by Y is [Y ) = fx 2 X : 9y 2 Y : y � xg ((Y ] = fx 2 X : 9y 2 Y : x � yg). If Y = fyg; then
we will write [y) and (y] instead of [fyg) and (fyg], respectively.

Let hX;T i be a topological space. We will denote by KO (X) the set of all compact and

open subsets of X and by D the set fU : Uc = X � U 2 KO (X)g :
Let us recall that an ordered topological space is a triple hX;�;T i where hX;T i is a

topological space and hX;�i is a poset.

3 Distributive semilattices

A semilattice A is distributive if for all a; b; c 2 A such that a ^ b � c there exist a1,
b1 2 A such that a � a1; b � b1 and c = a1 ^ b1. Consequently, the set Fi (A) is a lattice.

We will denote by DS the class of distributive semilattices. The following result was proved

by G. Gr�atzer in [3] for distributive join-semilattices.

Theorem 1 [3] Let A be a semilattice. Then A is distributive if and only if the set Fi (A) ;
considered as a lattice, is distributive.

De�nition 2 Let A be a semilattice. A proper �lter F of A is irreducible if for all F1; F2 2
Fi (A) such that F = F1 \ F2; then F = F1 or F = F2:

De�nition 3 Let A be a semilattice. A subset I of A is called an order-ideal of A if:

ID1 If b 2 I and a � b; then a 2 I:

ID2 If a; b 2 I then there exists an element c 2 I such that a � c and b � c:

De�nition 4 Let A be a semilattice. A proper �lter F of A is weakly irreducible if I =

F c = fx 2 A : x =2 Fg is an order-ideal.

We will denote by X (A) ; Xw (A) and Id (A) the set of irreducible �lters, weakly irre-

ducible �lters and proper order-ideals of A; respectively.

Lemma 5 Let A be a semilattice. Then every weakly irreducible �lter is an irreducible

�lter.

Proof. Let F 2 Xw (A) : Let F1; F2 2 Fi (A) such that F = F1\F2: If F 6= F1 and F 6= F2;
then there exists a 2 F1 � F and b 2 F2 � F . As F 2 Xw (A) ; there exists c 2 A such that

a � c and b � c: But this implies that c 2 F1 \ F2 = F; which is a contradiction. Thus, F
is irreducible. �
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Lemma 6 Let A be a semilattice. Let F be a proper �lter of A: Then F is irreducible if

and only if for every a; b =2 F there exists c =2 F and f 2 F such that a^f � c and b^f � c:

Proof. )) Let a; b =2 F . Let us consider the �lters Fa = F (F [ fag) and Fb = F (F [ fbg) :
If F = Fa\Fb; then F = Fa or F = Fb; which is a contradiction. So, F � Fa\Fb: It follows
that there exists c 2 Fa \ Fb and c =2 F: Then there are f1; f2 2 F such that a ^ f1 � c and
b ^ f2 � c: Since F is a �lter, f = f1 ^ f2 2 F and consequently a ^ f � c and b ^ f � c:

() Let F , F1; F2 2 Fi (A) such that F = F1 \ F2; F 6= F1 and F 6= F2: Then there

exist a 2 F1 � F and b 2 F2 � F . By the assumption, there exists c =2 F and f 2 F such

that a ^ f � c and b ^ f � c: Since f 2 F1 \ F2, then a ^ f 2 F1 and b ^ f 2 F2: It follows
that c 2 F1 \ F2 = F; which is a contradiction. �

Lemma 7 Let A be a semilattice. Let F be a proper �lter of A: Then F is weakly irreducible

if and only if for all F1; F2 2 Fi (A) such that F1 \ F2 � F; then F1 � F or F2 � F:

Proof. Assume that F is weakly irreducible. Let F1; F2 2 Fi (A) such that F1 \ F2 � F:
If F1  F and F2  F; then there exists a 2 F1 � F and there exists b 2 F2 � F . So, there
exists c =2 F such that a � c and b � c: But this implies that c 2 F1 \ F2 � F; which is a

contradiction. Thus, F1 � F or F2 � F:
Let a; b =2 F: Then F (a)  F and F (b)  F: By assumption, F (a) \ F (b)  F; i.e.,

there exists c 2 A such that a � c, b � c and c =2 F: �

The Prime Filter theorem is one of the most important results in the theory of distribu-

tive lattices. In [3] a similar result was established for distributive join-semilattices. Now,

we shall give an analogous theorem for semilattices.

Theorem 8 Let A be a semilattice. Let F 2 Fi (A) and I 2 Id (A) such that F \ I = ;:
Then there exists P 2 X (A) such that F � P and P \ I = ;:

Proof. Let us consider the set F = fH 2 Fi (A) : F � H and H \ I = ;g : Since F 2 F ,
then F 6= ;. It is clear that the union of a chain of elements of F is also in F . So, by Zorn's
lemma, there exists a �lter P maximal in F . We prove that P 2 X (A) : Let a; b =2 P and

let us consider the �lters Pa = F (P [ fag) and Pb = F (P [ fbg) : Clearly, P � Pa and

P � Pb: Then, Pa; Pb =2 F . Thus, Pa \ I 6= ; and Pa \ I 6= ;: It follows that there exist

p1; p2 2 P and there exist x; y 2 I such that p1 ^ p2 ^ a � x and p1 ^ p2 ^ b � y. Since

I is an order-ideal, there exists c 2 I such that x � c and y � c: So, p1 ^ p2 ^ a � c and
p1 ^ p2 ^ b � c: Therefore, by Lemma 6, we conclude that P 2 X (A) : �

Corollary 9 In a semilattice A every proper �lter is the intersection of irreducible �lters.

Proof. Let F be a proper �lter of A: For each a =2 F , we have F \ (a] = ;: Since
(a] 2 Id (A) ; then there exists Pa 2 X (A) such that F � Pa and a =2 Pa: Thus,
F =

T
fPa : Pa 2 X (A) ; a =2 Fg : �

In a distributive lattice, a �lter is prime if and only if is an irreducible one (see [1]).

Also, it is known that a lattice is distributive if and only if every irreducible �lter is prime.

In the case of distributive semilattices we can give a similar result, using irreducible �lters

and weakly irreducible �lters.

Theorem 10 Let A be a semilattice. Then the following conditions are equivalent:

1. X (A) = Xw (A) :
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2. A is distributive.

Proof. 1 ) 2: Using Theorem 1 we prove that the set Fi (A) ; considered as a lattice, is

distributive. Let F1; F2 ; F3 2 Fi (A) : It is enough to prove that that :

F1 \ (F2 _ F3) � (F1 \ F2) _ (F1 \ F3) :

Suppose the contrary. Then there exists a 2 F1 \ (F2 _ F3)� (F1 \ F2) _ (F1 \ F3) : So, by
Theorem 8, there exists P 2 Xw (A) such that (F1 \ F2) _ (F1 \ F3) � P and a =2 P: So,
F1 \ F2 � P and F1 \ F2 � P: By Lemma 7, F1 � P or F2 � P and F1 � P or F3 � P:
Since a 2 F1 and a =2 P; then F2 � P and F3 � P . So, F2 _ F3 � P and consequently

a 2 F1 \ (F2 _ F3) � P; which is a contradiction.

2 ) 1: It is clear that Xw (A) � X (A) : Let P 2 X (A) and F1; F2 2 Fi (A) such that

F1 \ F2 � P: Then, since Fi (A) is distributive, P = (F1 \ F2) _ P = (F1 _ P ) \ (F2 _ P ).
As P 2 X (A) ; P = F1 _P or P = F2 _P; which implies that F1 � P or F2 � P: Thus, by
Lemma 7, P 2 Xw (A) : �

4 Topological Representation

We shall modify the topological representation for distributive join-semilattice given by

G. Gr�atzer [3] introducing an order in the topology. First, we shall give a representation

theorem for semilattices. Let us recall that if hX;�i is a poset then hPi (X) ;\;Xi is a
semilattice

Let A 2 DS. Let us consider the poset hX (A) ;�i and let us consider the mapping

�A : A! Pi (X (A))

de�ned by �A (a) = fP 2 X (A) : a 2 Pg : Let �A (A)
c
= f�A (a)

c
: a 2 Ag :

Theorem 11 (Representation theorem) Let A 2 DS. Then, A is isomorphic to the

subalgebra �A (A) = f�A (a) : a 2 Ag of Pi (X (A)) :

Proof . It is clear that �A (a) 2 Pi (X (A)) for all a 2 A; �A (a ^ b) = �A (a) \ �A (b) and
�A (1) = X (A) : The injectivity of �A follows by Theorem 8. Thus, A �= �A (A) : �

Proposition 12 Let A 2 DS . Then:

1. X (A) =
S
f�A (a)

c
: a 2 Ag :

2. For any a; b 2 A and for any P 2 X (A) such that P 2 �A (a)
c \ �A (b)

c
there exists

c 2 A such that P 2 �A (c)
c � �A (a)

c \ �A (b)
c
:

3. For every a 2 A and for every B � A if �A (a) =
T
f�A (b) : b 2 Bg ; then there exists

a �nite subset B0 of B such that � (a) =
T
f�A (b) : b 2 B0g :

Proof . 1. It is immediate, because any irreducible �lter is proper. The assertion 2. follows

by the de�nition of weakly irreducible �lter.

3. Let a 2 A and let B � A such that �A (a) =
T
f�A (b) : b 2 Bg : Let F (B) be the �lter

generated by B: Then, a 2 F (B) ; because in the opposite case, by Theorem 8, there exists

P 2 X (A) such that F (B) � P and a =2 P: But this implies that P 2
T
f�A (b) : b 2 Bg

and P =2 �A (a) ; which is impossible. Thus, there exists B0 = fb1; :::; bng � B such that

b1 ^ ::: ^ bn � a: So, �A (b1 ^ ::: ^ bn) = �A (b1) \ ::: \ �A (bn) � �A (a) : It is clear that



TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE SEMILATTICES 45

�A (a) � �A (b1) \ ::: \ �A (bn) : Thus, �A (b1) \ ::: \ �A (bn) = �A (a) : �

Let A 2 DS. By 1. of the previous theorem we have that the family

�A (A)
c
= f�A (a)

c
= X (A) � �A (a) : a 2 Ag

is a subbasis for a topology de�ned on X (A) : By 2: of the previous theorem we have that

�A (A)
c
is a base for a topology on X (A) : So, the structure F (A) = hX (A) ;�; �A (A)i

can be considered as an ordered topological space where �A (A)
c
is a base for the topology.

This space will be called the dual space of A:

Proposition 13 Let A 2 DS . Let F (A) be the dual space of A: Then:

1. A subset U � X (A) is open in F (A) if and only if there exists a �lter F of A such

that U = �A (F )
c
; where �A (F ) = fP 2 X (A) : F � Pg :

2. A subset U � X (A) is a compact-open in F (A) if and only if there exists a 2 A such

that U = �A (a)
c
:

3. Let F be a closed subset in F (A) and let K = fUi : i 2 Ig be a dually directed sub-

family of compact-open subsets such that F \ Ui 6= ; for any i 2 I: Then, F \T
fUi : i 2 Ig 6= ;:

Proof. 1. Let U be an open subset in F (A) : Since �A (A)
c
is a base of the space F (A),

U =
S
f�A (a)

c
: a 2 B � Ag. Let us consider the �lter F = F (B) : It is easy to see that

U = �A (F )
c
:

On the other hand it is immediate to check that if F is a �lter of A; then �A (F ) =T
f�A (a) : a 2 Fg : Thus, �A (F )

c
is open in F (A) :

2. Let U be a compact-open in F (A). By 1 above ,

U = �A (F )
c
=
[
f�A (a)

c
: a 2 Fg

for some �lter F of A: Since U is compact, there exists fa1; :::; ang � F such that

U = �A (a1)
c [ ::: [ �A (an)

c
= (�A (a1) \ ::: \ �A (an))

c
= �A (a1 ^ ::: ^ an)

c
:

The other direction follows by 3 of Proposition 12.

3. Let F be a closed subset in F (A) and let K = fUi : i 2 Ig be a family of dually

directed compact-open subsets of F (A) such that F \ Ui 6= ; for any i 2 I: By 2. above,

for each i 2 I there exists ai 2 A such that Ui = �A (ai)
c
: Let us consider the set H =

fai 2 A : Ui = �A (ai)
cg and let us consider the decreasing subset generated by H:

(H] = fx 2 A : x � c for some c 2 Hg :

We prove that (H] is an order-ideal of A: Let a; b 2 (H] : Then there exist c1; c2 2 H such

that a � c1 and b � c2: Since �A (c1)
c
; �A (c2)

c 2 K; then there exists c 2 H such that

�A (c)
c � �A (c1)

c \ �A (c2)
c
. So, a � c and b � c and thus (H] 2 Id (A) : Since F is a

closedsubset, using the assertion 1. above we have F = �A (D) for some D 2 Fi (A) : We

prove that

D \ (H] = ;:

Suppose the contrary. Then there exists a 2 D and c 2 H such that a � c: By hypothesis,

�A (D)\�A (c)
c 6= ;: So, there exists P 2 X (A) such that D � P and c =2 P: But as a 2 D;



46 SERGIO A. CELANI

a 2 P and consequently c 2 P; which is a contradiction. Thus, D \ (H] = ;: By Theorem

8, there exists P 2 X (D) such that D � P and H \ P = ;: Therefore, P 2 �A (D) = F
and P 2

T
fUi : i 2 Ig : �

Guided by the previous result we introduce the following de�nition.

De�nition 14 An DS-space is an ordered topological space F = hX;�;T i such that:

1. The set of all compact and open subsets KO (X) forms a basis for the topology.

2. All closed subsets are increasing.

3. For every x; y 2 X; if x � y; then there exists U 2 D such that x 2 U and y =2 U:

4. If F is a closed subset and K = fUi : i 2 Ig is a dually directed subfamily of KO (X)

such that F \ Ui 6= ; for all i 2 I; then F \
T
Ui 6= ;:

We note that by the condition 2 of the above de�nition we have that

D = fU : Uc 2 KO (X)g � Pi (X) : It is clear that if F = hX;�;T i is a DS-space then

hD;\;Xi is a distributive semilattice.

An ordered topological space hX;�;T i where KO (X) is a basis for the topology T will

be denoted by hX;�;Di.

Lemma 15 Let F = hX;�;Di be a DS-space. Then for each x 2 X; the set HX (x) =
fU 2 D : x 2 Ug belongs to X (D) : Thus, the mapping HX : X ! X (D) is well-de�ned.

Proof. Let x 2 X: It is clear that HX (x) is a �lter of D: We prove that is it irreducible.

Let U; V 2 D such that x 2 Uc \ V c: As Uc \ V c is open and KO (X) is a basis, then there

exists Oc 2 KO (X) such that x 2 Oc � Uc \ V c : So, HX (x) is an irreducible �lter. �

Proposition 16 Let F = hX;�;Di be a DS-space. Then the following conditions are

equivalents:

1. HX is onto

2. For every closed subset F and for every dually directed subfamily K = fUi : i 2 Ig
of KO (X) such that F \ Ui 6= ; for all i 2 I; then

F \
\
fUi : i 2 Ig 6= ;:

Proof. 1) 2: Let F be a closed and let K = fUi : i 2 Ig be a dually directed subfamily

of KO (X) such that F \ Ui 6= ; for all i 2 I: Since F c is open and KO (X) is a basis,

then F =
T
fU : U 2 B � Dg : Let us consider the set H = fUc

i : Ui 2 Kg � D: Since K is

dually directed, then the decreasing subset (H] is an order-ideal of D. We prove that

F (B) \ (H] = ;:

Suppose the contrary. Then, there exists Uc
k 2 H and there exist U1; :::; Un 2 B such that

U1 \ ::: \ Un � Uc
k : Since F \ Uk 6= ;; there exists x 2 X such that x 2 F and x 2 Uk: So,

x 2 U1 \ ::: \ Un � Uc
k ; which is a contradiction. Thus, there exists P 2 X (D) such that

F (B) � P and P \ (H] = ;: As HX is onto, there exists x 2 X such that P = HX (x) :
Thus, x 2 F \

T
fUi : i 2 Ig :
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2) 1: Let P 2 X (D) : Let us consider the set K =
�
Uc
j : Uj =2 P

	
� KO (X) : The set

F =
T
fUi : Ui 2 Pg is closed and F \ Uc

i 6= ; for Uc
i 2 K; because in the opposite case

Uc
j �

[
fUc

i : Ui 2 Pg ;

and since Uc
j is compact, then Uc

j � Uc
0 [ Uc

1 [ ::: [ Uc
n; i.e., U1 \ ::: \ Un � Uj : It follows

that Uj 2 P; which is a contradiction. By assumption, F \
T�

Uc
j : Uj =2 P

	
6= ;: So, there

exists x 2
T
fUi : Ui 2 Pg \

T�
Uc
j : Uj =2 P

	
; which implies that P = HX (x) : �

Theorem 17 Let A 2 DS . Then F (A) = hX (A) ;�; �A (A)i is a DS-space and the

mapping �A : A! �A (A) is a DS-isomorphism.

Theorem 18 Let F = hX;�;Di be a DS-space. Then the mapping HX : X ! X (D) is

an order-isomorphism and a homeomorphism.

Proof. By the condition 4 of De�nition 14 it follows that HX is an order-isomorphism.

By Proposition 16, HX is onto. Thus, it is enough to check that if U is an open subset in

X (D) ; then H�1

X (U) is open in X: By Proposition 13, given an open U there exists a �lter

F of D such that Uc = �D (F ) : Let V =
T
fO : O 2 Fg : Then, V is closed in X: It is easy

to see that V c = H�1

X (U) : Thus, HX is a homeomorphism. �

By the two previous theorems we can assert that there exists a duality between distribu-

tive semilattices and DS-spaces.

5 Duality for Homomorphisms

Let X1; :::;Xn be sets. The Cartesian product of the family fXi : 1 � i � ng is the setQn

i=1Xi = f~x = (x1; :::; xn) : xi 2 Xig : If Xi = X; we will write
Qn

i=1Xi = Xn:
The sum of the sets X1; :::;Xn is the set

X1 + � � �+Xn = f~x = (x1; :::; xn) : (91 � i � n) xi 2 Xig :

De�nition 19 Let A;A1; :::; An 2 DS. Amapping h :
Qn

i=1Ai ! A is a meet-hemimorphism

if

H1. h (x1; :::; a; :::; xn) ^ h (x1; :::; b; :::; xn) = h (x1; :::; a ^ b; :::; xn) ;

H2. h (x1; :::; 1; :::; xn) = 1:

We note that a meet-hemimorphism h is monotonic in each variable, i.e., if a � b;
then h (x1; :::; a; :::; xn) � h (x1; :::; b; :::; xn) : We will denote by MH (

Qn

i=1Ai; A) the set

of all meet-hemimorphism of
Qn

i=1Ai into A : A homomorphism between two distributive

semilattices A and B is an element of MH (A;B)
Our next aim is to prove a duality for meet-hemimorphism of distributive semilattices.

In the context of lattices theory this type of mapping plays an important role in the theory

of distributive lattices with operators (see [4] or [5]). Following the lines of the work [5], we

shall prove a duality between meet-hemimorphism and certain (n+ 1)-ary relations. The

following example is crucial in the next results.

Example 20 Let F , F1; :::;Fn be DS-spaces. Let R � X �X1 � :::�Xn be an (n+ 1)-

ary relation. For each x 2 X; let R (x) = f~x 2
Qn

i=1Xi : (x; ~x) 2 Rg : De�ne the mapping

hR :
Qn

i=1Di ! D by

hR (U1; :::; Un) = fx 2 X : R (x) � U1 + :::+ Ung :

It is easy to check that hR 2 MH (
Qn

i=1Di;D) :
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Proposition 21 Let F , F1; :::;Fn be DS-spaces. Let R � X�X1� :::�Xn be an (n+ 1)-

ary relation. Suppose that for every (U1; :::; Un) 2
Qn

i=1Di; hR (U1; :::; Un) 2 D: Then the

following conditions are equivalent:

1. R (x) =
T
fU1 + :::+Un : R (x) � U1 + :::+ Ung ; for all x 2 X:

2. For all x 2 X and for all ~x 2
Qn

i=1Xi;

(x; ~x) 2 R if and only if h�1R (HX (x)) � HX1
(x1) + :::+HXn

(xn) ;

where h�1R (HX (x)) =
n
�!
U 2

Qn

i=1Di : hR

�
�!
U
�
2 HX (x)

o
:

If 1. or 2. is valid, then for all x; y 2 X; R (y) � R (x) when x � y:

Proof. 1) 2: Suppose that there exist x 2 X and ~x 2
nQ
i=1

Xi such that (x; ~x) =2 R: Then

there exist Ui 2 Di for 1 � i � n; such that R (x) � U1+:::+Un and xi =2 Ui for all 1 � i � n:
Thus, x 2 hR (U1; :::; Un) and ~x =2 U1 + :::+Un; i.e., h

�1

R (H (x))  H1 (x1) + :::+Hn (xn) :

2) 1: It is easy and left to the reader. �

De�nition 22 Let F , F1; :::;Fn be DS-spaces. We shall say that a subset R � X �X1�
:::�Xn is a meet-relation, if:

1. For every (U1; :::; Un) 2
nQ
i=1

Di; hR (U1; :::; Un) 2 D;

2. R (x) =
T
fU1 + :::+Un : R (x) � U1 + :::+ Ung ; for all x 2 X:

Let A;A1; :::; An 2 DS . Let h 2 MH (
Qn

i=1Ai; A). De�ne an (n+ 1)-ary relation

Rh � X (A) �X (A1) � :::�X (An) by:

(P;P1; :::; Pn) 2 Rh , h�1 (P ) � P1 + :::+ Pn;

where h�1 (P ) = f~x 2
Qn

i=1Ai : h (~x) 2 Pg :

Proposition 23 Let h 2 MH (
Qn

i=1Ai; A).

1. For all P 2 X (A) and for all ~a 2
Qn

i=1Ai, h (~a) =2 P if and only if there exists

Pi 2 X (Ai) for 1 � i � n; such that (P;P1; :::; Pn) 2 Rh and ai =2 Pi for all 1 � i � n:

2. The relation Rh is a meet-relation.

3. The mapping hRh : �A1
(A1)�:::��An (An)! �A (A) de�ned as in the example 20 sat-

is�es hRh (�A1
(a1) ; :::; �An (an)) = �A (h (a1; :::; an)) ; for all (a1; :::; an) 2

Qn

i=1Ai:

Proof. 1. We prove �rst the case n = 1: Let P 2 X (A) and h (a) =2 P: Since h is a

homomorphism, h�1 (P ) is a �lter of A1: So, there exists P1 2 X (A1) such that h�1 (P ) �
P1 and a =2 P1:

We assume that n > 1: Let P 2 X (A) and let ~a 2
Qn

i=1Ai such that h (~a) =2 P: We

shall determine �lters F1; :::; Fn and irreducible �lters P1; :::; Pn in A1; :::; An; respectively,
by recursion as follows. Let

F1 = fx 2 A1 : h (x; a2; :::; an) 2 Pg :



TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE SEMILATTICES 49

Then, F1 2 Fi (A) : Indeed, since h (1; a2; :::; an) = 1 2 P; 1 2 F1: Let x � y and x 2 F1:
Since h is increasing in each coordinate, y 2 F1: If x; y 2 F1, by H1 of De�nition 19, it

follows that x^y 2 F1: Thus, F1 is a �lter of A1:Moreover, as h (a1; a2; :::; an) =2 P; a1 =2 F1:
Consequently there exists P1 2 X (A1) such that F1 � P1 and a1 =2 P1:
Suppose that we have determinated �lters F1; :::; Fk and irreducible �lters P1; :::; Pk in

A1; :::; Ak; respectively, such that

1. Fi � Pi and ai =2 Pi for 1 � i � k; and
2. Fk = fx 2 Ak : h (x1; :::; xk�1; x; ak+1; :::; an) 2 P for some xi =2 Pi; 1 � i � k � 1g :

Let us de�ne the set

Fk+1 = fx 2 Ak+1 : h (x1; :::; xk; x; ak+2; :::; an) 2 P for some xi =2 Pi; 1 � i � kg :

We prove that Fk+1 2 Fi (Ak+1) : Let x; y 2 Fk+1: Then there exists xi; yi =2 Pi for each
1 � i � k such that:

h (x1; :::; xk; x; ak+2; :::; an) 2 P and h (x1; :::; xk; y; ak+2; :::; an) 2 P:
Since each Pi is an irreducible �lter, then there exists ci =2 Pi such that xi; yi � ci for
each 1 � i � k: As h is increasing in each coordinate, h (c1; :::; ck; x; ak+2; :::; an) 2 P and

h (c1; :::; ck; x; ak+2; :::; an) 2 P: Then,

h(c1; :::; ck; x; ak+2; :::; an) ^ h(c1; :::; ck; y; ak+2; :::; an) =

h(c1; :::; ck; x ^ y; ak+2; :::; an) 2 P

So, x ^ y 2 Fk+1, and thus Fk+1 is a �lter of Ak+1: Since ak+1 =2 Fk+1; there exists

Pk+1 2 X (Ak+1) such that Fk+1 � Pk+1 and ak+1 =2 Pk+1: Therefore, we have �lters

F1; :::; Fn and irreducible �lters P1 ,...,Pn in A1; :::; An; respectively, such that ai =2 Pi for
1 � i � n; and

Fn = fx 2 An : h (x1; :::; xn�1; x) 2 P for some x1 =2 P1; :::; xn�1 =2 Pn�1g(1)

It is clear that ~a =2 P1 + � � � + Pn: Moreover, if h (b1; :::; bn) 2 P and bi =2 Pi for 1 � i �
n � 1; then by (1), we get bn 2 Pn and this implies that (b1; :::; bn) 2 P1 + � � � + Pn; i.e.,
h�1 (P ) � P1 + � � �+ Pn:

The other direction is immediate.

2. By 1. it follows that Rh (P ) =
T
f�A1

(a1) + � � �+ �An (an) : h (a1; :::; an) 2 Pg. Thus,

we have proved 2. The assertion 3. also follows by 1. �

Let A;A1; :::; An 2 DS . By Proposition 21, for each h 2 Hn

�
nQ
i=1

Ai; A

�
there exists a

meet- relationRh � X (A)�X (A1)�� � ��X (An) such that �A (h (~a)) = hRh (�A1
(a1) ; :::; �An (an)) :

And if F ;F1; :::;Fn are DS-spaces then for each meet relation R � X � X1 � � � � � Xn

there exists hR 2 Hn

�
nQ
i=1

Di;D

�
such that (x; ~x) 2 R if and only if h�1R (HX (x)) �

HX1
(x1) + :::+HXn

(xn). In particular, we deduce that there exists a duality between the

category of distributive semilattices with homomorphisms and the category of DS-spaces
with meet binary relations.

We �nish this section characterizing the injective and surjective homomorphisms of

distributive semilattices. Let A and B 2 DS . Let h : A ! B be a homomorphism. It is

easy to see that, for each P 2 X (A) ; the subset of B de�ned by

(h (P c)] = fy 2 B : y � h (p) for some p =2 Pg

is an order-ideal of B: This fact will be used in the following results.
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Theorem 24 Let A and B be 2 DS and let h : A! B be a homomorphism. Then

1. h is injective if and only if 8P 2 X (A) 9Q 2 X (B) such that Rh (Q) = [P ) ; i.e.,
h�1 (Q) = P:

2. h is surjective if and only if 8Q 2 X (B) 9P 2 X (A) such that Rh (Q) = [P ) and

8P;Q 2 X (B) if Rh (Q) � Rh (P ) ; then P � Q:

Proof. 1: )) Let P 2 X (A) : Let us consider the �lter F (h (P )) : Since h is injective it is

easy to see that F (h (P ))\ (h (P c)] = ;: Thus, by Theorem 8, there exists Q 2 X (B) such
that h (P ) � Q and h (P c) \Q = ;; i.e., h�1 (Q) = P:

() Let a; b 2 A: Suppose that a � b: Then there exists P 2 X (A) such that a 2 P and

b =2 P: By assumption, there exists Q 2 X (B) such that P = h�1 (Q) : Then, h (a) 2 Q
and h (b) =2 Q: It follows that h (a) � h (b) ; which implies that h is injective.

2: It is easy to check that the condition 8Q 2 X (B) 9P 2 X (A) such that Rh (Q) = [P )
is equivalent to the condition 8Q 2 X (B) ; h�1 (Q) 2 X (A) .

)) Let Q 2 X (B) : Since h is a homomorphism, h�1 (Q) is a �lter: Let a; b 2 A such

that h (a) ; h (b) =2 Q: Then there exists c =2 Q such that h (a) � c and h (b) � c: Since h is

surjective, there exists d 2 A such that c = h (d) : So, h (a) � h (d) and h (b) � h (d) with

d =2 h�1 (Q) : Thus, h�1 (Q) 2 X (A) :

Let P;Q 2 X (B) : We note that Rh (Q) � Rh (P ) if and only if h�1 (P ) � h�1 (Q) :
Suppose then that h�1 (P ) � h�1 (Q) : So it is easy to check that P � Q:

() Let b 2 B and assume that b =2 h (A) = fh (a) : a 2 Ag : Let us consider the �lter

F
�
h
�
h�1 (F (b))

��
: Since b =2 h (A) ; then it is easy to check that

F
�
h
�
h�1 (F (b))

��
\ (b] = ;:

So, by Theorem 8, there exists P 2 X (B) such that h
�
h�1 (F (b))

�
� P and b =2 P: We

prove now that

(P c \ h (A)] = fy 2 B : y � x for some x 2 P c \ h (A)g

is an order-ideal of B: It is enough to prove that if x; y 2 P c \ h (A) ; then there exists

c 2 P c \ h (A) such that x � c and y � c: Let x; y 2 P c \ h (A) : Then x = h (a) and

y = h (b) for some a; b 2 A: Since a; b =2 h�1 (P ) and by assumption, h�1 (P ) 2 X (B) ;
there exists c =2 h�1 (P ) such that a � c and b � c: So, x � h (c) and y � h (c) : Thus,
(P c \ h (A)] is an order-ideal of B:

We prove that

F (b) \ (P c \ h (A)] = ;:

Suppose the contrary. Then there exists q 2 P c and z 2 A such that b � q = h (z) :
Thus, h (z) 2 F (b) : It follows that z 2 h�1 (F (b)) � h�1 (P ) : So h (z) 2 P; which is a

contradiction. Thus, by Theorem 8, there exists Q 2 X (B) such that Q \ P c \ h (A) = ;
and b 2 Q: So, h (A) \ Q � h (A) \ P , and this implies that h�1 (Q) � h�1 (P ) and by

hyphotesis we conclude that Q � P: Thus, b 2 P; which is a contradiction. So b 2 h (A)
and therefore h is surjective. �
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