GENERALIZED K-ASSOCIATIVE BCI-ALGEBRAS

ZHAN JIANMING, TAN ZHISONG & XIA ZHANGSHENG

Received July 30, 2002

ABSTRACT. In this paper, we discuss the *BCI*-algebras satisfying $(x*y)*z^k \leq x*(y*z)$, where k is a fixed positive integer, and give some properties of such algebras.

1. Introduction and Preliminaries In [1], Q.P.Hu and K.Iseki discussed the *BCI*-algebras satisfying (x * y) * z = x * (y * z), which is called an associative *BCI*-algebra. Moreover, it's proved that X is associative if and only if 0 * x = x for all in X. In [2], W.Huang discussed the *BCI*-algebras satisfying $0 * x^k = x$, which is called a K-associative *BCI*-algebra. Moreover, it's proved that X is k-associative if and only if $(x * y) * z^k = x * (y * z)$. In [3], C.C.Xi investigated the *BCI*-algebras satisfying $(x * y) * z \le x * (y * z)$, which is called a quasi-associative *BCI*-algebra. In this paper, we discuss the *BCI*-algebras satisfying $(x * y) * z^k \le x * (y * z)$, which is called a generalized K-associative *BCI*-algebra.

For any elements x, y in a *BCI*-algebra X, we use $x * y^n$ denotes the elment $(\cdots (x * y) * y \cdots) * y$, where y occurs n times.

A BCI-algebra is an algebra (X; *, 0) of type (2, 0) with the following conditions.

(I) ((x * y) * (x * z)) * (z * y) = 0

- (II) (x * (x * y)) * y = 0
- (III) x * x = 0
- (IV) x * y = 0 = y * x implies x = y.

For a *BCI*-algebra $X, P(X) = \{x \in X \mid 0 * x = 0\}$ is called p-radical of X. If P(X) = 0, then we call X is a p-semisimple *BCI*-algebra. For any positive integer k, put $N_k(X) = \{x \in X \mid 0 * x^k = 0\}.$

Definition 1.1 A *BCI*-algebra X is called a generalized K-associative if $(x * y) * z^k \leq x * (y * z)$ for any $x, y, z \in X$.

It's clear that if X is a generalized K-associative *BCI*-algebra then $0 * x^{k+1} = 0$. In fact, let x = 0 and y = z = x, we have $0 * x^{k+1} \le 0 * (x * x) = 0$, that is, $0 * x^{k+1} = 0$.

Lemma 1.2 ([2]) Let X be a *BCI*-algebra and P(X) the p-radical of X. Then $X = N^{k+1}(X)$ for some positive integer k if and only if X/P(X) is K-associative.

Lemma 1.3 ([2]) Let X be a *BCI*-algebra and k a positive integer, then the following conditions are equivalent:

(i) $0 * x = 0 * (0 * x^{k})$ (ii) $0 * (0 * x) = (0 * x^{k})$ (iii) $x \in N_{k+1}(X)$

Lemma 1.4 ([2]) Let X be a *BCI*-algebra and k a positive integer, then the following conditions are equivalent:

(i) X is K-associative

(ii) $(x * y) * z^k = x * (y * z)$ for all x, y and z in X.

²⁰⁰⁰ Mathematics Subject Classification. 03G25,06F35.

Key words and phrases. K-associative, generalized K-associative, K-radical.

Example 1.5 (i) Any K-associative BCI-algebra is generalized K-associative. (ii) Let $X = \{0, a, b\}$ and * be given the table

*	0	a	b
0	0	0	b
a	0	0	b
b	b	b	0

Then X is generalized K-associative, but not K-associative.

2. Main Results

Theorem 2.1 Let X be a *BCI*-algebra and P(X) the p-radical of X, then the following conditions are equivalent: (i) X is generalized K-associative.

(ii) $0 * x^k = 0 * (0 * x)$ for any $x \in X$.

(iii) X/P(X) is k-associative.

Proof. (i) implies (ii) Assume X is generalized K-associative, we have $(0 * 0) * z^k \leq 0 * (z * z)$, that is, $0 * z^k \leq 0 * (0 * z)$. On the other hand, we have $(0 * (0 * z)) * (0 * z^k) = 0 * ((0 * z) * z^k) = 0 * (0 * z^{k+1}) = 0$

(ii) implies(i). Assume that $0 * x^k = 0 * (0 * x)$ holds for any $x \in X$, we have

$$\begin{array}{rcl} ((x*y)*z^k)*(x*(y*z)) &=& ((x*y)*(x*(y*z)))*z^k \\ &\leq& ((y*z)*y)*z^k \\ &=& ((y*y)*z)*z^k \\ &=& 0*z^{k+1} \\ &=& 0 \end{array}$$

that is, $(x * y) * z^k \leq x * (y * z)$ for any $x, y, z \in X$. Therefore X is generalized K-associative. (ii) implies (iii). Assume that $0 * x^k = 0 * (0 * x)$ holds for any $x \in X$, we have

(ii) implies (iii). This time that $0 \neq x = 0 \neq (0 \neq x)$ holds for any $x \in [1]$, we have $x \in N^{k+1}(X)$ by Lemma 1.3. Hence X/P(X) is K-associative by Lemma 1.2.

(iii) implies (ii). Assume that X/P(X) is K-associative, we have $X = N^{k+1}(X)$ by Lemma 1.2, and that $0 * (0 * x) = 0 * x^k$ for any $x \in X$ by Lemma 1.3.

Theorem 2.2 Every generalized k-associative BCI-algebra contains a K-associative BCI-algebra A(X) such that $X/P(X) \cong A(X)$.

Proof. Put $A(X) = \{x \in X \mid 0 * x^k = x\}$, it's a k-associative subalgebra. Define a homomorphism by

$$\Phi: A(X) \to X/P(X)$$

Let $(X) = C_0$ for some x in A(X), this means $C_x = C_0$ and $x \in P(X)$. Hence $x = 0 * x^k = 0$, and Φ is monic. From Theorem 2.1, we know that X/P(X) is K-associative, therefore $C_x = C_0 * C_x^k = C_{0*x^k}$ holds for each x in A(X). Which shows that is epimorphism, because $0 * x^k \in A(X)$. This completes the proof.

Definition 2.3 An ideal I is called generalized K-associative if for each x in I, we have $0 * x^k = 0 * (0 * x)$.

Theorem 2.4 Every *BCI*-algebras contains a maximal generalized K-associative ideal, which is also a subalgebra.

 $\begin{array}{l} Proof. \ \mathrm{Put}\ Q(X) &= \{x \in X \ | \ 0 \ast x^k = 0 \ast (0 \ast x)\}, \ \mathrm{then}\ \mathrm{it's}\ \mathrm{a}\ \mathrm{subalgebra}. \ \mathrm{In}\ \mathrm{fact}, \\ \mathrm{Assume}\ x,y \in Q(X),\ \mathrm{then}\ 0 \ast x^k = 0 \ast (0 \ast x)\ \mathrm{and}\ 0 \ast y^k = 0 \ast (0 \ast y). \ \mathrm{Hence}\ 0 \ast (x \ast y)^k = \\ (0 \ast x^k) \ast (0 \ast y^k) &= (0 \ast (0 \ast x)) \ast (0 \ast (0 \ast y)) = 0 \ast ((0 \ast x) \ast (0 \ast y)) = 0 \ast (0 \ast (x \ast y))\ \mathrm{and} \\ \mathrm{that}\ x \ast y \in Q(X). \ \mathrm{Now}\ \mathrm{we}\ \mathrm{show}\ \mathrm{that}\ \mathrm{it's}\ \mathrm{also}\ \mathrm{an}\ \mathrm{ideal}\ \mathrm{of}\ X. \ \mathrm{Assume}\ y, x \ast y \in Q(X), \\ \mathrm{then}\ 0 \ast y^{k+1} &= 0\ \mathrm{and}\ 0 \ast (x \ast y)^{k+1} = 0. \ \mathrm{Hence}\ (0 \ast x)^k \ast (0 \ast y^k) = 0 \ast (x \ast y)^k \le x \ast y \\ \mathrm{and}\ (0 \ast x^k) \ast (x \ast y) &\leq 0 \ast y^k. \ \mathrm{That}\ \mathrm{is},\ (0 \ast (x \ast y)) \ast x^k &\leq 0 \ast y^k. \ \mathrm{Hence}\ 0 \ast x^k = \\ ((0 \ast (x \ast y)) \ast x^k) \ast (0 \ast (x \ast y)) &\leq (0 \ast y^k) \ast (0 \ast (x \ast y)) \leqslant (x \ast y) \ast y^k. \ \mathrm{Therefore} \\ (0 \ast x^k) \ast x &\leq ((x \ast y) \ast y^k) \ast x = ((x \ast x) \ast y) \ast y^k = 0 \ast y^{k+1} = 0. \ \mathrm{This}\ \mathrm{implies}\ \mathrm{that}\ x \in Q(X). \end{aligned}$

References

- [1] Q.P.Hu & K.Iseki, On *BCI*-algebra satisfying (x * y) * z = x * (y * z). Math. Semi. Notes, **8.**(1980). 553-555.
- [2] W.Huang & S. Xu, Some characterizations of nil ideals in BCI-algebras. Chin. Quar. J. of Math, 12. (1997). 65-69.
- [3] C.C.Xi, On a class of BCI-algbras. Math., Japon. 35.(1990). 13-17.
- [4] T. Lei & C.C.Xi, P-radical in BCI-algebras. Math., Japon. 30. (1985). 511-517.

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P. R. China

E-mail: zhanjianming@hotmail.com