STABLE RANK OF C*-TENSOR PRODUCTS WITH THE ALGEBRAS OF CONTINUOUS FUNCTIONS ON PRODUCT SPACES OF INTERVALS

TAKAHIRO SUDO

Received June 7, 2002

ABSTRACT. In this paper we estimate the (topological) stable rank of C^* -tensor products of C^* -algebras with the algebras of continuous functions on product spaces of closed intervals. Moreover, we give an application of this result to C^* -tensor products with the algebras of continuous functions on locally compact Hausdorff spaces.

INTRODUCTION

This article answers a somewhat standing problem raised by Rieffel [Rf1, Question 1.8] and also conjectured but not solved in the paper by Nagisa, Osaka and Phillips [NOP, p. 990]. The problem is whether or not the stable rank of C^* -tensor products of a C^* -algebra \mathfrak{A} (or more generally a complex Banach algebra) with the C^* -algebra $C([0,1]^2)$ of continuous functions on the product space of two closed intervals can be estimated by the stable rank of \mathfrak{A} plus 1. Symbolically,

$$(F1): \operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) \leq \operatorname{sr}(\mathfrak{A}) + 1.$$

It has been known by Rieffel [Rf1, Corollary 7.2] that for any C^* -algebra \mathfrak{A} ,

$$(F2): \operatorname{sr}(C([0,1]) \otimes \mathfrak{A}) \leq \operatorname{sr}(\mathfrak{A}) + 1,$$

which is deduced from an interesting Rieffel's result: the same rank estimate as (F2) holds when $C([0,1]) \otimes \mathfrak{A}$ is replaced by a crossed product of \mathfrak{A} by the integers. See [NOP] also for another proof of (F2) and the real rank version of the above estimate (F2), that is, $\operatorname{RR}(C([0,1]) \otimes \mathfrak{A}) \leq \operatorname{RR}(\mathfrak{A}) + 1$ for any C^* -algebra \mathfrak{A} (cf. [BP] for the real rank). As a key idea of the proof of (F1), we use the absolute connected stable rank for C^* -algebras, introduced by Nistor (a stronger version of the connected stable rank of Rieffel [Rf1]) and his result [Ns1, Lemma 2.4]. See [Eh], [Ns2], [Rf2], [Sd1-6] and [ST1-2] for some other related works on the stable rank.

We now review and set up some definitions and notations as follows:

Notation. For a C^* -algebra \mathfrak{A} and a compact space X, denote by $C(X, \mathfrak{A})$ the C^* -algebra of continuous \mathfrak{A} -valued functions on X. Set $C(X) = C(X, \mathbb{C})$. It is well known that $C(X, \mathfrak{A})$ is isomorphic to the C^* -tensor product $C(X) \otimes \mathfrak{A}$ (cf. [Mp, Theorem 6.4.17]). For a C^* -algebra \mathfrak{A} (or its unitization \mathfrak{A}^+), its (topological) stable rank, connected stable rank and absolute connected stable rank are denoted by $\operatorname{sr}(\mathfrak{A})$, $\operatorname{csr}(\mathfrak{A})$ and $\operatorname{acsr}(\mathfrak{A})$ respectively ([Rf1],

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L05. Secondary 46L55, 19K56.

Key words and phrases. Stable rank, C*-tensor products, Connected.

[Ns1]). By definition, these ranks take values in $\{1, 2, \dots, \infty\}$, and $\operatorname{sr}(\mathfrak{A}) \leq n$ if and only if the open subspace $L_n(\mathfrak{A})$ of \mathfrak{A}^n is dense in \mathfrak{A}^n , where $(a_j)_{j=1}^n \in L_n(\mathfrak{A})$ if and only if $\sum_{j=1}^n a_j^* a_j$ is invertible in \mathfrak{A} , and such elements are called left unimodular rows in algebraic K-theory. And $\operatorname{csr}(\mathfrak{A}) \leq n$ if and only if $L_m(\mathfrak{A})$ is path-connected for any $m \geq n$, and $\operatorname{acsr}(\mathfrak{A}) \leq n$ if and only if for any $m \geq n$, $V \cap L_m(\mathfrak{A})$ is nonempty and path-connected for any nonempty open path-connected subspace V of $L_m(\mathfrak{A})$ (Note that the original definition of $\operatorname{acsr}(\mathfrak{A})$ only assumes that $V \cap L_m(\mathfrak{A})$ is connected, but in fact the path-connected of Vand $V \cap L_m(\mathfrak{A})$ is used in the proof of a fundamental property of $\operatorname{acsr}(\mathfrak{A})$, [Ns1, Lemma 2.4] used later. [cf. Remark of Proposition 1]). Refer to [BI] for some elementary facts about the stable rank.

The main results

We first recall that a topological space X is locally path-connected at a point $p \in X$ if for any open subset U containing p, there exists an open subset V containing p such that any two points of V can be connected by a path in U. We say that a space X is locally path-connected if it is locally path-connected at any point $p \in X$.

Proposition 1. Let X be a complete metric space and U a dense open, path-connected and locally path-connected subspace of X and V a nonempty open path-connected subspace of X. Then the intersection $U \cap V$ is also nonempty, path-connected and locally path-connected.

Proof. It is clear that $U \cap V$ is nonempty since U is dense in X and V is nonempty and open.

Let $x, y \in U \cap V$. Since $x, y \in V$ and V is path-connected, there is a continuous path $f_t \in V$ for $t \in [0, 1]$ such that $f_0 = x$ and $f_1 = y$. For any $t \in [0, 1]$, there exists an open ball O_t of f_t with $O_t \subset V$. Since U is dense in X, there exists $g_t \in O_t \cap U$ for $t \in [0, 1]$. When |s - t| is small, $g_s \in O_t \cap U$. Since U is locally path-connected, g_s and g_t can be connected by a path in $O_t \cap U$. By induction and suitable adjustments by taking the open balls O_t small when t is near 0 or 1, and since U is path-connected we can find a continuous path $h_t \in U \cap V$ contained in a small neighborhood of the path space $\{f_t \mid t \in [0, 1]\}$ such that $h_0 = x$ and $h_1 = y$.

The same argument as above can be used to show that $U \cap V$ is locally path-connected. \Box

Remark. Note by [Rf1, Corollary 8.5] that $L_n(\mathfrak{A})$ is connected if and only if $GL_n(\mathfrak{A})_0$ acts transitively on $L_n(\mathfrak{A})$. Moreover, this in fact implies that $L_n(\mathfrak{A})$ can be locally pathconnected by considering the restriction of orbits under the multiplication action of $GL_n(\mathfrak{A})_0$ on $L_n(\mathfrak{A})$.

Theorem 2. Let \mathfrak{A} be a C^* -algebra. Then

$$\operatorname{sr}(C([0,1]^2)\otimes\mathfrak{A})\leq \operatorname{sr}(\mathfrak{A})+1$$

Proof. When \mathfrak{A} is nonunital, we note that $C([0,1]^2) \otimes \mathfrak{A}$ is a closed ideal of $C([0,1]^2) \otimes (\mathfrak{A}^+)$. By [Rf, Theorem 4.4], we have $\operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) \leq \operatorname{sr}(C([0,1]^2) \otimes (\mathfrak{A}^+))$. Thus, we may assume that \mathfrak{A} is unital in the following.

Next note that $C([0,1]^2) \otimes \mathfrak{A} \cong C([0,1]) \otimes C([0,1]) \otimes \mathfrak{A}$. By [Ns1, Lemma 2.4],

$$\operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) = \operatorname{acsr}(C([0,1]) \otimes \mathfrak{A})$$

Suppose that $\operatorname{sr}(\mathfrak{A}) \leq n$. Note that $L_{n+1}(C[0,1] \otimes \mathfrak{A}) = C([0,1], L_{n+1}(\mathfrak{A}))$ as a space. Indeed, for any $(f_j)_{j=1}^{n+1} \in L_{n+1}(C[0,1] \otimes \mathfrak{A})$, the element $\sum_{j=1}^{n+1} f_j^* f_j$ is invertible in $C[0,1] \otimes$

577

 $\begin{aligned} \mathfrak{A}. \text{ Thus, } &\sum_{j=1}^{n+1} f_j^* f_j(t) \text{ is invertible in } \mathfrak{A} \text{ for any } t \in [0,1]. \text{ Therefore, the function } t \mapsto (f_j(t)) \in \mathfrak{A}^{n+1} \text{ belongs to } C([0,1], L_{n+1}(\mathfrak{A})). \text{ Conversely, for any } f \in C([0,1], L_{n+1}(\mathfrak{A})) \text{ with } f(t) = (f_j(t))_{j=1}^{n+1}, \text{ the element } \sum_{j=1}^{n+1} f_j(t)^* f_j(t) \text{ is invertible in } \mathfrak{A} \text{ for any } t. \text{ Thus the function } t \mapsto \sum_{j=1}^{n+1} f_j(t)^* f_j(t) \text{ is invertible in } C([0,1],\mathfrak{A}). \text{ Hence, } (f_j)_{j=1}^{n+1} \in L_{n+1}(C[0,1] \otimes \mathfrak{A}). \end{aligned}$

Let V be a nonempty open path-connected subset of $(C([0,1]) \otimes \mathfrak{A})^{n+1}$. Then we show that $W = V \cap C([0,1], L_{n+1}(\mathfrak{A}))$ is nonempty and path-connected. Since $\operatorname{sr}(\mathfrak{A}) \leq n$, then $L_n(\mathfrak{A})$ is dense in \mathfrak{A}^n so that $L_{n+1}(\mathfrak{A})$ is dense in \mathfrak{A}^{n+1} . Note that $L_{n+1}(\mathfrak{A})$ is open in \mathfrak{A}^{n+1} ([Rf1, Proposition 8.2]). Thus W is nonempty. Now denote by $ev_t(V)$ $(t \in [0, 1])$ the set of evaluations $(f_1(t), \dots, f_{n+1}(t)) \in \mathfrak{A}^{n+1}$ for every $f \in V$. Since $\operatorname{csr}(\mathfrak{A}) \leq \operatorname{sr}(\mathfrak{A}) + 1 \leq n+1$ by [Rf1, Corollary 4.10], $L_{n+1}(\mathfrak{A})$ is path-connected and locally path-connected from the above remark. By Proposition 1, $ev_t(V) \cap L_{n+1}(\mathfrak{A})$ is path-connected and locally pathconnected for any $t \in [0,1]$ since $ev_t(V)$ is open and path-connected. Therefore, any two elements $f, g \in W$ can be connected by a continuous path in W since f(t) and g(t)can be connected and locally connected in $ev_t(W)$ for any $t \in [0,1]$. Indeed, note that $C([0,1],\mathfrak{A}^{n+1}) \cong C([0,1]) \otimes \mathfrak{A}^{n+1}$. Thus, f and g can be approximated by finite sums $\sum_{j=1}^{n} h_j \otimes a_j$ and $\sum_{j=1}^{n} k_j \otimes b_j$ for $a_j, b_j \in \mathfrak{A}^{n+1}$ and $h_j, k_j \in C([0,1])$ respectively (cf. [Mp, Theorem 6.4.17]). Now suppose that f and g are not connected by any path in W. Then there exists an open neighborhood Z in [0,1] such that the restrictions of f,g to Z are not connected by any path in the restriction $W|_Z$ of W. We may assume that Z is a finite sum of small open intervals if necessary by considering reparameterization of the domains of f and g, or by induction (One can use the density of $L_{n+1}(\mathfrak{A})$ for replacing such a_i, b_j with elements of $L_{n+1}(\mathfrak{A})$ even in the inductive process). Moreover, we may assume that the supports of the functions $\{h_j\}_{j=1}^n$, $\{k_j\}_{j=1}^n$ are closed intervals $[s_{j-1}, s_j]$ with $s_0 = 0$ and $s_n = 1$ which are disjoint when $|j - j'| \ge 2$ for $j, j' \in \{1, \dots, n\}$ (this is possible from that the covering dimension of [0,1] is one (cf. [Ng] or [Pr])), and $\{h_j\}_{j=1}^n$, $\{k_j\}_{j=1}^n$ are constant on closed intervals $[s'_{j-1}, s'_j]$ contained in $[s_{j-1}, s_j]$ and not contained in other supports respectively. Furthermore, we may assume that Z is contained in a finite sum of some intervals $[s'_{i-1}, s'_i]$ for some j, which deduces the contradiction. Therefore, we obtain $\operatorname{acsr}(C([0,1]) \otimes \mathfrak{A}) \leq n+1$, as desired. \Box

Remark 2.1. It is clear that a unital C^* -algebra in the statement can be replaced by a unital complex Banach algebra. Note that the result of Nistor [Ns1, Lemma 2.4] holds even for unital complex Banach algebras. Also note in general that $\sum_{j=1}^{n} f_j^* f_j$ is invertible if and only if $\sum_{j=1}^{n} g_j f_j$ is invertible for some g_j $(1 \le j \le n)$.

Remark 2.2. Our theorem 2 is stronger than the usual product formula of the stable rank in the case of $C([0,1]^2) \otimes \mathfrak{A}$ for \mathfrak{A} a C^* -algebra:

$$\operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) \le \operatorname{sr}(C([0,1]^2)) + \operatorname{sr}(\mathfrak{A}) = 2 + \operatorname{sr}(\mathfrak{A}),$$

which is obtained by using (F2) twice, or by Theorem 2. On the other hand, it is obtained by [NOP, Proposition 5.3] that $\operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) \geq 2$ for any unital C^* -algebra \mathfrak{A} . Also note $\operatorname{sr}(C([0,1]^2) \otimes \mathfrak{A}) \geq \operatorname{sr}(C([0,1]) \otimes \mathfrak{A}) \geq \operatorname{sr}(\mathfrak{A})$ by [Rf1, Theorem 4.3] since \mathfrak{A} is a quotient C^* -algebra of $C([0,1]) \otimes \mathfrak{A}$ which is also a quotient of $C([0,1]^2) \otimes \mathfrak{A}$.

Corollary 3. Let \mathfrak{A} be a C^* -algebra. Then

$$\operatorname{sr}(C([0,1]^n) \otimes \mathfrak{A}) \leq \begin{cases} \operatorname{sr}(\mathfrak{A}) + m & \text{if } n = 2m \text{ even,} \\ \operatorname{sr}(\mathfrak{A}) + m + 1 & \text{if } n = 2m + 1 \text{ odd.} \end{cases}$$

Therefore, we obtain

$$\operatorname{sr}(C([0,1]^n) \otimes \mathfrak{A}) \le \operatorname{sr}(\mathfrak{A}) + \{n/2\},\$$

where $\{x\}$ means the least integer greater than or equal to x.

Proof. When \mathfrak{A} is nonunital, we note that $C([0,1]^n) \otimes \mathfrak{A}$ is a closed ideal of $C([0,1]^n) \otimes (\mathfrak{A}^+)$. Thus we may assume that \mathfrak{A} is unital as in the proof of Theorem 2. Note that $C([0,1]^n) \otimes \mathfrak{A}$ is isomorphic to $(\otimes^m C([0,1]^2)) \otimes \mathfrak{A}$ when n = 2m, and to $(\otimes^m C([0,1]^2)) \otimes C([0,1]) \otimes \mathfrak{A}$ when n = 2m + 1. Thus, use Theorem 2 *m*-times repeatedly when n = 2m. When n = 2m + 1, use Theorem 2 *m*-times and (F2) once. \Box

Remark. Note by [Rf1, Proposition 1.7] that $sr(C([0,1]^n)) = m + 1$ when n = 2m or n = 2m + 1.

More generally, it is obtained that

Theorem 4. Let X be a locally compact Hausdorff space with $n = \dim \beta X$ for βX the Stone-Čech compactification of X. Then it follows that for any C^* -algebra \mathfrak{A} ,

 $\operatorname{sr}(C_0(X) \otimes \mathfrak{A}) \leq \operatorname{sr}(C([0,1]^n) \otimes (\mathfrak{A}^+)) \leq \operatorname{sr}(\mathfrak{A}) + \{n/2\}.$

Proof. Use [NOP, Theorem 1.13] for the left inequality, and use Corollary 3 for the right inequality. \Box

Remark. This is the formula conjectured at [NOP, p.980] (precisely, when X is compact). When X is a finite CW-complex of dimension n and \mathfrak{A} is unital, the first left inequality is in fact the equality by [NOP, Proposition 1.7]. When X is a normal (or σ -compact) locally compact Hausdorff space, we have dim $X = \dim \beta X$ (cf. [Pr, Proposition 6.4.3 and Corollary 10.1.7]).

Acknowledgment. The author would like to thank Hiroyuki Osaka for some stimulating conversations.

References

- [B1] B. Blackadar, K-Theory for Operator algebras, Second Edition, Cambridge, 1998.
- [BP] L.G. Brown and G.K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
- [Eh] N. Elhage Hassan, Rangs stables de certaines extensions, J. London Math. Soc. 52 (1995), 605-624.
- [Mp] G.J. Murphy, C^{*}-algebras and operator theory, Academic Press, 1990.
- [Ng] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
- [NOP] M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous C*-algebra valued functions, Canad. J. Math. 53 (2001), 979-1030.
- [Ns1] V. Nistor, Stable range for tensor products of extensions of \mathcal{K} by C(X), J. Operator Theory 16 (1986), 387-396.
- [Ns2] _____, Stable rank for a certain class of type I C^* -algebras, J. Operator Theory **17** (1987), 365–373.
- [Pr] A.R. Pears, Dimension theory of general spaces, Cambridge University Press, 1975.
- [Rf1] M.A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
- [Rf2] , The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory **17** (1987), 237-254.
- [Sd1] T. Sudo, Stable rank of the reduced C*-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc. 125 (1997), 3647-3654.
- [Sd2] _____, Stable rank of the C*-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999), 231-242.
- [Sd3] _____, Dimension theory of group C*-algebras of connected Lie groups of type I, J. Math. Soc. Japan 52 (2000), 583-590.

- $[Sd4] \quad \underbrace{, Structure \ of \ group \ C^*-algebras \ of \ Lie \ semi-direct \ products \ \mathbb{C}^n \rtimes \mathbb{R}, \ J. \ Operator \ Theory \ 46}_{(2001), \ 25-38.}$
- [Sd5] _____, Structure of group C^{*}-algebras of the generalized disconnected Dixmier groups, Sci. Math. Japon. **54** (2001), 449-454, :e4, 861-866.
- [Sd6] _____, Structure of group C^{*}-algebras of the generalized disconnected Mautner groups, Linear Algebra Appl. **341** (2002), 317-326.
- [ST1] T. Sudo and H. Takai, Stable rank of the C*-algebras of nilpotent Lie groups, Internat. J. Math. 6 (1995), 439-446.
- [ST2] $\frac{1}{(1997)}$, Stable rank of the C^{*}-algebras of solvable Lie groups of type I, J. Operator Theory **38** (1997), 67-86.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF THE RYUKYUS, NISHIHARA, OKINAWA 903-0213, JAPAN.

E-mail address: sudo@math.u-ryukyu.ac.jp