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Abstract. In this paper we estimate the (topological) stable rank of C�-tensor products of

C�-algebras with the algebras of continuous functions on product spaces of closed intervals.

Moreover, we give an application of this result to C�-tensor products with the algebras of

continuous functions on locally compact Hausdor� spaces.

Introduction

This article answers a somewhat standing problem raised by Rie�el [Rf1, Question 1.8]

and also conjectured but not solved in the paper by Nagisa, Osaka and Phillips [NOP, p.

990]. The problem is whether or not the stable rank of C�-tensor products of a C�-algebra A

(or more generally a complex Banach algebra) with the C�-algebra C([0; 1]2) of continuous
functions on the product space of two closed intervals can be estimated by the stable rank

of A plus 1. Symbolically,

(F1) : sr(C([0; 1]2)
 A) � sr(A) + 1:

It has been known by Rie�el [Rf1, Corollary 7.2] that for any C�-algebra A,

(F2) : sr(C([0; 1])
 A) � sr(A) + 1;

which is deduced from an interesting Rie�el's result: the same rank estimate as (F2) holds

when C([0; 1]) 
 A is replaced by a crossed product of A by the integers. See [NOP] also

for another proof of (F2) and the real rank version of the above estimate (F2), that is,

RR(C([0; 1]) 
 A) � RR(A) + 1 for any C�-algebra A (cf. [BP] for the real rank). As a

key idea of the proof of (F1), we use the absolute connected stable rank for C�-algebras,

introduced by Nistor (a stronger version of the connected stable rank of Rie�el [Rf1]) and

his result [Ns1, Lemma 2.4]. See [Eh], [Ns2], [Rf2], [Sd1-6] and [ST1-2] for some other

related works on the stable rank.

We now review and set up some de�nitions and notations as follows:

Notation. For a C�-algebra A and a compact space X , denote by C(X;A) the C�-algebra

of continuous A-valued functions onX . Set C(X) = C(X; C ). It is well known that C(X;A)
is isomorphic to the C�-tensor product C(X) 
 A (cf. [Mp, Theorem 6.4.17]). For a C�-

algebra A (or its unitization A+), its (topological) stable rank, connected stable rank and

absolute connected stable rank are denoted by sr(A), csr(A) and acsr(A) respectively ([Rf1],
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[Ns1]). By de�nition, these ranks take values in f1; 2; � � � ;1g, and sr(A) � n if and only

if the open subspace Ln(A) of An is dense in An, where (aj)
n

j=1 2 Ln(A) if and only ifP
n

j=1
a�
j
aj is invertible in A, and such elements are called left unimodular rows in algebraic

K-theory. And csr(A) � n if and only if Lm(A) is path-connected for any m � n, and
acsr(A) � n if and only if for any m � n, V \ Lm(A) is nonempty and path-connected for

any nonempty open path-connected subspace V of Lm(A) (Note that the original de�nition
of acsr(A) only assumes that V \ Lm(A) is connected, but in fact the path-connected of V
and V \Lm(A) is used in the proof of a fundamental property of acsr(A), [Ns1, Lemma 2.4]

used later. [cf. Remark of Proposition 1]). Refer to [Bl] for some elementary facts about

the stable rank.

The main results

We �rst recall that a topological space X is locally path-connected at a point p 2 X if

for any open subset U containing p, there exists an open subset V containing p such that

any two points of V can be connected by a path in U . We say that a space X is locally

path-connected if it is locally path-connected at any point p 2 X .

Proposition 1. Let X be a complete metric space and U a dense open, path-connected and

locally path-connected subspace of X and V a nonempty open path-connected subspace of X.

Then the intersection U \ V is also nonempty, path-connected and locally path-connected.

Proof. It is clear that U \ V is nonempty since U is dense in X and V is nonempty and

open.

Let x; y 2 U \ V . Since x; y 2 V and V is path-connected, there is a continuous path

ft 2 V for t 2 [0; 1] such that f0 = x and f1 = y. For any t 2 [0; 1], there exists an open ball

Ot of ft with Ot � V . Since U is dense in X , there exists gt 2 Ot \ U for t 2 [0; 1]. When

js� tj is small, gs 2 Ot \U . Since U is locally path-connected, gs and gt can be connected

by a path in Ot \ U . By induction and suitable adjustments by taking the open balls Ot

small when t is near 0 or 1, and since U is path-connected we can �nd a continuous path

ht 2 U \ V contained in a small neighborhood of the path space fft j t 2 [0; 1]g such that

h0 = x and h1 = y.
The same argument as above can be used to show that U\V is locally path-connected. �

Remark. Note by [Rf1, Corollary 8.5] that Ln(A) is connected if and only if GLn(A)0
acts transitively on Ln(A). Moreover, this in fact implies that Ln(A) can be locally path-

connected by considering the restriction of orbits under the multiplication action ofGLn(A)0
on Ln(A).

Theorem 2. Let A be a C�-algebra. Then

sr(C([0; 1]2)
A) � sr(A) + 1:

Proof. When A is nonunital, we note that C([0; 1]2)
A is a closed ideal of C([0; 1]2)
(A+).

By [Rf, Theorem 4.4], we have sr(C([0; 1]2) 
 A) � sr(C([0; 1]2) 
 (A+)). Thus, we may

assume that A is unital in the following.

Next note that C([0; 1]2)
A �= C([0; 1])
 C([0; 1])
 A. By [Ns1, Lemma 2.4],

sr(C([0; 1]2)
 A) = acsr(C([0; 1])
A):

Suppose that sr(A) � n. Note that Ln+1(C[0; 1] 
 A) = C([0; 1]; Ln+1(A)) as a space.

Indeed, for any (fj)
n+1

j=1
2 Ln+1(C[0; 1]
A), the element

P
n+1

j=1
f�
j
fj is invertible in C[0; 1]
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A. Thus,
P

n+1

j=1
f�
j
fj(t) is invertible in A for any t 2 [0; 1]. Therefore, the function t 7!

(fj(t)) 2 An+1 belongs to C([0; 1]; Ln+1(A)). Conversely, for any f 2 C([0; 1]; Ln+1(A))

with f(t) = (fj(t))
n+1

j=1
, the element

P
n+1

j=1
fj(t)

�fj(t) is invertible in A for any t. Thus the

function t 7!
P

n+1

j=1
fj(t)

�fj(t) is invertible in C([0; 1];A). Hence, (fj)
n+1

j=1
2 Ln+1(C[0; 1]


A).

Let V be a nonempty open path-connected subset of (C([0; 1])
 A)n+1. Then we show

that W = V \ C([0; 1]; Ln+1(A)) is nonempty and path-connected. Since sr(A) � n, then
Ln(A) is dense in A

n so that Ln+1(A) is dense in A
n+1. Note that Ln+1(A) is open in An+1

([Rf1, Proposition 8.2]). Thus W is nonempty. Now denote by evt(V ) (t 2 [0; 1]) the set of
evaluations (f1(t); � � � ; fn+1(t)) 2 A

n+1 for every f 2 V . Since csr(A) � sr(A) + 1 � n+ 1

by [Rf1, Corollary 4.10], Ln+1(A) is path-connected and locally path-connected from the

above remark. By Proposition 1, evt(V ) \ Ln+1(A) is path-connected and locally path-

connected for any t 2 [0; 1] since evt(V ) is open and path-connected. Therefore, any

two elements f; g 2 W can be connected by a continuous path in W since f(t) and g(t)
can be connected and locally connected in evt(W ) for any t 2 [0; 1]. Indeed, note that

C([0; 1];An+1) �= C([0; 1]) 
 An+1. Thus, f and g can be approximated by �nite sumsP
n

j=1
hj 
 aj and

P
n

j=1
kj 
 bj for aj ; bj 2 An+1 and hj ; kj 2 C([0; 1]) respectively (cf.

[Mp, Theorem 6.4.17]). Now suppose that f and g are not connected by any path in W .

Then there exists an open neighborhood Z in [0; 1] such that the restrictions of f; g to Z
are not connected by any path in the restriction W jZ of W . We may assume that Z is

a �nite sum of small open intervals if necessary by considering reparameterization of the

domains of f and g, or by induction (One can use the density of Ln+1(A) for replacing

such aj ; bj with elements of Ln+1(A) even in the inductive process). Moreover, we may

assume that the supports of the functions fhjg
n

j=1, fkjg
n

j=1 are closed intervals [sj�1; sj ]

with s0 = 0 and sn = 1 which are disjoint when jj � j0j � 2 for j; j0 2 f1; � � � ; ng (this is

possible from that the covering dimension of [0; 1] is one (cf. [Ng] or [Pr])), and fhjg
n

j=1,

fkjg
n

j=1 are constant on closed intervals [s0
j�1; s

0

j
] contained in [sj�1; sj ] and not contained

in other supports respectively. Furthermore, we may assume that Z is contained in a �nite

sum of some intervals [s0
j�1; s

0

j
] for some j, which deduces the contradiction. Therefore, we

obtain acsr(C([0; 1])
A) � n+ 1, as desired. �

Remark 2:1. It is clear that a unital C�-algebra in the statement can be replaced by a unital

complex Banach algebra. Note that the result of Nistor [Ns1, Lemma 2.4] holds even for

unital complex Banach algebras. Also note in general that
P

n

j=1
f�
j
fj is invertible if and

only if
P

n

j=1
gjfj is invertible for some gj (1 � j � n).

Remark 2:2. Our theorem 2 is stronger than the usual product formula of the stable rank

in the case of C([0; 1]2)
A for A a C�-algebra:

sr(C([0; 1]2)
A) � sr(C([0; 1]2)) + sr(A) = 2 + sr(A);

which is obtained by using (F2) twice, or by Theorem 2. On the other hand, it is obtained

by [NOP, Proposition 5.3] that sr(C([0; 1]2)
A) � 2 for any unital C�-algebra A. Also note

sr(C([0; 1]2) 
 A) � sr(C([0; 1]) 
 A) � sr(A) by [Rf1, Theorem 4.3] since A is a quotient

C�-algebra of C([0; 1])
A which is also a quotient of C([0; 1]2)
A.

Corollary 3. Let A be a C�-algebra. Then

sr(C([0; 1]n)
A) �

�
sr(A) +m if n = 2m even,

sr(A) +m+ 1 if n = 2m+ 1 odd.
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Therefore, we obtain

sr(C([0; 1]n)
A) � sr(A) + fn=2g;

where fxg means the least integer greater than or equal to x.

Proof. When A is nonunital, we note that C([0; 1]n)
A is a closed ideal of C([0; 1]n)
(A+).

Thus we may assume that A is unital as in the proof of Theorem 2. Note that C([0; 1]n)
A
is isomorphic to (
mC([0; 1]2))
A when n = 2m, and to (
mC([0; 1]2))
C([0; 1])
A when

n = 2m+ 1. Thus, use Theorem 2 m-times repeatedly when n = 2m. When n = 2m+ 1,

use Theorem 2 m-times and (F2) once. �

Remark. Note by [Rf1, Proposition 1.7] that sr(C([0; 1]n)) = m + 1 when n = 2m or

n = 2m+ 1.

More generally, it is obtained that

Theorem 4. Let X be a locally compact Hausdor� space with n = dim�X for �X the

Stone- �Cech compacti�cation of X. Then it follows that for any C�-algebra A,

sr(C0(X)
A) � sr(C([0; 1]n)
 (A+)) � sr(A) + fn=2g:

Proof. Use [NOP, Theorem 1.13] for the left inequality, and use Corollary 3 for the right

inequality. �

Remark. This is the formula conjectured at [NOP, p.980] (precisely, when X is compact).

When X is a �nite CW-complex of dimension n and A is unital, the �rst left inequality

is in fact the equality by [NOP, Proposition 1.7]. When X is a normal (or �-compact)

locally compact Hausdor� space, we have dimX = dim�X (cf. [Pr, Proposition 6.4.3 and

Corollary 10.1.7]).
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