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STABLE RANK OF C*-TENSOR PRODUCTS
WITH THE ALGEBRAS OF CONTINUOUS
FUNCTIONS ON PRODUCT SPACES OF INTERVALS
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ABSTRACT. In this paper we estimate the (topological) stable rank of C*-tensor products of
C*-algebras with the algebras of continuous functions on product spaces of closed intervals.
Moreover, we give an application of this result to C*-tensor products with the algebras of
continuous functions on locally compact Hausdorff spaces.

INTRODUCTION

This article answers a somewhat standing problem raised by Rieffel [Rfl, Question 1.8]
and also conjectured but not solved in the paper by Nagisa, Osaka and Phillips [NOP, p.
990]. The problem is whether or not the stable rank of C*-tensor products of a C*-algebra 2
(or more generally a complex Banach algebra) with the C*-algebra C([0, 1]?) of continuous
functions on the product space of two closed intervals can be estimated by the stable rank
of 2 plus 1. Symbolically,

(F1): st(C([0,1]%) @ ) < sr(2A) + 1.
It has been known by Rieffel [Rf1, Corollary 7.2] that for any C*-algebra A,
(F2): sr(C([0,1)) @A) <sr(A)+1,

which is deduced from an interesting Rieffel’s result: the same rank estimate as (F2) holds
when C([0, 1]) ® 2 is replaced by a crossed product of 2 by the integers. See [NOP] also
for another proof of (F2) and the real rank version of the above estimate (F2), that is,
RR(C(]0,1]) ® A) < RR(A) + 1 for any C*-algebra 2 (cf. [BP] for the real rank). As a
key idea of the proof of (F1), we use the absolute connected stable rank for C*-algebras,
introduced by Nistor (a stronger version of the connected stable rank of Rieffel [Rf1]) and
his result [Nsl, Lemma 2.4]. See [Eh], [Ns2], [Rf2], [Sd1-6] and [ST1-2] for some other
related works on the stable rank.
We now review and set up some definitions and notations as follows:

Notation. For a C*-algebra 2 and a compact space X, denote by C'(X,2l) the C*-algebra
of continuous 2A-valued functions on X. Set C'(X) = C(X,C). It is well known that C (X, )
is isomorphic to the C*-tensor product C(X) ® A (cf. [Mp, Theorem 6.4.17]). For a C*-
algebra 2 (or its unitization ), its (topological) stable rank, connected stable rank and
absolute connected stable rank are denoted by sr(2(), csr(2) and acsr(21) respectively ([Rf1],
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[Nsl1]). By definition, these ranks take values in {1,2,---,00}, and sr(2) < n if and only
if the open subspace L,() of 2" is dense in 2", where (a;)}_; € L, (%) if and only if
Z?Zl ajaj is invertible in 2, and such elements are called left unimodular rows in algebraic
K-theory. And csr(2) < n if and only if L,,(2() is path-connected for any m > n, and
acsr(2) < n if and only if for any m > n, V N L, () is nonempty and path-connected for
any nonempty open path-connected subspace V' of L,,(2) (Note that the original definition
of acsr(2l) only assumes that V' N L,,(2A) is connected, but in fact the path-connected of V'
and VN L, () is used in the proof of a fundamental property of acsr(2l), [Nsl, Lemma 2.4]
used later. [cf. Remark of Proposition 1]). Refer to [Bl] for some elementary facts about
the stable rank.

THE MAIN RESULTS

We first recall that a topological space X is locally path-connected at a point p € X if
for any open subset U containing p, there exists an open subset V' containing p such that
any two points of V' can be connected by a path in U. We say that a space X is locally
path-connected if it is locally path-connected at any point p € X.

Proposition 1. Let X be a complete metric space and U a dense open, path-connected and
locally path-connected subspace of X and V' a nonempty open path-connected subspace of X .
Then the intersection U NV is also nonempty, path-connected and locally path-connected.

Proof. Tt is clear that U NV is nonempty since U is dense in X and V is nonempty and
open.

Let z,y € UNYV. Since z,y € V and V is path-connected, there is a continuous path
ft € Vfort € [0,1] such that fo =  and fi = y. For any ¢ € [0, 1], there exists an open ball
O, of f; with O, C V. Since U is dense in X, there exists g, € O, NU for ¢t € [0,1]. When
|s — t| is small, g; € O, NU. Since U is locally path-connected, gs and g; can be connected
by a path in O; N U. By induction and suitable adjustments by taking the open balls Oy
small when ¢ is near 0 or 1, and since U is path-connected we can find a continuous path
hi € UNYV contained in a small neighborhood of the path space {f:|t € [0,1]} such that
hozxandhl =Y.

The same argument as above can be used to show that UNV is locally path-connected. [

Remark. Note by [Rfl, Corollary 8.5] that L, (2) is connected if and only if GL,(2)o
acts transitively on L, (). Moreover, this in fact implies that L, () can be locally path-
connected by considering the restriction of orbits under the multiplication action of GL,,(2)o
on L, ().

Theorem 2. Let A be a C*-algebra. Then

st(C([0,1]?) ® ) < sr(A) + 1.

Proof. When 2l is nonunital, we note that C([0, 1]?) @2l is a closed ideal of C([0, 1]?)® (AT).
By [Rf, Theorem 4.4], we have sr(C([0,1]?) ® 2) < sr(C([0,1]?) ® (&)). Thus, we may
assume that 2 is unital in the following.

Next note that C'([0,1]?) ® 2 = C([0,1]) ® C([0,1]) ® A. By [Nsl, Lemma 2.4],

st(C([0,1]*) ® &) = acsr(C([0, 1]) ® 2A).

Suppose that sr(A) < n. Note that L,1(C[0,1] @ A) = C([0,1], L,+1(2)) as a space.
Indeed, for any (f]);‘ill € L,+1(C[0,1]®%), the element Z;‘ill f7 fj is invertible in C[0, 1]®



STABLE RANK OF C*-TENSOR PRODUCTS 577

2A. Thus, E;L;l [ f;(t) is invertible in 2 for any ¢ € [0,1]. Therefore, the function ¢ —
(fj(t)) € A"+ belongs to C([0,1], Ly+1(2A)). Conversely, for any f € C([0,1], Lnt1(A))
with f(t) = (f; (t));’ill, the element Z;jll fi()*f;(t) is invertible in 2 for any ¢. Thus the
function ¢ — Z;Lill £ (@®)* f;(t) is invertible in C([0,1],2(). Hence, (fJ);L;rl1 € L,+1(C0,1]®

Let V be a nonempty open path-connected subset of (C'([0,1]) ® %)"*!. Then we show
that W =V n C([0,1], Ly+1(2)) is nonempty and path-connected. Since sr() < n, then
L, () is dense in A™ so that L, (%) is dense in A"+, Note that L, () is open in A"*!
([Rf1, Proposition 8.2]). Thus W is nonempty. Now denote by ev, (V') (¢t € [0, 1]) the set of
evaluations (f1(t), -+, fat1(t)) € A™TL for every f € V. Since csr(™A) <sr(A) +1<n+1
by [Rf1, Corollary 4.10], L,+1(2) is path-connected and locally path-connected from the
above remark. By Proposition 1, evy(V) N L,11(2) is path-connected and locally path-
connected for any t € [0,1] since ev,(V) is open and path-connected. Therefore, any
two elements f,g € W can be connected by a continuous path in W since f(¢) and g(t)
can be connected and locally connected in ev,(W) for any ¢ € [0,1]. Indeed, note that
C([0,1],4"*1) = C(]0,1]) ® A™*L. Thus, f and g can be approximated by finite sums
i hi ®aj and YU k; @b for aj,b; € AT and hy, k; € C([0,1]) respectively (cf.
[Mp, Theorem 6.4.17]). Now suppose that f and g are not connected by any path in .
Then there exists an open neighborhood Z in [0,1] such that the restrictions of f, g to Z
are not connected by any path in the restriction W|z of W. We may assume that Z is
a finite sum of small open intervals if necessary by considering reparameterization of the
domains of f and g, or by induction (One can use the density of L,1(2) for replacing
such a;,b; with elements of L,;1(2) even in the inductive process). Moreover, we may
assume that the supports of the functions {h;}7_,, {k;}}_; are closed intervals [s; 1, s;]
with sg = 0 and s,, = 1 which are disjoint when |j — j'| > 2 for j,5' € {1,---,n} (this is
possible from that the covering dimension of [0, 1] is one (cf. [Ng] or [P1])), and {h;}7_,,
{k;}%_, are constant on closed intervals [s” ;,s] contained in [s;_1, s;] and not contained
in other supports respectively. Furthermore, we may assume that Z is contained in a finite
sum of some intervals [s}_,, s%] for some j, which deduces the contradiction. Therefore, we
obtain acsr(C([0,1]) ® 2A) <n + 1, as desired. O

Remark 2.1. Tt is clear that a unital C*-algebra in the statement can be replaced by a unital
complex Banach algebra. Note that the result of Nistor [Nsl, Lemma 2.4] holds even for
unital complex Banach algebras. Also note in general that E?Zl [ f; is invertible if and

only if Z?Zl g; f; is invertible for some g; (1 < j < n).

Remark 2.2. Our theorem 2 is stronger than the usual product formula of the stable rank
in the case of C([0,1]?) ® 2 for A a C*-algebra:

st(C([0,1]%) ® A) < sr(C([0,1]%)) + sr(A) = 2 + sr(2),

which is obtained by using (F2) twice, or by Theorem 2. On the other hand, it is obtained
by [NOP, Proposition 5.3] that sr(C/([0,1]?) ®2() > 2 for any unital C*-algebra . Also note
st(C([0,1]%) @A) > sr(C([0,1]) ® A) > sr(A) by [Rfl, Theorem 4.3] since A is a quotient
C*-algebra of C(]0,1]) ® 2 which is also a quotient of C([0,1]?) @ .

Corollary 3. Let 2 be a C*-algebra. Then

sr(A) +m  if n = 2m even,

st(C([0,1]") @) < { st(A)+m+1 ifn=2m+1 odd.
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Therefore, we obtain
st (C([0, 1]") & 2) < se(@) + {n/2},

where {x} means the least integer greater than or equal to x.

Proof. When 2l is nonunital, we note that C(]0, 1]™)®%2l is a closed ideal of C'([0,1]™)® (AT).
Thus we may assume that 2 is unital as in the proof of Theorem 2. Note that C([0,1]") ®2
is isomorphic to (®™C([0, 1]?)) ®2A when n = 2m, and to (™ C([0, 1]?))®C([0, 1]) @A when
n = 2m + 1. Thus, use Theorem 2 m-times repeatedly when n = 2m. When n = 2m + 1,
use Theorem 2 m-times and (F2) once. O

Remark. Note by [Rfl, Proposition 1.7] that sr(C([0,1]")) = m + 1 when n = 2m or
n=2m+1.

More generally, it is obtained that

Theorem 4. Let X be a locally compact Hausdorff space with n = dim 8X for X the
Stone-Cech compactification of X. Then it follows that for any C*-algebra 2,

st(Co(X) ®2) < se(C (0, 1) © (A7) < se(@) + {n/2}.

Proof. Use [NOP, Theorem 1.13] for the left inequality, and use Corollary 3 for the right
inequality. O

Remark. This is the formula conjectured at [NOP, p.980] (precisely, when X is compact).
When X is a finite CW-complex of dimension n and 2l is unital, the first left inequality
is in fact the equality by [NOP, Proposition 1.7]. When X is a normal (or o-compact)
locally compact Hausdorff space, we have dim X = dim X (cf. [Pr, Proposition 6.4.3 and
Corollary 10.1.7]).
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