SOME RESULTS ON IDEALS OF BCK-ALGEBRAS

ZHAN JIANMING AND TAN ZHISONG

Received August 16, 2002

ABSTRACT. In this paper, we introduce a special set in a BCK-algebra, and we give an example in which special set is not an ideal. We obtain a condition for this special set to be an ideal. Using this special set, we establish an equivalent condition of an ideal.

1. Introduction and Preliminaries The notion of BCK-algebras was proposed by Imai and Ieski in 1966. For the general development of BCK-algebras, the ideal theory plays an important role. In this paper, we introduce a special set in a BCK-algebra, and give an example in which special set is not an ideal. We obtain a condition for this special set to be an ideal. Using this special set, we establish an equivalent condition of an ideal.

By a BCK-algebra we mean algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

```
(I) ((x * y) * (x * z)) * (z * y) = 0
```

(II)
$$(x * (x * y)) * y = 0$$

(III)
$$x * x = 0$$

$$(IV) 0 * x = 0$$

(V)
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$

for all $x, y, z \in X$.

We can define a partial ordering " \leq " on X by $x \leq y$ if and only if x*y=0. Let $\mathbb N$ denote the set of all positive integers. For any x and y of a BCK-algebra X, let $x*y^k$ denote $(\cdots\cdots((x*y)*y)\cdots\cdots)*y$ in which y occurs k times, where $k\in\mathbb N$. A BCK-algebra X is said to be K-fold positive implicative if $(x*z^k)*(y*z^k)=(x*y)*z^k$ for all $x,y,z\in X$ and $k\in\mathbb N$. A nonempty subset S of a BCK-algebra X is called a subalgebra of X if $x*y\in S$ whenever $x,y\in S$

A nonempty subset I of a BCK-algebra X is called an ideal of X if

- $(I1) \ 0 \in I$
- (I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

2. Main Results

Definition 2.1 For any $a, b \in X$ and $k \in \mathbb{N}$, we define $(a^k; b^k) = \{x \in X \mid (x * a^k) * b^k = 0\}$ Obviously, $0 \in (a^k; b^k)$ for all $a, b \in X$ and $k \in \mathbb{N}$.

Proposition 2.2 Let $a, b \in X$ and $k \in \mathbb{N}$. If $x \in (a^k; b^k)$, then $x * y \in (a^k; b^k)$ for all $y \in X$, and so $(a^k; b^k)$ is a subalgebra of X.

Proof. Assume that $x \in (a^k; b^k)$. Then $((x * y) * a^k) * b^k = ((x * a^k) * y) * b^k = 0 * y = 0$ for all $y \in X$. Hence $x * y \in (a^k; b^k)$ for all $y \in X$.

The following example shows that there exist $a, b \in X$ and $k \in \mathbb{N}$ such that $(a^k; b^k)$ is not an ideal of X.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

 $[\]label{eq:Keywords} \textit{Key words and phrases}. \ \textit{K-} \textbf{fold positive implicative } \textit{BCK-} \textbf{algebras}, \textbf{ideal}, \textbf{quasi-} \textbf{ideal}.$

Example 2.3 Consider a BCK-algebra $X = \{0, a, b, c, d\}$ with the following Cayley table

0	0	0	0	0	0
a	a	0	a	0	0
b	b	b	0	\dot{b}	b
c	c	a	c	0	a
d	d	d	d	d	0

Then $(d;b) = \{0,a,b,d\}$ is not an ideal of X because $c * d = a \in (d;b)$ and $d \in (d;b)$, but $c \not\in (d;b)$.

We state a condition for a set $(a^k; b^k)$ to be an ideal.

Theorem 2.4 If X is K-fold positive implicative BCK-algebra, then $(a^k; b^k)$ is an ideal of X for all $a, b \in X$ and $k \in \mathbb{N}$.

Proof. Let $x, y \in X$ be such that $x * y \in (a^k; b^k)$ and $y \in (a^k; b^k)$. Then $0 = ((x * y) * a^k) *$ $b^{k} = ((x*a^{k})*(y*a^{k}))*b^{k} = ((x*a^{k})*b^{k})*((y*a^{k})*b^{k}) = ((x*a^{k})*b^{k})*0 = (x*a^{k})*b^{k}$ and so $x \in (a^k; b^k)$. Therefore $(a^k; b^k)$ is an ideal of X.

Using the set $(a^k; b^k)$, we establish a condition for a subset I of X to be an ideal of X.

Theorem 2.5 Let I be a nonempty subset of X. Then I is an ideal of X if and only if $(a^k; b^k) \subseteq I$ for every $a, b \in I$ and $k \in \mathbb{N}$.

Proof. Assume that I is an ideal of X and let $a, b \in I$ and $k \in \mathbb{N}$. If $x \in (a^k; b^k)$, then $(x*a^k)*b^k=0\in I$. Since $a,b\in I$, by using (I2) repeatedly we get $x\in I$. Hence $(a^k; b^k) \subseteq I$.

Conversely, suppose that $(a^k; b^k) \subseteq I$ for all $a, b \in I$ and $k \in \mathbb{N}$. Note that $0 \in (a^k; b^k) \subseteq I$ I. Let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then

$$\begin{array}{lll} (x*(x*y)^k)*y^k & = & ((x*(x*y)^k)*y)*y^{k-1} \\ & = & ((x*y)*(x*y)^k)*y^{k-1} \\ & = & (((x*y)*(x*y))*(x*y)^{k-1})*y^{k-1} \\ & = & (0*(x*y)^{k-1})*y^{k-1} = 0 \end{array}$$

and thus $x \in ((x * y)^k; y^k) \subseteq I$. Hence I is an ideal of X. This completes the proof. We use the notation $x \wedge y$ instead of y * (y * x) for all $x, y \in X$.

Definition 2.6([5]) A nonempty subset I of X is called a quasi-ideal of X if

- (i) $0 \in I$
- (ii) $x \in I$ and $y \in X$ imply $y \land x \in I$ and $x \land y \in I$

Theorem 2.7 For every $a, b \in X$ and $k \in \mathbb{N}$, the set $(a^k; b^k)$ is a quasi-ideal of X.

Proof. Note that $0 \in (a^k; b^k)$. Let $x \in (a^k; b^k)$ and $y \in X$. Then $((y \wedge x) * a^k) * b^k =$ $((x*(x*y))*a^k)*b^k = ((x*a^k)*b^k)*(x*y) = 0*(x*y) = 0, \text{ and so } y \land x \in (a^k;b^k).$ Now we get

$$\begin{array}{lll} ((x \wedge y) * a^k) * b^k & = & ((y * (y * x)) * a^k) * b^k \\ & = & ((y * a^k) * (y * x)) * b^k \\ & = & (((y * a) * (y * x)) * a^{k-1}) * b^k \\ & \leq & ((x * a) * a^{k-1}) * b^k \\ & = & (x * a^k) * b^k = 0 \end{array}$$

and hence $((x \wedge y) * a^k) * b^k = 0$ which shows that $x \wedge y \in (a^k; b^k)$. Therefore $(a^k; b^k)$ is a quasi-ideal of X. This completes the proof.

References

- [1] Y. B. Jun, Some results on ideals of BCK-algebras, Sci. Math. Japon online, 4(2001), 411-414.
- [2] J. Meng, On ideals in BCK-algebras, Math. Japon. $\mathbf{40} (1994)$, 143-154
- [3] Zhan Jianming & Tan Zhisong, On the BCK-KG part in BCI-algebras, Sci Math. Japon. ${\bf 55}(2002),\ 149\text{-}152$
- [4] Zhan Jianmimg & Tan Zhisong. On n-maps of BCK-algebras, Sci. Math. Japon. ${\bf 56}(2002), 387-390$
- [5] T. Sakuragi. On fuzzy quasi-ideals and their radicals in a commutative BCK-algebras, Math. Japon. 46(1997), 485-490

Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, P.R. China

E-mail: zhan jian ming@hot mail.com