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ON THE SECOND ORDER APPROXIMATION OF THE RISK OF
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Abstract. This paper deals with the problem of sequential point estimator of the

mean under the general multivariate continuous distribution. As a loss function, we

consider the square loss plus sample size times cost. Under this loss, the second term of

the regret can be shown as the cost goes to zero. Also the negative regret is discussed.

1. Introduction

Let p � 1 vectors X;X1;X2; � � � be independent observations from a population which

has a continuous known distribution form with unknown parameters. We denote � and �

by mean vector and covariance matrix (j�j 6= 0): Given sample size n, we want to estimate

� by a sample �Xn and we su�er a loss

Ln = ( �Xn � �)0( �Xn � �) + cn; (1:1)

where c > 0 is a cost par one observation. The risk is

Rn = ELn =
1

n
tr� + cn; (1:2)

which is minimized by using the optimal �xed sample size nc =

r
tr�

c
, when � is known.

Then the corresponding minimum �xed sample size risk is Rnc = 2cnc:When � is unknown,

the optimal sample size nc cannot be used, and there is no �xed sample size rule that will

achieve the risk Rnc . For this case, we consider the following stopping rule

Nc = N = inf

(
n � m j n �

r
trSn

c

)
; (1:3)

where Sn =
Pn

i=1(Xi � �Xn)(Xi � �Xn)
0
=n and m may depend on c. We de�ne the risk for

the stopping time N .

R
�

c
= E

�
( �XN � �)0( �XN � �) + cN

	
(1:4)

and the regret !(c) = R
�

c
�Rnc:

In this paper, we shall give the second order approximation of the regret !(c) as c! 0.

This problem has been dealt by many authors. Many of them considered the loss Ln =

A( �Xn ��)0( �Xn � �) + n instead of Ln in (1.1) and treated the problem as A!1 instead

of c ! 0: This model in this paper seems to be more natural. When p = 1 and a normal

distribution, Robbins [12] gave a numerical example of the expectation of N by showing that

the sample mean �Xn and Sm; � � � ; Sn(n = m;m+ 1; � � � ) are independent. Also under the

same situation, Starr [14] has given R�

c=Rnc ! 1 and the much stronger result !(c) = O(1)
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has been derived by Starr and Woodroofe [15]. Furthermore, Woodroofe [19] has given the

second order approximation of the regret of the procedure as c! 0

!(c) =
1

2
c+ o(c): (1:5)

In these papers, the delay m does not depend on c. In a multivariate normal population,

Khan [7] and Rohatgi and O'Neill [13] considered the sequential estimation problems under

the assumption that the covariance matrix is a diagonal matrix with unknown elements.

For the trivial extension of diagonal matrix, Ghosh, Sinha and Mukhopadyay [6] and Wang

[18] have given that the regret is !(c) = O(c); and for the stopping time, Ghosh et al.

have given numerical values by simulation and Wang has given exact distribution. For

non-normal case, Starr and Woodroofe [16] treated the mean of the exponential density and

the formula of their stopping time is di�erent from (1.3) and they showed that the regret

!(c) � O(c): For the problem that the univariate distribution is unspeci�ed, Ghosh and

Mukhopadhyay [4] and Martinsek [8] considered the same problem as one in this paper.

Ghosh et al. showed that R�(c)=Rnc ! 1 as c ! 0 and Martinsek has given the second

order approximation of !(c) by using Chow and Martinsek [2] under a little di�erent loss

mentioned above. See Ghosh , Mukhopadyay and Sen [5].

Also Takada and Nagao [17] and Nagao [10] considered the linex loss under a multivariate

normal distribution and regression model. For the �xed width con�dene region, Nagao and

Srivastava [11] considered for multivariate normal case. The problem in this paper treats

the non-normal case.

Let Uc = N(tr�=trSN)
1=2 � nc which is called the excess and the random variable U to

which Uc converges in law as c! 0 has distribution de�ned in terms of the �rst time that

the random walk Wn = 1
2

P
n

i=1(3 � (tr�)�1(Xi � �)0(Xi � �)) is positive.

2. The expectation of stopping time

We shall give the proof of the following theorem. We can assume that the mean of X is

zero vector.

Let Zn = n(tr�=trSn)
1=2

; then we have Zn =Wn + �n, where with � 2 (tr�; trSn)

Wn =
1

2

nX
i=1

(3 � (tr�)�1X 0

iXi)

and

�n =
n

2
(tr�)�1 �X 0

n
�Xn +

3

8
��5=2 n(tr(Sn ��))2(tr�)1=2:

(2:1)

Then by a routine consideration, we have Theorem 2.1.

Theorem 2.1. For stopping time N , we have

E(N � nc) = � � 0:5� 3

8
(tr�)�2Var((X � �)0(X � �)) + o(1); (2:2)

where � = E(U):

3.The derivation of the regret !(c).

The proof is mainly based on Chow, Robbins and Teicher [3], Chow and Martinsek [2]

and Martinsek [8]. Next we shall give the approximation of !(c) as c ! 0. When p = 1,

Martinsek [8] derived the expression of the risk. In this case,

!(c) = E( �X 0

N
�XN ) + cE(N) � 2cnc = E( �X 0

N
�XN � cN)

+2cE(N � nc) = cE(
1

c

�X 0

N
�XN �N) + 2cE(N � nc):

(3:1)
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The lemma in Chow, Robbins and Teicher is helpful to give the derivation of !(c). So we

mention their lemma.

Let fYn;Fn; 1 � n < 1g be a stochastic process, where Yn is Fn-measurable and put

F0 = f�;
g; Y0 = 0; Zn = Yn � Yn�1: Then we have

Lemma 3.1. (Chow, Robbins and Teicher.) If Yn � 0 (n = 1; 2; � � � ); then for any

stopping time t,

E(Yt) = E(

tX
i=1

E (ZijFi�1)) ;

where Yn =
P

n

i=1 Zi.

By Lemma 3.1,

Lemma 3.2. Let S�

n
=
Pn

i=1Xi with S
�

0 = 0. If E(N) <1, then we have

E(S�
0

N
S
�

N
) = (tr�)E(N): (3:2)

Thus we have

E(
1

c

�X 0

N
�XN �N) = E(

1

cN2
S
�
0

NS
�

N �N) = E(S�
0

NS
�

N(
1

cN2
� 1

tr�
)) = I + II; (3:3)

where

I = E
�
S
�
0

N
S
�

N
((cN2)�1 � (trSN )

�1)
�
;

and

II = E
�
S
�
0

N
S
�

N
((trSN)

�1 � (tr�)�1
�
):

(3:4)

Then we have

I = �E
�
S
�
0

N
S
�

N

(tr�)�1=2

N
Uc(

1p
cN

+
1p
trSN

)

�
: (3:5)

After some calculation, we have

Uc �
3

2
nc(N � 1)�1 +

3

8
nc(N � 1)�3=2: (3:6)

So we have to show that
nc

N
is u.i.(uniformly integrable). Also we need u.i. of some statis-

tics. So we summarize here as lemma. See Chow and Martinsek [2].

Lemma 3.3. Let Qn =
Pn

i=1X
0

i
Xi with Q0 = 0: We assume that there is positive

number Æ such that Æc�1=4 �m = o(c�1=2):

(1)

If E(X 0
X) <1; then (

nc

N
)q is u.i. for any q > 0: (3:7)

(2)

If E(X 0
X)t <1 for t � 1; then (

N

nc
)t is u.i: (3:8)

(3)

If E(X 0
X)t <1 for t � 1; then j 1

nc
S
�
0

NS
�

N jt is u.i. (3:9)
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(4)

If E(X 0
X)t <1 for t � 2; then j 1p

nc
(QN �Ntr�)jt is u.i. (3:10)

Since Uc is u.i., we have

I = �2� + o(1): (3:11)

For II; we have II = IIa + IIb, where with Vn =
P

n

i=1(Xi � �Xn)(Xi � �Xn)
0,

IIa =
(tr�)�1

nc
E
n
(S�

0

N
S
�

N
� trVN )(N � (tr�)�1trVN )

o
(3:12)

and

IIb =
1

nc
E
n
(S�

0

N
S
�

N
� trVN )(nc � (tr�)�1trVN )(trVN )

�1(N

�(tr�)�1trVN )
	
+ (tr�)�1E(

1

N
S
�
0

N
S
�

N
):

(3:13)

Then we have

IIa =
(tr�)�1

nc

n
E(S�

0

NS
�

N �QN )(N � (tr�)�1QN ) + (tr�)�1

�E( 1
N
S
�
0

NSN)
2 + (tr�)E(N) � 2(tr�)�1E(

1

N
QNS

�
0

NS
�

N)

+(tr�)�1E(
1

N
(S�

0

N
S
�

N
)2)

�
:

(3:14)

Lemma 3.4.

1

nc
E(

1

N
S
�
0

N
S
�

N
)2 = o(1); (3:15)

1

nc
E(

1

N
(S�

0

NS
�

N )
2) = (tr�)2 + 2tr�2 + o(1); (3:16)

1

nc
E(

1

N
QN (S

�
0

N
S
�

N
)) = (tr�)2 + o(1): (3:17)

Proof. By H�older inequality, we have for any set A,

1

nc
E(

1

N
S
�
0

NS
�

N)
2
IA �

1

nc

n
E(

nc

N
)2+�IA

o2=(2+�)�
E(

1

nc
S
�
0

NS
�

N)
2(2+�)=�

IA

��=(2+�)

; (3:18)

where IA is an indicator function. Thus
1

nc
E(

1

N
S
�
0

N
S
�

N
)2 is u.i. Thus by Lemma 3.3, we

have (3.15). Similarly we have for (3.16)

1

nc
E

�
1

N
(S�

0

N
S
�

N
)2
�
= E(

nc

N
)(

1

nc
S
�
0

N
S
�

N
)2:

Also for (3.17), we have the L.H.S. of (3.17)=
1

nc
E(

1

N
)(QN �Ntr�)(S�

0

NS
�

N)+
(tr�)2

nc
E(N).
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Lemma 3.5. We have

E

NX
i=1

S
�

i�1 = ENS
�

N : (3:19)

Proof. Let a be a p � 1 �xed vector. We put a0S�

N
= UN =

PN

i=1 ui with ui = a
0
Xi . Let

Yn = nUn, then we have with U0 = 0

Yn � Yn�1 = Un�1 + nun:

Thus we obtain Yn =
Pn

j=1(Uj�1 + juj). Therefore we have

ENUN = E

NX
j=1

(Uj�1 + juj) = E

NX
j=1

Uj�1 + E

NX
j=1

juj:

To prove (3.19), we must show that E
PN

j=1 Uj�1 and E
PN

j=1 juj are absolute convergences.

Thus we have

Ej
NX
j=1

jujj � E(N

NX
j=1

jujj) � (EN2)1=2fE(
NX
j=1

jujj)2g1=2:

Since
E(
PN

j=1 jujj)2 = Ef(
PN

j=1(juj j � Ejujj)) +NEju1jg2

� 2fE(
PN

j=1(jujj � Ejujj))2g+ (EN2)(Eju1j)2g

and E(
P

N

j=1(juj j � E(jujj))2 = (EN)Var(ju1j) � (EN)(E(u21); E
P

N

j=1 juj is absolute con-

vergence. Next we consider
PN

j=1 Uj�1: Thus we have jUj�1j �
Pj

i=1 juij. Then we haveP
N

j=1 jUj�1j �
P

N

i=1(N � i + 1)juij � N
P

N

i=1 juij: Thus similar caluculation as the proof

of Lemma 3.1 yields the desired conclusion.

IIa =
(tr�)�1

nc
fE(S�

0

NS
�

N �Ntr�)(N � (tr�)�1QN ) + (tr�)

�E(N � (tr�)�1QN )
2g+ 2(tr�2)(tr�)�2 + o(1):

(3:20)

We note that

2E((tr�)�1S�
0

N
S
�

N
�N)((tr�)�1QN �N) = �(tr�)�2E(S�

0

N
S
�

N
�QN )

2

+E((tr�)�1S�
0

N
S
�

N
�N)2 +E((tr�)�1QN �N)2:

(3:21)

By Lemma 3.1, we have the following lemma.

Lemma 3.6.

E(S�
0

N
S
�

N
�QN )

2 = 4E(
PN

k=1 S
�
0

k�1�S
�

k�1); (3:22)

E((tr�)�1S�
0

N
S
�

N
�N)2 = 4(tr�)�2E(

PN

k=1 S
�
0

k�1�S
�

k�1) + 4(tr�)�2

�E((X 0
X)X 0)E

PN

i=1 S
�

i�1 + f(tr�)�2E(X 0
X)2 � 1gE(N); (3:23)

E((tr�)�1QN �N)2 = ((tr�)�2E(X 0
X)2 � 1)E(N): (3:24)



482 HISAO NAGAO

Therefore we have

E((tr�)�1S�
0

N
S
�

N
�N) ((tr�)�1QN �N) = 2(tr�)�2E((X 0

X)X 0)E(N � nc)S
�

N

+((tr�)�2E(X 0
X)2 � 1)E(N):

(3:25)

Thus we obtain

IIa = �2(tr�)
�2

nc
E(X 0

XX
0)E(N � nc)S

�

N
+ 2(tr�2)(tr�)�2 + o(1): (3:26)

We shall consider the expectation
2

nc

Ea0(N �nc)S
�

N
; where a is a p� 1 �xed vector. Since

N � nc = Uc +
1
2
((tr�)�1QN �N) � �N ; we have

2

nc
Ea0(N � nc)S

�

N
=

1

nc
E
�
(tr�)�1QN �N + 2(Uc � �N)

	
a
0
S
�

N
: (3:27)

By Schwarz's inequality, we have

1

nc
Ej(Uc � �N )a

0
S
�

N
j � jjajj

nc
Ej(Uc � �N )jjS�

0

N
S
�

N
j1=2: (3:28)

Since �n is given by (3.1), we have to show that (
nc

N
)�(

1

nc

S
�
0

N
S
�

N
)1=2;

(
1

nc
S
�
0

NS
�

N)
3=2 and ��5=2N(tr(SN ��))2(

1

nc
S
�
0

NS
�

N)
1=2

: are u.i. for any � > 0. Since ��1 �

(tr�)�1 + (trSN)
�1 � (tr�)�1 + (const.)(

nc

N
)5; ��� is u.i. for any � > 0: Since N(tr(SN �

�))2 =
1

N
(tr(VN �N�))2 and tr(VN �N�) = (QN �Ntr�)� 1

N
S
�
0

NS
�

N ; we can show their

uniformly integrability by H�older inequality. Therefore we have

2

nc

Ea0(N � nc)S
�

N
=

1

nc

E
�
(tr�)�1QN �N

�
a
0
S
�

N
+O(n�1=2

c
): (3:29)

Since

E((tr�)�1QN �N)a0S�

N
= 1

2
fE((tr�)�1QN �N + a

0
S
�

N
)2

�E((tr�)�1QN �N)2 � E(a0S�

N
)2g;

(3:30)

by Lemma 3.1, we have

E((tr�)�1QN �N)a0S�

N = (tr�)�1E(N)a0E(XX
0
X): (3:31)

Thus we have
2

nc
Ea0(N � nc)S

�

N = (tr�)�1a0E(XX
0
X) + o(1): (3:32)

Therefore we have

IIa = �fE(X 0
XX

0)gfE(XX
0
X)g(tr�)�3 + 2(tr�2)(tr�)�2 + o(1): (3:33)
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Next we shall calculate IIb given by (3.13). Then we have IIb = IIb1 + IIb2; where

IIb1=
1

nc

E
n
(S�

0

N
S
�

N
� trVN )(N � (tr�)�1trVN )

�
(tr�)�1QN � Uc

+�N � (tr�)�1trVN )(trVN
�
�1
o
+ (tr�)�1E(

1

N
S
�
0

N
SN);(3:34)

IIb2=
3

2

1

nc

E
n
(S�

0

N
S
�

N
� trVN )(N � (tr�)�1trVN )(N � (tr�)�1QN )

�(trVN )�1
	
: (3:35)

Since (trVN )
�1 � (const.)

n
2
c

N3
; by H�older inequality, IIb1 = 1+o(1): SinceN�(tr�)�1trVN =

N � (tr�)�1QN +
(tr�)�1

N
S
�
0

N
S
�

N
; we have

IIb2 =
3

2nc
EfS�

0

N
S
�

N
(N � (tr�)�1QN )

2(trVN )
�1g � 3

2nc
E(N

�(tr�)�1QN )
2 +

3

2nc
Ef (tr�)

�1

N
(S�

0

NS
�

N)
2(N � (tr�)�1QN )

�(trVN )�1g �
3

2nc
(tr�)�1E(

1

N
S
�
0

N
S
�

N
(N � (tr�)�1QN )):

(3:36)

Since, by H�older inequality,

1

nc
E

�
1

N
(S�

0

N
S
�

N
)2(N � (tr�)�1QN )(trVN )

�1

�
� (const)

1

nc
E
n
(
nc

N
)4

� j( 1
nc
S
�
0

N
S
�

N
)2(N � (tr�)�1QN )j

�
� (const)

1p
nc

E1=4
n
(
nc

N
)16
o

�E1=2
�

1

n2
c

(S�
0

NS
�

N)
4

�
E1=4

�
1
p
nc

(N � (tr�)�1QN )

�4

= O(
1p
nc

)

(3:37)

and since, by similar calculation,

1

nc
Ej 1
N
S
�
0

NS
�

N (N � (tr�)�1QN )j = O(
1p
nc

); (3:38)

we have

IIb2 =
3

2nc
EfS�

0

N
S
�

N
(N � (tr�)�1QN )

2(trVN )
�1g � 3

2nc
E(N

�(tr�)�1QN )
2 + o(1):

(3:39)

From (3.24), we have

E(N � (tr�)�1QN )
2 = E

�
(tr�)�2(X 0

X)2 � 1
	
E(N): (3:40)
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We shall evaluate the remainder term in IIb2.

At �rst we have

1

nc
E
n
S
�
0

N
S
�

N
(N � (tr�)�1QN )

2(trVN )
�1
o
=

1

n2
c

E
n
S
�
0

N
S
�

N
(N

�(tr�)�1QN )
2 (nc � (tr�)�1(trVN ))(trVN )

�1)
	
+

(tr�)�1

n2
c

�E
n
S
�
0

N
S
�

N
(N � (tr�)�1QN )

2
o
:

(3:41)

For the �rst term in (3.41), by Uc = N�nc� 1
2
f(tr�)�1QN�Ng+�N and H�older inequality

with the assumption E(X 0
X)4+� <1 for some � > 0; we can get that the �rst term of the

R.H.S. in (3.41) is o(1): By Lemma 3.1, we have

ES�
0

N
S
�

N
(N � (tr�)�1QN )

2 = E(1� (tr�)�1X 0
X)2E

P
N

�=1 S
�
0

��1S
�

��1

+4E
P

N

�=1E(1 � (tr�)�1X 0
X)(X 0

S
�

��1)(� � 1� (tr�)�1Q��1)

+2E
PN

�=1E(1 � (tr�)�1X 0
X)2(X 0

S
�

��1) + (tr�)E
PN

�=1(�� 1

�(tr�)�1Q��1)
2 + 2E(X 0

X)(1 � (tr�)�1X 0
X)

�E
PN

�=1(� � 1� (tr�)�1Q��1) + E(X 0
X)(1 � (tr�)�1X 0

X)2E(N):

(3:42)

Here we give the lemma.

Lemma 3.7. For �xed p� 1 vector a, we have the following formulas.

1

n2c

E

NX
�=1

S
�
0

��1S
�

��1 =
1

2
E(X 0

X) + o(1): (3:43)

1

n2c

E

NX
�=1

a
0
S
�

��1(�� 1� (tr�)�1Q��1) =
1

2
Ea0X

�(1� (tr�)�1X 0
X) + o(1): (3:44)

1

n2c

Ea0
NX
�=1

S
�

��1 =
1

n2c

Ea0NS
�

N = o(1) (3:45)

1

n2c

E

NX
�=1

(�� 1� (tr�)�1Q��1)
2 =

1

2
E(1 � (tr�)�1X 0

X)2 + o(1); (3:46)

1

n2c

E

NX
�=1

(�� 1� (tr�)�1Q��1) = o(1): (3:47)

Proof. By Lemma 3.1, we have

ENS
�
0

NS
�

N = E(X 0
X)E

1

2
N(N + 1) + E

NX
�=1

S
�
0

��1S
�

��1:
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Then we have the �rst formula in Lemma 3.7. For the next formula, we have
1

n2
c

E

NX
�=1

a
0
S
�

��1

� (� � 1 � (tr�)�1Q��1) =
1

n2
c

ENa
0
S
�

N
(N � (tr�)�1QN ) �

1

2
Ea0X(1 � (tr�)�1X 0

X) +

o(1): Let Yi = (a0Xi; 1 � (tr�)�1X 0

i
Xi)

0 (i = 1; 2; � � � ); then we have that the limiting

distribution of
1p
n

nX
i=1

Yi has a normal with covariance Ea0X(1 � (tr�)�1X 0
X): Thus by

H�older inequality, we have the desired one. For third one,
1

n2
c

Ea0
NX
�=1

S
�

��1 =
1

n2
c

Ea0NS
�

N
=

o(1): Thus we have Lemma 3.7. Thus we have

1

n2c

ES�
0

N
S
�
0

N
(N � (tr�)�1QN )

2 = (EX 0
X)E(1 � (tr�)�1X 0

X)2

+2
�
E(1 � (tr�)�1X 0

X)X 0
	�

EX(1� (tr�)�1X 0
X)
	
+ o(1):

(3:48)

Therefore we have

IIb = 3(tr�)�1
�
E(1 � (tr�)�1X 0

X)X 0
	�
EX(1 � (tr�)�1X 0

X)
	
+ 1 + o(1):

Thus from (3.33), we have

II = 2(tr�)�3E(X 0
XX

0)E(XX
0
X) + 2(tr�)�2tr�2 + 1 + o(1):

Hence the regret !(c) is given by

!(c) = c (I + II + 2E(N � nc))

= c
�
2(tr�)�3fE(X 0

XX
0)gfE(XX

0
X)g + 2(tr�2)(tr�)�2

�3

4
(tr�)�2Var(X 0

X)

�
+ o(c):

(3:49)

Theorem 3.1. If E ((X � �)0(X � �))
4+�

<1 for some � > 0 and there is positive number

Æ such that Æc�1=4 � m = o(c�1=2), the regret !(c) is given by

!(c) = c
�
2(tr�)�3fE(X � �)0(X � �)(X � �)0gfE(X � �)

�(X � �)0(X � �)g+ 2(tr�)�2tr�2

� 3

4
(tr�)�2Var((X � �)0(X � �))

�
+ o(c):

(3:50)

Instead of (1.3), we de�ne another stopping time

N
� = inf

(
n �m j n � `n

r
trSn

c

)
;

where `n = 1 +
`0

n
+ o(n�1): Let !�(c) be the regret for N�. Then by similar caluculation,

we have
E(N� � nc) = E(N � nc) + `0 + o(1)

and

!
�(c) = !(c) + o(c):
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When we use unbiased estimator Vn=(n � 1) of �, we have `0 = �1

2
. From this comment,

when we adapt unbiased estimator instead of sample covariance matrix for �, we �nd that

the method deceases the sample size, but increases MSE since both methods asymptotically

have the same regret.

4. Applications

We here only explain the case of a p-variate normal distribution. Then we have

c

2p
+ o(c) � !(c) =

c

2

tr�2

(tr�)2
+ o(c) � c

2
+ o(c):

Thus for any p and covariance matrix � the regret is bounded by amounts independent of

� as c! 0:

This theorem contains the results of many models in a multivariate analysis.

Khan [7] and Rohatagi and O'Neill [13] considered the problem of the mean vector in a p-

variate normal distribution and they assumed that the covariance matrix � = diag(�21 ; � � � ; �2p):
Then from the above Theorem, the regret is given by

!(c) =
c

2

Pp

i=1 �
4
i

(
Pp

i=1 �
2
i
)2

+ o(c):

Next we consider the intraclass correlation model under the p-variate normal distribu-

tion. Then the covariance matrix is given by, with � 1

p� 1
< � < 1; � = �

2[(1� �)Ip

+ �(1; � � � ; 1)0(1; � � � ; 1)]: Then the regret is

!(c) = c(
1 + p� 1�2

2p
) + o(c):

From this expression, we �nd that the second approximation of !(c) does not depend on

�
2.

Finally we consider a multivariate t-distribution with k degrees of freedom as an error

distribution. Let U and V be a random vector and variable, respectively, which are in-

dependent. The distribution of U is a p-variate normal distribution with mean zero and

covariance matrix � and V has chi-square distribution with k degrees of freedom. The dis-

tribution of Z = U=

p
V=k is called a multivariate t-distribution with k degrees of freedom.

See Anderson (1984). Then

Var(Z 0
Z) = 2(

k

k � 2
)2fk � 2

k � 4
tr�2 +

1

k � 4
(tr�)2g:

Then we have, since E(Z 0
ZZ

0) = 0;

!(c) = cf (k � 10)

2(k � 4)

tr�2

(tr�)2
� 3

2(k � 4)
g+ o(c)

� c(k � 13)

2(k � 4)
+ o(c) if 10 < k < 13:

Also we have when 4 < k � 10;

!(c) � c

2(k � 4)
f (k � 10)

p
� 3g+ o(c) =

c

2(k � 4)
(
k � 10� 3p

p
) + o(c):
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Therefore if we choose k as 4 < k < 13 , the regret is asymptotically negative for all p. This

shows that the sequential consideration is better even if a covariance matrix is known.

When p = 1, Martinsek [9] dealt with the negative regret through numerical examples.

Also when p = 1, Ghosh, Mukhopadhyay and Sen [5] claimed that the regret may be nega-

tive with t-distribition with k � 7:
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