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Abstract. The Dihedral group Dn acts on the complete graph Kn naturally. This

action of Dn induces the action on the set of the 1-regular spanning subgraphs of the

complete graph Kn of even order n. In this paper we calculate the number of the

equivalence classes of the 1-regular spanning subgraphs of the complete graph Kn of

even order n by this action by using Burnside's Lemma. This problem was presented

by Dr. Shun-ichiro Koh who is a physicist of Kochi University. Also we calculate the

number of the equivalence classes of the maximal matchings of the complete graph Kn

with odd order n by the group action of the Dihedral group Dn.

Let n be even and be greater than or equal to 2. Let fv0; v1; v2; � � � ; vn�1g be the

vertices of the complete graph Kn. The action to Kn of the Dihedral group Dn =

f�0; �1; � � � ; �n�1; �0; �1; � � � ; �n�1g is de�ned by

�i(vk) = v(k+i) (mod n) for 0 � i � n� 1; 0 � k � n� 1

�i(vk) = v(n+i�k) (mod n) for 0 � i � n� 1; 0 � k � n� 1

Let Xn be the set of the 1-regular spanning subgraphs of Kn. Then the above action

induces the action on Xn of the Dihedral group Dn.

The equivalence classes of X4 are given with the next �gure.

The equivalence classes of X6 are given with the next �gure.

The equivalence classes of X8 are given with the next �gure.
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We calculate the number of the equivalence classes by this group action. This problem

was presented by Dr. Shun-ichiro Koh who is a physicist of Kochi University. These

computations can be done by using Burnside's lemma.

De�nition 1. Let P be a nonempty collection of permutations on the same �nite set of

objects Y such that P is a group. Then the mathematical structure [P : Y ] is a permutation

group.

De�nition 2. Let P = [P : Y ] be a permutation group, and let � 2 P . The �xed-point set

of the permutation � is the subset Fix(�) = fy 2 Y j�(y) = yg.

De�nition 3. Let P = [P : Y ] be a permutation group. The orbit of an object y 2 Y is the

set f�(y)j� 2 Pg of all the objects onto which y is permuted.

Theorem 1. (Burnside's lemma) Let P = [P : Y ] be a permutation group with n orbits.

Then

n =
1

jP j

X
�2P

jFix(�)j

Notation 1. Let (2k + 1)!! be
Q

k

d=0(2d+ 1) for k � 0 and (�1)!! be 1.

Our main Theorem is the following:

Theorem 2. The number of the non-equivarent 1-regular spanning subgraphs of the

complete graph Kn of even order n is

1

2n
f

n�1X
i=0

R
n

i
+
n

2
(Sn + Sn�2)g

Here Rn

i
is given by

1. in the case (n, i) = 2d+1:

dX
k=0

�
2d+ 1

2k + 1

�
� (2d� 2k � 1)!!� (

n

2d+ 1
)d�k

2. in the case (n, i) = 2d:

if n=2d � 1 (mod 2) then

(2d� 1)!!� (
n

2d
)d

if n=2d � 0 (mod 2) then

dX
k=0

�
2d

2k

�
� (2d� 2k � 1)!!� (

n

2d
)d�k

And Sn is given by the following recursive formula:

S0 = 1; S2 = 1; Sn = Sn�2 + (n� 2)Sn�4 for n � 4

We must determine the numbers of the �xed points of each permutation �i and �i to

prove the Theorem by using Burnside's Lemma.
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Lemma 1. The number of the 1-regular spanning subgraphs of Kn is (n-1)!!. This is the

number of the �xed points of �0.

Proof. We prove this lemma by the induction on n. The number of the 1-regular spanning

subgraphs of K2 is one. We surpose that the number of the 1-regular spanning subgraphs

of Kn�2 is (n�3)!!. For each edge (v0; vi) of Kn , 1 � i � n�1, there are (n�3)!! 1-regular

spanning subgraphs of Kn � fv0; vig. Then totally there are (n � 1)!! 1-regular spanning

subgraphs of Kn.

Remark 1. It is easily checked that Rn
0 is equal to (n� 1)!!.

Lemma 2. If (n,i)=1 then the number of the �xed points of �i is one.

Proof. If H = fv�vn=2+�j0 � � � n=2� 1g then H is a 1-regular spanning subgraph of Kn

and �i(H) = H . Conversely, let H be a 1-regular spanning subgraph of Kn which is �xed

by �i and let v0vm be an edge of H . Since (n,i)=1, there is an integer � such that �i � m

(mod n). Then �
�

i
(v0) = vm and �

�

i
(vm) = v(m+i�) (mod n). Since �i(H) = H , we have

v0vm = vmv(m+i�) (mod n). Then we have m + i� � 0 (mod n) and 2m � 0 (mod n) and

therefore m = n=2 and v0vn=2 2 H . Since f��
i
(0)j0 � � � n� 1g = f0; 1; 2; � � � ; n� 1g, H

is uniquely determined by v0vn=2 and H = fv�vn=2+�j0 � � � n=2� 1g. Then the number

of the �xed points of �i is one.

Notation 2. Let Mn be the 1-regular spanning subgraph fv�vn=2+�j0 � � � n=2 � 1g of

Kn.

Lemma 3. If (n,i)=2 and n � 2 (mod 4) then the number of the �xed points of �i is n/2

and if (n,i)=2 and n � 0 (mod 4) then the number of the �xed points of �i is n/2+1.

Proof. Since (n:i) = 2, the equation xi � m (mod n) has a solution if and only if m is even.

Then if V0 = fv0; v2; v4; � � � ; vn�2g and V1 = fv1; v3; v5; � � � ; vn�1g then �i(V0) = V0 and

�i(V1) = V1. Let H be a 1-regular spanning subgraph of Kn such that �i(H) = H and let

v0vm 2 H . If m is even then the edge v0vm induces a 1-regular spanning subgraph of Kn=2

that is �xed by �i=2. Since (n/2, i/2)=1, the subgraph is uniquely determined by Lemma 2.

Similarly, the induced subgraph H jV1 is also unique 1-regular spanning subgraph of Kn=2

that is �xed by �i=2 by Lemma 2. Then we have that H = Mn. Let m be odd. Since

�i(V0) = V0 and �i(V1) = V1, edge v0vm determines unique 1-regular spanning subgraph

H = fvi�v(m+i�) (mod n)j0 � � � n=2� 1g.
Therefore if n � 2 (mod 4) then there are n/2 1-regular spanning subgraph of Kn which

are �xed by �i and if n � 0 (mod 4) then there are n/2+1 1-regular spanning subgraph of

Kn which are �xed by �i. We have the results.

Lemma 4. The number of the way of dividing 2m objects into m sets which contain two

objects is (2m� 1)!!.

Proof. This is easily veri�ed by the induction on m and this number is essentially same the

number given in Lemma 1.

Lemma 5. If (n,i)=2d+1 then the number of the �xed points of �i is

dX
k=0

�
2d+ 1

2k + 1

�
� (2d� 2k � 1)!!� (

n

2d+ 1
)d�k
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Proof. Let V0 = fv0; v2d+1; v4d+2; � � � ; vn�2d�1g; V1 = fv1; v2d+2; v4d+3; � � � ; vn�2dg,
V2 = fv2; v2d+3; v4d+4; � � � ; vn�2d+1g, � � � , V2d = fv2d; v4d+1; v4d+2; � � � ; vn�1g.

Since (n; i) = 2d+ 1, the equation xi � m (mod n) has a solution if and only if 2d+ 1

divides m. Then we have �i(Vk) = Vk for 0 � k � 2d. Let H be a 1-regular spanning

subgraph of Kn which is �xed by �i and let v�v� be an edge of H . If v� 2 Vk and v� 2 Vk

then the induced subgraph H jVk is a 1-regular spanning subgraph of Kn=(2d+1) which is

�xed by �i=(2d+1) and it is unique 1-regular spanning subgraph Mn=(2d+1) by Lemma 2.

If v� 2 Vk1 and v� 2 Vk2 then the induced subgraph H jVk1 [ Vk2 is a 1-regular spanning

subgraph of K2n=(2d+1) which is �xed by �i=(2d+1). Since (2n=(2d+ 1); i=(2d+ 1)) = 2 and

2n=(2d + 1) � 0 (mod 4), the number of the 1-regular spanning subgraphs of K2n=(2d+1)

which is �xed by �i=(2d+1) is n=(2d+1)+1 by Lemma3 and one 1-regular spanning subgraph

among these subgraphs is M2n=(2d+1). We calculate the number of the case that 2k+1 sets

of vertices make 1-regular spanning subgraph Mn=(2d+1) and the remainning 2(d � k) sets

of vertices make 1-regular spanning subgraph with pair. There are
�
2d+1
2k+1

�
� (2d� 2k� 1)!!

combinations of the sets of vertices like these by Lemma 4. Then, if k < d then the number

of the 1-regular spanning subgraphs �xed by �i which are not Mn is�
2d+ 1

2k + 1

�
� (2d� 2k � 1)!!� (

n

2d+ 1
)d�k:

If k = d then the number of the 1-regular spanning subgraphs �xed by �i is one and this

subgraph is Mn. Therefore the total number of the 1-regular spanning subgraphs �xed by

�i is given by

dX
k=0

�
2d+ 1

2k + 1

�
� (2d� 2k � 1)!!� (

n

2d+ 1
)d�k

We have the results.

Lemma 6. If (n; i) = 2d and n=(2d) � 1 (mod 2) then the number of the �xed points of �i
is

(2d� 1)!!� (
n

2d
)d

and if (n; i) = 2d and n=(2d) � 0 (mod 2) then the number of the �xed points of �i is

dX
k=0

�
2d

2k

�
� (2d� 2k � 1)!!� (

n

2d
)d�k

Proof. Let V0 = fv0; v2d; v4d; � � � ; vn�2dg; V1 = fv1; v2d+1; v4d+1; � � � ; vn�2d+1g,
V2 = fv2; v2d+2; v4d+2; � � � ; vn�2d+2g, � � � ; V2d�1 = fv2d�1; v4d�1; v6d�1; � � � ; vn�1g. Since

(n; i) = 2d, the equation xi � m (mod n) has a solution if and only if 2d divides m. Then

�i(Vk) = Vk for 0 � k � 2d� 1.

Let n=(2d) be odd. Since jVkj = n=(2d) is odd, H jVk is not 1-regular spanning subgraph
of Kn=(2d) for all k. Accordingly, two vertices of each edge of H are contained in two subsets

of vertices. If v� 2 Vk1 and v� 2 Vk2 for an edge v�v� of H then the induced subgraph

H jVk1[Vk2 is a 1-regular spanning subgraph ofKn=d which is �xed by �i=(2d). Since n=d � 2

(mod 4), the number of such 1-regular spanning subgraphs of Kn=d which is �xed by �i=(2d)
is n=(2d). Since the number of the pairings of V0; V1; � � � ; V2d�1 is (2d � 1)!! , the total

number of the 1-regular spanning subgraphs of Kn which is �xed by �i=(2d) is

(2d� 1)!!� (
n

2d
)d
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Next let n=(2d) be even. Since jVkj = n=(2d) is even, if there is some edge v�v� 2 H

such that v� and v� are both contained in some Vk then the induce subgraph H jVk is a

1-regular spanning subgraph of Kn=2d �xed by �i=(2d). By the essentially same augments

as above, in this case, we have that the number of the 1-regular spanning subgraphs of Kn

which is �xed by �i is

dX
k=0

�
2d

2k

�
� (2d� 2k � 1)!!� (

n

2d
)d�k

We have the results.

Lemma 7. The number of the �xed points of �0 is equal to the number of the �xed points

of �2d for all 1 � d � n=2� 1.

Proof. Let H be a 1-regular spanning subgraph of Kn �xed by �0. Then it is easily veri�ed

that �d(H) is a 1-regular spanning subgraph of Kn �xed by �2d. Conversely, if H is a 1-

regular spanning subgraph of Kn �xed by �2d then �
�1
d
(H) is a 1-regular spanning subgraph

of Kn �xed by �0. Then we have the results.

Similarly, we have the next Lemma.

Lemma 8. The number of the �xed points of �1 is equal to the number of the �xed points

of �2d+1 for all 1 � d � n=2� 1.

Lemma 9. The number of the �xed points of �0 is equal to the number of the 1-regular

spanning subgraphs of Kn�2 �xed by �1.

Proof. Let H be a 1-regular spanning subgraph of Kn �xed by �0 and v0vm 2 H . Since

�0(v0) = v0, �(vm) must be vm. Since �(vm) = v(n+0�m) (mod n), m must be n=2. We

remove two vertices v0 and vn=2 from H and change the labels of the vertices of H from

v1; v2; � � � ; vn=2�1 to v0; v1; � � � ; vn=2�2 and from vn=2+1; vn=2+2; � � � ; vn�1 to
vn=2�1; vn=2; � � � ; vn�3. LetH

0 be the resulting graph. Since �0(H) = H , we have �n�3(H
0) =

H
0. Conversely, let H 0 be a 1-regular spanning subgraph of Kn�2 �xed by �n�3. We change

the labels of the vertices of H 0 from v0; v1; � � � ; vn=2�2 to v1; v2; � � � ; vn=2�1 and from

vn=2�1; vn=2; � � � ; vn�3 to vn=2+1; vn=2+2; � � � ; vn�1 and add the edge v0vn=2 to it. Let H be

the resulting graph. H is a 1-regular spanning subgraph of Kn �xed by �0. This corre-

spondence is one to one correspondece between the set of the 1-regular spanning subgraphs

of Kn �xed by �0 and the set of the 1-regular spanning subgraphs of Kn�2 �xed by �n�3.

Then we have the results by Lemma 8.

Lemma 10. Let Sn be the number of the �xed points of �1 for Xn. Then we have

S4 = 3; S6 = 7 and Sn = Sn�2 + (n� 2)Sn�4 for all n � 8:

Proof. By the direct computation, we can easily checked that S4 = 3 and S6 = 7. We study

two kinds of constitutions that compose 1-regular spanning subgraphs of Kn �xed by �1

inductively.

The �rst method is the following:

Let H be a 1-regular spanning subgraph of Kn�2 �xed by �1. We change the labels of

vertices of H from v0 to vn�1 and from v1; v2; � � � ; vn�3 to v2; v3; � � � ; vn�2 and add an edge

v0v1 to it. Let H0 be the resulting graph. Then H0 is a 1-regular spanning subgraph of Kn

such that �1(H0) = H0. We change the labels of vertices of H from vn=2; vn=2+1; � � � ; vn�3
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to vn=2+2; vn=2+3; � � � ; vn�1 and add an edge vn=2vn=2+1 to it. Let H1 be the resulting graph.

Then H1 is a 1-regular spanning subgraph of Kn such that �1(H1) = H1.

The second method is the following:

Let H be a 1-regular spanning subgraph of Kn�4 �xed by �1. We change the labels of

the vertices of H from v0 to vn�2 and from v1; v2; � � � ; vn�5 to v3; v4; � � � ; vn�3. Let H0

be the graph which is added edges v1v2 and v0vn�1 to it and H1 be the graph which is

added edges v0v2 and v1vn�1 to it. Then H0 and H1 are 1-regular spanning subgraphs

of Kn �xed by �1. For each 1 � i � n=2 � 2, we change the labels of the vertices of H

from v0 to vn�1 and from v1; v2; � � � ; vi to v2; v3; � � � ; vi+1 and from vi+1; vi+2; � � � ; vn�i�4
to vi+3; vi+4; � � � ; vn�i�2 and from vn�i�3; vn�i�2; � � � ; vn�5 to vn�i; vn�i+1; � � � ; vn�2. Let
H2i be the graph which is added two edges v0vi+2 and v1vn�i�1 and H2i+1 be the graph

which is added two edges v1vi+2 and v0vn�i�1. Then H2i and H2i+1 are 1-regular span-

ning subgraphs of Kn �xed by �1. We change the labels of the vertices of H from v0

to vn�1 and from v1; v2; � � � ; vn=2�2 to v2; v3; � � � ; vn=2�1 and from vn=2�1; vn=2; � � � ; vn�5
to vn=2+2; vn=2+3; � � � ; vn�2. Let H 0

0 be the graph which is added two edges v1vn=2 and

v0vn=2+1 and H
0

1 be the graph which is added two edges v0vn=2 and v1vn=2+1. For each

1 � i � n=2 � 2, we change the labels of the vertices of H from vi+1; vi+2; � � � ; vn=2�2 to

vi+2; vi+3; � � � ; vn=2�1 and from vn=2�1; vn=2; � � � ; vn�i�4 to vn=2+2; vn=2+3; � � � ; vn�i�1 and

from vn�i�3; vn�i�2; � � � ; vn�5 to vn�i+1; vn�i+2; � � � ; vn�1. Let H
0

2i be the graph which is

added two edges vn=2vi+1 and vn=2+1vn�i and H
0

2i+1 be the graph which is added two edges

vn=2vn�i and vn=2+1vi+1. Then H
0

2i and H
0

2i+1 are 1-regular spanning subgraphs of Kn

�xed by �1. By these constructions, we can construct 2Sn�2 + 2 � 2 � (n=2 � 1) � Sn�4

1-regular spanning subgraphs of Kn �xed by �1. Clearly there are doubling two pieces of

each. Also, it is clear to be able to compose all the 1-regular spanning subgraphs of Kn

�xed by �1 by these methods. Then the number of the 1-regular spanning subgraphs of Kn

�xed by �1 is given by Sn�2 + (n� 2)Sn�4. We have the results.

Remark 2. Let S0 = 1 and S2 = 1. Then we have Sn = Sn�2 + (n� 2)Sn�4 for n � 4.

Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent 1-regular spanning subgraphs of Kn, n � 12

by computer. The numbers agreed with the numbers that are given by Theorem 2. The

results is as follows:

n=2 1

n=4 2

n=6 5

n=8 17

n=10 79

n=12 554

Next let n be odd and be greater than or equal to 3. Let fv0; v1; v2; � � � ; vn�1g be

the vertices of the complete graph Kn. The action to Kn of the Dihedral group Dn =

f�0; �1; � � � ; �n�1; �0; �1; � � � ; �n�1g is de�ned by

�i(vk) = v(k+i) (mod n) for 0 � i � n� 1; 0 � k � n� 1

�i(vk) = v(n+2i�k) (mod n) for 0 � i � n� 1; 0 � k � n� 1

Let Yn be the set of the maximal matchings of Kn. Then the above action induces the

action on Yn of the Dihedral group Dn.We calculate the number of the equivalence classes

by this group action.
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Theorem 3. The number of the non-equivalent maximal matcings of the complete graph

Kn with odd order n is

1

2n
fn!! + nSn�1g

Here Sn is given in Lemma 10.

Proof. This Theorem is also proved by Burnside's Lemma. To construct a maximal match-

ing we choose an isolated vertex and then choose (n � 1)=2 pairings of resulting n � 1

vertices. There are n � (n � 2)!! combinations like these by Lemma 4. Then the number

of the maximal matcings of the complete graph Kn is n!! and this number is the number

of the �xed points of Yn by �0. Since there is only one isolated vertex, �i; 1 � i � n � 1,

�xes no maximal matcings of the complete graph Kn. Let i be greater than 0 and less than

n and H be a maximal matcings of the complete graph Kn such that �i(H) = H . Since

�i(vi) = vi, vi is an isolated vertex of H . If i = 0 then we remove the vertex v0 from H

and change the labels of the vertices of H from v1; v2; � � � ; v(n�1)=2 to v0; v1; � � � ; v(n�3)=2.
Let H0 be the resulting graph. Then H0 is a 1-regular spanning subgraph of Kn�1 such

that �n�2(H0) = H0. By this construction, we can construct an one to one correspondence

between the set of the maximal matcings of the complete graph Kn such that �0(H) = H

and the set of the 1-regular spanning subgraph of Kn�1 such that �n�2(H0) = H0. If

1 � i � n � 1 then we remove the vertex vi from H and change the labels of the vertices

of H from vi+1; vi+2; � � � ; vn�1 to vi; vi+1; � � � ; vn�2. Let Hi be the resulting graph. Then

Hi is a 1-regular spanning subgraph of Kn�1 such that �2i�1 (mod n)(Hi) = Hi. By this

construction, we can construct an one to one correspondence between the set of the maxi-

mal matcings of the complete graph Kn such that �i(H) = H and the set of the 1-regular

spanning subgraph of Kn�1 such that �2i�1 (mod n)(Hi) = Hi. Then the number of the

�xed points of �i is Sn�1. Then we have the results.
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