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ON THE NUMBER OF THE NON-EQUIVALENT 1-REGULAR
SPANNING SUBGRAPHS OF THE COMPLETE GRAPHS OF EVEN
ORDER
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ABSTRACT. The Dihedral group D, acts on the complete graph K, naturally. This
action of D, induces the action on the set of the 1-regular spanning subgraphs of the
complete graph K, of even order n. In this paper we calculate the number of the
equivalence classes of the 1-regular spanning subgraphs of the complete graph K, of
even order n by this action by using Burnside’s Lemma. This problem was presented
by Dr. Shun-ichiro Koh who is a physicist of Kochi University. Also we calculate the
number of the equivalence classes of the maximal matchings of the complete graph K,
with odd order n by the group action of the Dihedral group D,.

Let n be even and be greater than or equal to 2. Let {vg,v1,vs, -+ ,vn_1} be the
vertices of the complete graph K,. The action to K, of the Dihedral group D, =

{po,p1, =+ pn—1,00,01,"++ , 0,1} is defined by
pi(vk):v(k+i) (mod n) fOTOSZSn_].,OSkSH_].
Ui(Uk) :v(n—‘ri—k) (mod n) fOT OSZSn_]-y 0§k‘§n—1
Let X,, be the set of the 1-regular spanning subgraphs of K,. Then the above action

induces the action on X,, of the Dihedral group D,,.
The equivalence classes of X, are given with the next figure.

The equivalence classes of X¢ are given with the next figure.

The equivalence classes of Xg are given with the next figure.
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We calculate the number of the equivalence classes by this group action. This problem
was presented by Dr. Shun-ichiro Koh who is a physicist of Kochi University. These
computations can be done by using Burnside’s lemma.

Definition 1. Let P be a nonempty collection of permutations on the same finite set of
objects Y such that P is a group. Then the mathematical structure [P : Y] is a permutation
group.

Definition 2. Let P = [P : Y] be a permutation group, and let 71 € P. The fixed-point set
of the permutation  is the subset Fixz(r) = {y € Y|r(y) = y}.

Definition 3. Let P = [P : Y] be a permutation group. The orbit of an object y € Y is the
set {m(y)|m € P} of all the objects onto which y is permuted.

Theorem 1. (Burnside’s lemma) Let P = [P : Y] be a permutation group with n orbits.
Then

5 3 [Fia(n)|
= — i

7] '

TEP

n

Notation 1. Let (2k + 1)!! be [T5_,(2d + 1) for k > 0 and (—1)!! be 1.
Our main Theorem is the following:

Theorem 2. The number of the non-equivarent 1-reqular spanning subgraphs of the
complete graph K, of even order n is

n—1
1 n

Here R} is given by
1. in the case (n, i) = 2d+1:

d
2d +1 n
_ —_ 1\ d—k
,;:0 <2k 1) x (2d — 2k — ! x (2d 1)

2. in the case (n, i) = 2d:
ifn/2d =1 (mod 2) then

(2d — 1)l x (%)d
ifn/2d =0 (mod 2) then
g% @Z) x (2d — 2k — 1) x (Q%)H
And S, is given by the following recursive formula:
So=1,5=1,5,=S,2+(n—2)S,—4 forn >4

We must determine the numbers of the fixed points of each permutation p; and o; to
prove the Theorem by using Burnside’s Lemma.
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Lemma 1. The number of the I-reqular spanning subgraphs of K,, is (n-1)!!. This is the
number of the fized points of po.

Proof. We prove this lemma by the induction on n. The number of the 1-regular spanning
subgraphs of K> is one. We surpose that the number of the 1-regular spanning subgraphs
of K,,_ is (n —3)!!. For each edge (vg,v;) of K,, , 1 <14 < n—1, there are (n— 3)!! 1-regular
spanning subgraphs of K,, — {vg,v;}. Then totally there are (n — 1)!! 1-regular spanning
subgraphs of K. O

Remark 1. It is easily checked that Ry is equal to (n — 1)L
Lemma 2. If (n,i)=1 then the number of the fized points of p; is one.

Proof. If H = {vaVp/240|0 < a@ <n/2—1} then H is a 1-regular spanning subgraph of K,
and p;(H) = H. Conversely, let H be a 1-regular spanning subgraph of K,, which is fixed
by p; and let vov,, be an edge of H. Since (n,i)=1, there is an integer a such that ai = m
(mod n). Then p§(vo) = vm and pf(Vm) = V(mia) (mod n)- Since p;(H) = H, we have
V0Um = UmU(m+ia) (mod n)- Lhen we have m +ia =0 (mod n) and 2m = 0 (mod n) and
therefore m = n/2 and vov,/, € H. Since {p§(0)|[0 <a <n -1} ={0,1,2,--- ,n -1}, H
is uniquely determined by vov, /2 and H = {vaVn/244]0 < a <n/2—1}. Then the number
of the fixed points of p; is one. O

Notation 2. Let M, be the I-reqular spanning subgraph {vav,/244]0 < a < n/2 — 1} of
K,.

Lemma 3. If (n,i)=2 and n = 2 (mod 4) then the number of the fized points of p; is n/2
and if (n,i)=2 and n =0 (mod 4) then the number of the fized points of p; is n/2+1.

Proof. Since (n.i) = 2, the equation zi = m (mod n) has a solution if and only if m is even.
Then if Vo = {vo,v2,v4,"+* ,0n_2} and Vi = {v1,v3,v5, -+ ,vn—1} then p;(Vo) = Vj and
pi(V1) = V1. Let H be a l-regular spanning subgraph of K,, such that p;(H) = H and let
voUm € H. If m is even then the edge vovm induces a 1-regular spanning subgraph of K, /»
that is fixed by p;/2. Since (n/2,1/2)=1, the subgraph is uniquely determined by Lemma 2.
Similarly, the induced subgraph H|V} is also unique 1-regular spanning subgraph of K, /»
that is fixed by p;/» by Lemma 2. Then we have that H = M,,. Let m be odd. Since
pi(Vo) = Vo and p;(V1) = Vi, edge vov,, determines unique 1-regular spanning subgraph
H= {Uiav(erioc) (mod n)|0 S a S TL/Q - 1}

Therefore if n = 2 (mod 4) then there are n/2 1-regular spanning subgraph of K,, which
are fixed by p; and if n =0 (mod 4) then there are n/2+1 1-regular spanning subgraph of
K, which are fixed by p;. We have the results. O

Lemma 4. The number of the way of dividing 2m objects into m sets which contain two
objects is (2m — 1)

Proof. This is easily verified by the induction on m and this number is essentially same the
number given in Lemma 1. O

Lemma 5. If (n,i)=2d+1 then the number of the fized points of p; is

d
2d +1 n
(2d — 2k — 1)!! d—k
kzzo<2k+ > M )
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Proof. Let Vo = {vo,V2d+1,Vad+2, " ,Vn—2d—1}, V1 = {V1,V2d42,V4d43, " ,Un—24},
Vo = {UZ,U2d+3;U4d+4, s ;Un72d+1}; e, Vog = {'U2d,U4d+1;'U4d+2, s ;'Unfl}-

Since (n, i) = 2d + 1, the equation i = m (mod n) has a solution if and only if 2d + 1
divides m. Then we have p;(Vi) = Vi for 0 < k < 2d. Let H be a l-regular spanning
subgraph of K, which is fixed by p; and let v,vg be an edge of H. If v, € V}, and vg € V},
then the induced subgraph H|V is a l-regular spanning subgraph of K,,/(2441) which is
fixed by pi/(2441) and it is unique l-regular spanning subgraph M, 441) by Lemma 2.
If vo € Vi, and vg € Vi, then the induced subgraph H|Vi, U Vi, is a l-regular spanning
subgraph of Ky, /(24+1) Which is fixed by p;/(244+1)- Since (2n/(2d +1),i/(2d + 1)) = 2 and
2n/(2d + 1) = 0 (mod 4), the number of the 1-regular spanning subgraphs of K>, /2441)
which is fixed by p;/(244+1) is n/(2d+1)+1 by Lemma3 and one 1-regular spanning subgraph
among these subgraphs is My, /(24+1). We calculate the number of the case that 2k + 1 sets
of vertices make 1-regular spanning subgraph M, /24+1) and the remainning 2(d — k) sets

of vertices make 1-regular spanning subgraph with pair. There are (;Zﬁ) x (2d — 2k — 1)!!
combinations of the sets of vertices like these by Lemma 4. Then, if £ < d then the number

of the 1-regular spanning subgraphs fixed by p; which are not M, is
<2d +1

2k+1

) x (2d — 2k — 1)1l x (2d’11)d*k.

If £ = d then the number of the 1-regular spanning subgraphs fixed by p; is one and this
subgraph is M,,. Therefore the total number of the 1-regular spanning subgraphs fixed by
p; is given by

d
2d+1 N gk
— 2k — 1)
,;:0 <2k 1) x (2d — 2k — D! x (2d 1)

We have the results. O

Lemma 6. If (n,i) = 2d and n/(2d) = 1 (mod 2) then the number of the fized points of p;
18

(2d = D! x (55)"
and if (n,i) = 2d and n/(2d) =

k=0

0 (mod 2) then the number of the fized points of p; is
2d n
— 9k — 1) —yd—k

<2k> x (2d — 2k — D! x (2d)

Proof. Let Vo = {vo, v2d,Vad, "+ , Un—2a}, V1 = {V1, V2441, Vad41, " , Un—24+41},

Vo = {v2, V2442, Vad42," - ,VUn—2d+2}, -, Voa—1 = {V24-1,V4d—1,V6d—1," " ,Un—1}. Since
(n,i) = 2d, the equation zi = m (mod n) has a solution if and only if 2d divides m. Then
pi(Vi) =Vi for 0 <k <2d-1.

Let n/(2d) be odd. Since |Vi| = n/(2d) is odd, H|V} is not 1-regular spanning subgraph
of K, /(2q) for all k. Accordingly, two vertices of each edge of H are contained in two subsets
of vertices. If v, € Vi, and vg € V}, for an edge v,vg of H then the induced subgraph
H|Vy, UV}, is a 1-regular spanning subgraph of K, /4 which is fixed by p;/(24). Since n/d = 2
(mod 4), the number of such 1-regular spanning subgraphs of K, /4 which is fixed by p;/(2a4)
is n/(2d). Since the number of the pairings of Vi, Vi, -, Vaq_1 is (2d — 1)!I | the total
number of the 1-regular spanning subgraphs of K, which is fixed by p;/(2q) is

(2d — ) x (%)d
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Next let n/(2d) be even. Since |Vi| = n/(2d) is even, if there is some edge vovg € H
such that v, and vg are both contained in some Vj then the induce subgraph H|V} is a
1-regular spanning subgraph of K, »4 fixed by p;/(24)- By the essentially same augments
as above, in this case, we have that the number of the 1-regular spanning subgraphs of K,
which is fixed by p; is

>

2d n
—_ 9k _ 1\t 7 yd-k
2 <2k> x (2d — 2k — 1)!I x (2d)

We have the results. O

Lemma 7. The number of the fized points of oo is equal to the number of the fixed points
of 024 for all1 < d <n/2-1.

Proof. Let H be a 1-regular spanning subgraph of K, fixed by og. Then it is easily verified
that pg(H) is a 1-regular spanning subgraph of K,, fixed by os4. Conversely, if H is a 1-
regular spanning subgraph of K, fixed by 024 then p;*(H) is a 1-regular spanning subgraph
of K, fixed by o¢. Then we have the results. O

Similarly, we have the next Lemma.

Lemma 8. The number of the fized points of o1 is equal to the number of the fixed points
of 02441 for all1<d<n/2-—1.

Lemma 9. The number of the fized points of oy is equal to the number of the 1-regular
spanning subgraphs of K, o fized by o1.

Proof. Let H be a l-regular spanning subgraph of K, fixed by oy and vov,, € H. Since
o0(vo) = vo, 0(vy) must be v,,. Since 0(Vm) = V(nt0—m) (mod n), M must be n/2. We
remove two vertices vp and v,/; from H and change the labels of the vertices of H from
V1,02, ,Up 21 10 V0, V1, "+ Uy 2o and from vy, /541, Vp 242, ,Un—1 tO

Un/2—1,Vn/2," " ,Un—3. Let H' be the resulting graph. Since oo(H) = H, we have o,,_3(H') =
H'. Conversely, let H' be a 1-regular spanning subgraph of K,,_» fixed by o,,_3. We change
the labels of the vertices of H' from vg,v1,- "+ , vy 22 t0 v1,v2, -+ , U 21 and from
Un/2—1,Un/2,""* yUn—3 10 Up/241,Vn/242," "+ ,Un-1 and add the edge vov, /s to it. Let H be
the resulting graph. H is a l-regular spanning subgraph of K, fixed by 0. This corre-
spondence is one to one correspondece between the set of the 1-regular spanning subgraphs
of K, fixed by o¢ and the set of the 1-regular spanning subgraphs of K, _» fixed by o,_3.
Then we have the results by Lemma 8. |

Lemma 10. Let S,, be the number of the fized points of o1 for X,,. Then we have
S4=3,S=7and S, =Sn—2+ (n—2)Sp_4 for all n > 8.

Proof. By the direct computation, we can easily checked that Sy = 3 and Sg = 7. We study
two kinds of constitutions that compose 1-regular spanning subgraphs of K, fixed by o
inductively.
The first method is the following:

Let H be a l-regular spanning subgraph of K, _» fixed by o;. We change the labels of
vertices of H from vy to v,—1 and from vy, v, -+ ,U,—3 t0 v2,v3, -+ ,v,—2 and add an edge
vouy to it. Let Hy be the resulting graph. Then Hj is a 1-regular spanning subgraph of K,
such that oy (Ho) = Ho. We change the labels of vertices of H from vy /2, Vn 241, ,Vn—3
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t0 Un /242, Vn/243, * ,Un—1 and add an edge v, /20, /241 to it. Let Hy be the resulting graph.
Then H, is a 1-regular spanning subgraph of K, such that o1(H;) = H;.
The second method is the following;:

Let H be a l-regular spanning subgraph of K, _4 fixed by o;. We change the labels of
the vertices of H from vy to v,_s and from vy, vs, -+ ,v,_5 tO v3,04, - ,U,_3. Let Hy
be the graph which is added edges v,v2 and vov,—1 to it and H; be the graph which is
added edges vovo and vyv,—1 to it. Then Hy and H; are l-regular spanning subgraphs
of K, fixed by o;. For each 1 < ¢ < n/2 — 2, we change the labels of the vertices of H
from vy to v,—1 and from vy, ve, -+ ,v; to va,vs, - ,v;41 and from V41, Vit2, 0, Vn—i—a
to Vi4+3,Vit4, """ ,Un—i—2 and from Un—i—3,Un—i—2,""" ,Un—5 to Un—isUn—it+1y" " ,Un—2. Let
H,; be the graph which is added two edges vgv;y2 and v1v,_;—1 and Hs;y1 be the graph
which is added two edges v1v;4+2 and vov,—;—1. Then Hs; and Hs;yq are l-regular span-
ning subgraphs of K, fixed by o1. We change the labels of the vertices of H from v
to vn—1 and from vy, vz, -+ ,v,/0 2 10 V2,v3, Uy 21 and from vy 1,V 2,0 Un—5
tO Uy 242, Un/243, " ,Un—2. Let Hy be the graph which is added two edges viv,/, and
VoUp 241 and Hj be the graph which is added two edges VoV /2 and v1v,/241. For each
1 <i < n/2 -2, we change the labels of the vertices of H from v;y1,vi42, "+ ,Vn/2-2 t0
Vit+2,Vit+3, ", Un/2—1 and from Un/2—15VUn/2;" " sUn—i—4 10 Upn/o19,Vn/243, " ;Vn—i—1 and
from vy—i—3,Vn—i—2, " ,Un—5 t0 Upn—_it1,Un—it2, -+ ,Un—1. Let Hi. be the graph which is
added two edges vy, /2vi41 and vy, /2410n—; and Hy; ; be the graph which is added two edges
Up/2VUn—i and U, 2410iy1. Then Hy, and Hj,,, are l-regular spanning subgraphs of K,
fixed by o1. By these constructions, we can construct 25,2 +2 X2 x (n/2 —1) X S,,_4
1-regular spanning subgraphs of K,, fixed by o;. Clearly there are doubling two pieces of
each. Also, it is clear to be able to compose all the 1-regular spanning subgraphs of K,
fixed by o1 by these methods. Then the number of the 1-regular spanning subgraphs of K,
fixed by o1 is given by S,,—2 + (n — 2)S,_4. We have the results. O

Remark 2. Let Sy = 1 and Sy = 1. Then we have S, = Sp—o + (n — 2)S,,_4 for n > 4.
Then we completely proved Theorem 2.

Remark 3. We calculated the non-equivarent 1-regular spanning subgraphs of K,, n <12
by computer. The numbers agreed with the numbers that are given by Theorem 2. The
results is as follows:

n=2 1
n=4 2
n=>6 )
n=8 17
n=10 79
n=12 554

Next let n be odd and be greater than or equal to 3. Let {vg,v1,vs,- - ,vn_1} be
the vertices of the complete graph K,. The action to K, of the Dihedral group D, =
{p07p17 Ty Pn—1,00,01,""" 7Un—1} is defined by

pi(vk):v(k+i) (mod n) fOTOSZSn_]wOSkSn_]-

Ui(vk):U(rH-Qi—k) (mod n) fOT OSZSn_]-y Ofkfn—l

Let Y, be the set of the maximal matchings of K,,. Then the above action induces the
action on Y, of the Dihedral group D,,.We calculate the number of the equivalence classes
by this group action.
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Theorem 3. The number of the non-equivalent mazimal matcings of the complete graph
K,, with odd order n is

1
o+ nS.1}

Here S, is given in Lemma 10.

Proof. This Theorem is also proved by Burnside’s Lemma. To construct a maximal match-
ing we choose an isolated vertex and then choose (n — 1)/2 pairings of resulting n — 1
vertices. There are n x (n — 2)!! combinations like these by Lemma 4. Then the number
of the maximal matcings of the complete graph K,, is n!! and this number is the number
of the fixed points of Y,, by po. Since there is only one isolated vertex, p;,1 < i <n —1,
fixes no maximal matcings of the complete graph K,,. Let i be greater than 0 and less than
n and H be a maximal matcings of the complete graph K,, such that o;(H) = H. Since
o;(v;) = v;, v; is an isolated vertex of H. If ¢ = 0 then we remove the vertex vy from H
and change the labels of the vertices of H from vi,v2, + ,v(—1)/2 t0 Vo, V1, "+ ,V(n_3)/2-
Let Hp be the resulting graph. Then Hj is a l-regular spanning subgraph of K, _; such
that ,,_o(Hp) = Hp. By this construction, we can construct an one to one correspondence
between the set of the maximal matcings of the complete graph K,, such that oo(H) = H
and the set of the l-regular spanning subgraph of K, _; such that o, 2(Hy) = Hp. If
1 <i < n—1 then we remove the vertex v; from H and change the labels of the vertices
of H from v;y1,vi42, ** ,Un—1 t0 ¥;,Viy1, *+ ,Un—2. Let H; be the resulting graph. Then
H; is a 1-regular spanning subgraph of K,,_; such that 02;_1 (moa n)(H;) = H;. By this
construction, we can construct an one to one correspondence between the set of the maxi-
mal matcings of the complete graph K, such that o;(H) = H and the set of the 1-regular
spanning subgraph of K,_; such that 03,1 (mod n)(Hi) = H;. Then the number of the
fixed points of o; is S,,_1. Then we have the results. O
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