CONVERSES OF FURUTA TYPE INEQUALITIES

EIZABURO KAMEI

Received April 24, 2002; revised June 3, 2002

ABSTRACT. Let A and B be positive operators on a Hilbert space. We consider what kind of conditions induces the order between A and B. Such an attempt was done in recent works due to Yang and Ito. Based on their results, we prove that if $A^t
brack
b$

1. Introduction. Throughout this note, A and B are positive operators on a Hilbert space. An operator T is positive (resp. strictly positive, i.e., positive invertible), we use the notation $T \geq 0$ (resp. T > 0). The α -power mean of A and B given by

$$A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} A^{\frac{1}{2}}$$
 for $0 \le \alpha \le 1$

is the essential tool in this note which is introduced by Kubo-Ando [15]. Similarly we use the notation $A
subseteq B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^s A^{\frac{1}{2}}$ for $s \in \mathbf{R}$ and $subseteq subseteq subseteq subseteq as <math>a \in [0, 1]$.

We cite the mean theoretic expression of the Furuta inequality which is sometimes useful (cf.[2],[11]).

Furuta inequality:(cf.[6],[7]) If $A \geq B \geq 0$, then

(F)
$$A^{u} \sharp_{\frac{1-u}{p-u}} B^{p} \leq A \quad and \quad B \leq B^{u} \sharp_{\frac{1-u}{p-u}} A^{p}$$

holds for $u \leq 0$ and $p \geq 1$.

It is natural to consider whether a similar inequality to (F) holds when the exponent of A transfers to the non-negative part. Firstly, Yoshino [17] pointed out that (F) type inequality holds. Afterward the domain was spreaded and attained to the following theorem.

Complementary theorem of the Furuta inequality:(cf. [4],[8],[9],[12]) If $A \geq B \geq 0$ with A > 0, then the following inequalities hold:

$$(\operatorname{CF1}) \hspace{1cm} A^t \ \natural_{\frac{1-t}{p-t}} \ B^p \leq B \ \ for \ \ 0 \leq t$$

(CF2)
$$A^{t} \natural_{\frac{2p-t}{p-t}} B^{p} \le B^{2p} \text{ for } 0 \le t$$

²⁰⁰⁰ Mathematics Subject Classification. 47A63 and 47A64.

 $Key \ words \ and \ phrases.$ Positive operators, Operator mean, Löwner-Heinz inequality, Furuta inequality, Chaotic order.

322 KAMEI

In this note, we consider the coverses of the above theorem in some sense. Such a problem is initiated by Yang [16] and Ito [10] has given an including form of Yang's one as follows:

Theorem A. Let A, B > 0 and 0 .

$$(A) \qquad If \quad A^t \mid_{\frac{\gamma-t}{p-t}} B^p \geq B^{\gamma} \quad for \quad p < \gamma \leq 2p, \quad then \quad A^{\delta} \geq B^{\delta} \quad for \quad \delta = \min\{\gamma, \ t\}.$$

Our view point is to divide into two cases $t \geq \gamma$ and $t \leq \gamma$. Then we can obtain more precise result, by which the following theorem due to Ito [10] is extended.

Theorem B. Let $A,\ B,\ C>0$ and 0< p< t. If $A^t
bigspace is <math>A^t = A^t$ and $A^t = A^t$ is $A^t = A^t$ for $A^t = A^t$

 $B\gg C \text{ (i.e., } \log B\geq \log C), \text{ then for } \alpha \text{ such that } 0\leq \alpha \leq \min\{\gamma,t\},$

(B)
$$C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^t \ge C^{-r} \sharp_{\frac{\alpha+r}{p+r}} B^p$$

holds for $r \geq 0$.

2. Theorems by Yang and Ito. First of all, we review Yang's results. Yang [16] had shown the following:

Let A, B>0.

$$(\mathbf{Y}\mathbf{1}) \ \ If \ \ A^t \ \natural_{\frac{1-t}{p-t}} \ B^p \leq B \ \ for \ \ 1$$

$$(Y2) \quad If \quad A^t \mid_{\frac{2p-t}{p-t}} B^p \geq B^{2p} \quad for \quad 1$$

We here note that (A) interpolates (Y1) and (Y2), i.e., the case $\gamma=2p$ is (Y2) clearly. On the other hand, the case $\gamma=2p-1$ is (Y1). Actually, the assumption of (Y1) can be rephrased as $A^t \not |_{\frac{2p-1-t}{p-t}} B^p \ge B^{2p-1}$. Since $B^p \not |_{\frac{1-p}{p-t}} A^t = A^t \not |_{\frac{2p-1-t}{p-t}} B^p \ge B^{2p-1}$, the assumption in (A) is equivalent to $(B^{-\frac{p}{2}}A^tB^{-\frac{p}{2}})^{\frac{1-p}{p-t}} \ge B^{p-1}$ and so is to $A^t \not |_{\frac{1-t}{p-t}} B^p = B^p \not |_{\frac{p-1}{p-t}} A^t \le B$.

From our view point, we give an interpretation on Yang and Ito's proposal. For A, B>0, we denote $A\gg B$ if $\log A\geq \log B$ and call it the chaotic order, which is weaker than the usual order because $\log x$ is an operator monotone function. On the chaotic order, we have the next Theorem C which is essential in our following discussion.

Theorem C. The chaotic order $A \gg B$ for A, B > 0 if and only if

(C)
$$A^u \sharp_{\frac{\delta-u}{p-u}} B^p \leq B^\delta \quad and \quad A^\delta \leq B^u \sharp_{\frac{\delta-u}{p-u}} A^p \quad for \quad u \leq 0 \quad and \quad 0 \leq \delta \leq p.$$

The above theorem is a generalization of our result in [3], we call it chaotic Furuta inequality.

Chaotic Furuta inequality(cf. [1],[3],[5],[13],[14]): If $A \gg B$ for A, B > 0, then

(FC)
$$A^{u} \sharp_{\frac{-u}{p-u}} B^{p} \leq I \leq B^{u} \sharp_{\frac{-u}{p-u}} A^{p}$$

holds for u < 0 and p > 0.

Theorem 1. Let $A^t
mid \frac{\gamma - t}{n - t} B^p \ge B^{\gamma}$ for $A, B > 0, 0 and <math>p < \gamma$.

(1) If
$$\gamma \leq t$$
, then $A^{\gamma} \geq A^{t} \sharp_{\frac{\gamma-t}{n-t}} B^{p} (\geq B^{\gamma})$.

(2) If
$$\gamma \geq t$$
, then $A^t \geq B^t$.

$$B^{-p} \sharp_{\frac{(\gamma-p)+p}{(t-p)+p}} B^{-\frac{p}{2}} A^t B^{-\frac{p}{2}} \geq (B^{-\frac{p}{2}} A^t B^{-\frac{p}{2}})^{\frac{\gamma-p}{t-p}}.$$

So $I \sharp_{\frac{\gamma}{t}} A^t \ge B^{\frac{p}{2}} (B^{-\frac{p}{2}} A^t B^{-\frac{p}{2}})^{\frac{\gamma-p}{t-p}} B^{\frac{p}{2}}$ holds, that is,

$$A^{\gamma} \geq B^p \sharp_{\frac{\gamma-p}{t-p}} A^t = A^t \sharp_{\frac{\gamma-t}{p-t}} B^p.$$

Next we prove (2). $A^t
begin{cases}
 \lambda_{\frac{p-t}{p-t}} B^p = B^p
 \lambda_{\frac{p-\gamma}{p-t}} A^t \ge B^{\gamma}
 \text{is equivalent to}
 \end{cases}$

$$B^{\frac{p}{2}}(B^{-\frac{p}{2}}A^tB^{-\frac{p}{2}})^{\frac{p-\gamma}{p-t}}B^{\frac{p}{2}} \geq B^{\gamma}, \ \ \text{so} \ \ (B^{-\frac{p}{2}}A^tB^{-\frac{p}{2}})^{\frac{p-\gamma}{p-t}} \geq B^{\gamma-p}.$$

We have $B^{-\frac{p}{2}}A^tB^{-\frac{p}{2}} \geq B^{t-p}$ by Löwner-Heinz inequality since $\frac{p-\gamma}{p-t} \geq 1$, so that $A^t \geq B^t$.

3. An extension of Ito's theorm. Ito [10] has shown Theorem B cited in §1 which also includes Yang's one [16] as the cases $\gamma = 2p - 1$ and $\gamma = 2p$. Theorem B has the following extension.

Theorem 2. Let A, B, C > 0 with $B \gg C$ and 0 .

(1) If $A^{\gamma} \geq B^{\gamma}$ for $p < \gamma \leq \min\{t, 2p\}$, then for given $r \geq 0$,

$$C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^t \geq C^{-r} \sharp_{\frac{\alpha+r}{t+r}} B^p$$

holds for $-r \leq \alpha \leq \gamma$.

(2) If $A^t \geq B^t$, then for given $r \geq 0$,

$$C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^t \ge C^{-r} \sharp_{\frac{\alpha+r}{p+r}} B^p$$

holds for $-r \le \alpha \le \min\{t, 2p\}.$

Proof. First of all, we remark that $A
sigma_s (A
sigma_t B) = A
sigma_s B ext{ for } s, t \in \mathbf{R} \text{ and } A, B \ge 0.$ The case (1) is obtained by applying Theorem C to both $A \gg C$ and $B \gg C$ and the monotone property of operator means for $A^{\gamma} \ge B^{\gamma}$ as follows: In the case $-r \le \alpha \le p$,

$$\begin{array}{lcl} C^{-r} \ \sharp_{\frac{\alpha+r}{t+r}} \ A^t & = & C^{-r} \ \sharp_{\frac{\alpha+r}{r+r}} \ (C^{-r} \ \sharp_{\frac{\gamma+r}{t+r}} \ A^t) \geq C^{-r} \ \sharp_{\frac{\alpha+r}{\gamma+r}} \ A^{\gamma} \\ & \geq & C^{-r} \ \sharp_{\frac{\alpha+r}{2+r}} \ B^{\gamma} = C^{-r} \ \sharp_{\frac{\alpha+r}{2+r}} \ (C^{-r} \ \sharp_{\frac{p+r}{2+r}} \ B^{\gamma}) \geq C^{-r} \ \sharp_{\frac{\alpha+r}{2+r}} \ B^p. \end{array}$$

In the case $p \le \alpha \le \gamma \le t$, since $B \not \downarrow_{-s} C = B(B^{-1} \not \downarrow_s C^{-1})B$, we have

$$\begin{split} &C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^t = C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}} (C^{-r} \sharp_{\frac{\gamma+r}{t+r}} A^t) \geq C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^{\gamma} \\ \geq &C^{-r} \sharp_{\frac{\alpha+r}{\gamma+r}} B^{\gamma} \geq B^{\alpha} = B^p (B^{-p} \sharp_{\frac{\alpha-p}{p}} I) B^p \geq B^p (B^{-p} \sharp_{\frac{\alpha-p}{p+r}} (B^{-p} \sharp_{\frac{p}{p+r}} C^r)) B^p \\ = &B^p (B^{-p} \sharp_{\frac{\alpha-p}{2k+r}} C^r) B^p = B^p \sharp_{\frac{p-\alpha}{2k+r}} C^{-r} = C^{-r} \sharp_{\frac{\alpha+r}{2k+r}} B^p. \end{split}$$

324 KAMEI

The first and Third inequalities follow from (C) because $A \gg C$, the second one follows from the monotone property of means and the final one is given by (FC).

Similarly the case (2) gives (B) as follows:

If $-r \leq \alpha \leq p$, then

$$C^{-r} \sharp_{\frac{\alpha+r}{t+r}} A^t = C^{-r} \sharp_{\frac{\alpha+r}{r+r}} \left(C^{-r} \sharp_{\frac{p+r}{t+r}} A^t \right) \geq C^{-r} \sharp_{\frac{\alpha+r}{r+r}} A^p \geq C^{-r} \sharp_{\frac{\alpha+r}{r+r}} B^p.$$

If 0 , then

$$\begin{split} &C^{-r} \natural_{\frac{\alpha+r}{p+r}} B^p = B^p \ \natural_{\frac{p-\alpha}{p+r}} C^{-r} = B^p (B^{-p} \ \sharp_{\frac{\alpha-p}{p+r}} C^r) B^p \\ = & B^p (B^{-p} \ \sharp_{\frac{\alpha-p}{p}} (B^{-p} \ \sharp_{\frac{p}{p+r}} C^r)) B^p \\ \leq & B^p (B^{-p} \ \sharp_{\frac{\alpha-p}{p}} I) B^p = B^\alpha \leq A^t \ \sharp_{\frac{t-\alpha}{t-p}} B^p \leq A^\alpha \leq C^{-r} \ \sharp_{\frac{\alpha+r}{t+r}} A^t. \end{split}$$

The first inequality follows from (FC), the second and third ones are mean property and the final one is (C) because $A \gg C$.

Acknowledgement. The author would like to express his thanks to the colleagues of the Saturday semminar in Osaka Kyoiku University for their warm and critical discussions.

References

- [1] T.Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159.
- [2] M.Fujii, Furuta's inequality and its mean theoretic approach, J.Operator Theory, 23(1990), 67-72.
- [3] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Alg. Appl., 179(1993), 161-169.
- [4] M.Fujii, T.Furuta and E.Kamei, Complements to the Furuta inequality, Proc. Japan Acad., 70(1994), Ser.A, 239-242.
- [5] M.Fujii, J.F.Jiang and E.Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., 125(1997), 3655-3658.
- [6] T.Furuta, $A \geq B \geq 0$ assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2r)q \geq p+2r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
- [7] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65(1989), 126.
- [8] T.Furuta, T.Yamazaki and M.Yanagida, Equivalence relations among Furuta-type inequalities with negative powers, Sci. Math., 1(1998), 223-229.
- [9] T.Furuta, T.Yamazaki and M.Yanagida, On a conjecture related to Furuta-type inequalities with negative powers, Nihonkai Math. J., 9(1998), 213-218.
- [10] M.Ito, Some order preserving inequality via Furuta inequality, Sci. Math. Japon., 55(2002), 25-32.
- [11] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.

- [12] E.Kamei, Complements to the Furuta inequality, II, Math. Japon., 45(1997), 15-23.
- [13] E.Kamei, Chaotic order and Furuta inequality, Sci. Math. Japon., 53(2001), 221-225.
- [14] E.Kamei and M.Nakamura, Remark on chaotic Furuta inequality, Sci. Math. Japon., 53(2001), 535-539.
- [15] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann.,246(1980), 205-224.
- [16] C.Yang, An order preserving inequality via Furtuta inequality, Sci. Math. Japon., 54(2001), 241-247.
- [17] T.Yoshino, Introduction to Operator Theory, Pitman Research Note in Math. Ser., 300, Longman Scientific and Technical, 1993.

Maebashi Institute of Technology, Kamisadori, Maebashi, Gunma, 371-0816, Japan e-mail: kamei@maebashi-it.ac.jp