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ON A PROCEDURE FOR FINDING THE GALOIS GROUP OF A

QUINTIC POLYNOMIAL
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Abstract. In [4, Proposition, pp. 883{884] a procedure is given to �nd the Galois

group of an irreducible quintic polynomial 2Z[x]. It is shown that this procedure does

not always �nd the Galois group.

1. Introduction. Let f(x) 2 Z[x] be a monic irreducible quintic polynomial. The Galois

group Gal(f) of f(x) over Q is isomorphic to one of S5 (the symmetric group of order 120),

A5 (the alternating group of order 60), F20 (the Frobenius group of order 20), D5 (the

dihedral group of order 10) or Z5 (the cyclic group of order 5), see [1, p. 872] or [3, pp.

556{557]. Let p be a prime. We write

f(x) � (d1)
n1 � � � (dr)nr (mod p)

to denote that f(x) factors modulo p into r distinct irreducible factors of degrees d1; � � � ; dr
and multiplicities n1; � � � ; nr respectively. The following procedure [4, Proposition, pp.

883{884] has been given for determining Gal(f).

Let p be a prime � 1 (mod 5) such that

f(x) � (1)(1)(1)(1)(1) (mod p):

We know that such a prime exists by the Tchebotarov density theorem.

1. If there exists a prime p1 < p such that f(x) � (2)(3) (mod p1) then Gal(f) �= S5.

2. If there exists a prime p2 < p such that f(x) � (1)(1)(3) (mod p2) and case 1 does

not hold then Gal(f) �= A5.

3. If there exists a prime p3 < p such that f(x) � (1)(4) (mod p3) and cases 2 and 3 do

not hold then Gal(f) �= F20.

4. If there exists a prime p4 < p such that f(x) � (1)(2)(2) (mod p4) and cases 2, 3 and

4 do not hold then Gal(f) �= D5.

5. If for every prime q < p either f(x) � (1)(1)(1)(1)(1) (mod q) or f(x) � (5) (mod q)

then Gal(f) �=Z5.

We show that this procedure is not guaranteed to determine Gal(f). We illustrate this

with the parametric family

ck(x) = x(x + 9)(x3 + 3x + 3) + 2 � 3 � 5 � 7 � 11(3k + 1); k 2Z:(1)
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We prove

Theorem. (a) ck(x) is irreducible for all k 2Z.

(b) ck(x) � (1)(1)(3) (mod 2):

ck(x) � (1)5 (mod 3):

ck(x) � (1)(1)(3) (mod 5):

ck(x) � (1)(1)(1)(2) (mod 7):

ck(x) � (1)(1)(1)(1)(1) (mod 11):

(c) Gal(ck(x)) �= S5 for all k in Z.

(d) Let p1 = 13, p2 = 17, p3 = 19, : : : be the primes > 11. For each positive integer t there

exist in�nitely many k 2 Z such that the least prime p for which ck(x) � (2)(3) (mod p)

satis�es p > pt.

With p = 11 the procedure gives Gal(ck(x)) �= A5 (k 2 Z) contradicting Gal(ck(x)) �= S5
(k 2 Z). Thus the procedure does not �nd the correct Galois group for in�nitely many

quintics. Part (d) of the Theorem shows that however large we choose the prime p the

procedure still fails for in�nitely many quintics. In order to prove part (d) of the Theorem

we use the following result.

Proposition. Let g(x) 2Z[x]: Let p be a prime such that

g(x) 6� c h(x)2 (mod p); c 2Z; h(x) 2 Z[x]:

Then �����
p�1X
x=0

�
g(x)

p

������ � (n� 1)
p
p;

where n denotes the degree of g(x) and

��
p

�
is the Legendre symbol modulo p.

This character sum estimate is due to Weil [7, p. 207] and is a consequence of his proof of

the Riemann hypothesis for algebraic function �elds over a �nite �eld [6].

2. Proof of Theorem. (a) From (1) we have

ck(x) = x5 + 9x4 + 3x3 + 30x2 + 27x + 6930k + 2310

so that ck(x) is 3�Eisenstein and thus irreducible.

(b) ck(x) � x(x + 1)(x3 + x+ 1) (mod 2):

ck(x) � x5 (mod 3):

ck(x) � x(x + 4)(x3 + 3x + 3) (mod 5):

ck(x) � x(x + 2)(x + 6)(x2 + x + 4) (mod 7):

ck(x) � x(x + 2)(x + 3)(x + 6)(x + 9) (mod 11):

(c) The discriminant of ck(x) is

d(k) = 7207471937531250000k4+ 14839976794731858000k3



GALOIS GROUP OF A QUINTIC 187

+9996640539362977500k2+ 2785738364780554260k

+278489107278162009:

As d(k) � 5 (mod 7) we deduce that d(k) is not a perfect square. Hence Gal(ck(x)) is not

a subgroup of A5 and so

Gal(ck(x)) �= F20 or S5:

Further, as d(k) 6� 0 (mod 2) and

ck(x) � (1)(1)(3) (mod 2);

by [3, Corollary 41, p. 554] Gal(ck(x)) contains a 3-cycle. Hence 3 divides the order of

Gal(ck(x)). But 3 does not divide the order of F20 so Gal(ck(x)) �= S5.

(d) Let p be a prime > 11. The number N of pairs (k; y) of integers modulo p satisfying

the congruence

y2 � d(k) (mod p)

is

N =

p�1X
k=0

�
1 +

�
d(k)

p

��
= p+

p�1X
k=0

�
d(k)

p

�
:

Now the coeÆcient of k4 in d(k) is

24 � 38 � 59 � 74 � 114

and the discriminant of d(k) is

�220 � 355 � 515 � 712 � 1112 � 372 � 3821033 � 85704612

so that for p 6= 37; 382103; 8570461 we have

d(k) 6� c h(k)2 (mod p)

for any c 2Zand any polynomial h(k) 2Z[x]. Hence by the Proposition

�����
p�1X
k=0

�
d(k)

p

������ � (deg(d(k))� 1)
p
p = 3

p
p:

Thus for p 6= 13; 17; 37; 382103; 8570461 we have

N � p� 3
p
p � 5;

so that there exists kp 2Zsuch that

�
d(kp)

p

�
= 1:(2)

For p = 13, 17, 37, 382103, 8570461 we choose kp = 1; 4; 3; 3; 2 respectively so that (2) holds

in these cases as well.

Let t 2 N. By the Chinese remainder theorem we can choose in�nitely many integers k

such that

k � kpi (mod pi); i = 1; : : : ; t:(3)
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Hence, by (2) and (3), we have

�
d(k)

pi

�
=

�
d(kpi)

pi

�
= 1; i = 1; : : : ; t:(4)

But, by Stickelberger's theorem [5], [2], we have

�
d(k)

pi

�
= (�1)5�ri ; i = 1; : : : ; t;(5)

where ri is the number of irreducible factors of ck(x) (mod pi). Thus, by (4) and (5), we

have

ri � 1 (mod 2); i = 1; : : : ; t:

Hence

ck(x) 6� (2)(3) (mod pi); i = 1; : : : ; t:

Thus the least prime p for which

ck(x) � (2)(3) (mod p)

satis�es p > pt.
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