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ABSTRACT. The purpose of this paper is to give a characterization of a locally inverse
x-semigroup by introducing a new concept of a locally inductive x-groupoid. Defining
a product @ in a locally inductive *-groupoid G, G(®) becomes a locally inverse #-
semigroup. Conversely, for a locally inverse %-semigroup 5, we give a partial product -
in 5, we show that S(-,*, <) is a locally inductive *-groupoid and that 5(-, %, <)(®) =
S.

1 Introduction Ehresmann introduced a concept of an inductive groupoid in [1] and [2],
and Schein characterized an inverse semigroup by using the concept (see [8]). One of the
authors introduced the concept of the symmetric locally inverse *-semigroup LI x.,) on
an ¢-set (X;0) and obtained a generalization of Preston-Vagner Representation Theorem.
That is, LI x,,) on an t-set (X; o) is a locally inverse -semigroup and every locally inverse
#-semigroup can be embedded in the symmetric locally inverse *-semigroup on an (-set (see
[6] and [7]). This result leads us a new partial product on a locally inverse *-semigroup and
another its characterization.

First, we give definitions and basic results. A semigroup S with a unary operation
*: S — S is called a regular x-semigroup if it satisfies (i) (z*)* = z; (ii) (2y)* = y*a™;

Let S be a regular *-semigroup. An idempotent e in S is called a projection if e* = e.
For a subset A of S, denote the sets of idempotents and projections of A by E(A) and
P(A), respectively. A regular *-semigroup S is called a locally inverse x-semigroup if for
any € € E(S5), eSe is an inverse subsemigroup of S. The following results are well-known
and are used frequently throughout this paper.

Result 1.1. [3] [6] Let S be a reqular x-semigroup.

(1) E(S) = P(S)*. In fact, for any e € E(S), there exist f,g € P(S) such that fReLg
and e = fg.

(2) For any a € S and ¢ € P(S), a*ea € P(5).
(3) Fach L-class and each R-class contain one and only one projection.

(4) S is a locally inverse x-semigroup if and only if it satisfies that eSe is an inverse
subsemigroup of S for any e € P(S).

Define a relation < on a regular x-semigroup S as follows:

a<b < a=eb=>bf forsome ¢, f € P(9).
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Result 1.2. [4] Let a and b be elements of a reqular x-semigroup S. Then the following
conditions are equivalent:

(1) a <0,

(2) aa* = ba* and a*a = b*a,
(3) aa* = ab* and a*a = a*b,
(4) a= = ba*a.

Result 1.3. [4] [5] The relation < on a regular x-semigroup, defined above, is a partial
order on S which preserves the unary operation. If S is a locally inverse x-semigroup, then
< is compatible.

We call the partial order <, defined above, the natural order on S.

Let S be a locally inverse #-semigroup. In [5], we introdued a new partial product - on
S, which is called a restricted product, as follows:

{ab ab € R, N Ly
a-b=

undefined otherwise

where R, and L, denote the R-class and the L-class containing a, respectively.
Lemma 1.4. ab € R, N Ly of and only if a*abb*a*a = a*a and bb*a*abb* = bb*.

Proof. Let ab € R, N Ly. Then there exists an idempotent e € L, N Ry. By the Result 1.1
(1), e = bb*a*a. Then we have that a*abb*a*a = a*a and bb*a*abb* = bb*. The converse is

clear. O
Result 1.5. [5] Let S be a regular *-semigroup.

(1) Let x € S and e € P(S) such that e < 2*x. Then a = xe is the unique element in S
such that a < x and a*a = e.

(2) Let x € S and e € P(S) such that e < xx*. Then a = ex 1s the unique element in S
such that a < x and aa® = €.

(3) For any elemants x,y € S, xy = a - b where a = ze, b = fy, ¢ = x*zyy*z*z and
f=yy*ateyy”.
In Section 2, we define an ordered x-groupoid and give fundamental properties of ordered
*-SEmigroups.

In Section 3, we introduce a loally inductive *-groupoid and its product @, which is
called a pseudoproduct, and characterize a locally inverse *-semigroup.

2 Ordered *-groupoids Let G be a non-empty set with a partial product -, a unary
operation * and a partial order <. We simply write ab instead of « - b. If ab is defined for
a,b € G, we sometimes write Jab. An element ¢ € G is called an idempotent if Jee and
ee = e. If an idempotent e satisfies ¢* = ¢, it is called a projection. Denote the sets of
idempotents and projections of G by E(G) and P(G), respectively.

If GG satisfies the following axioms, it is called an ordered *-groupotd.

(A1) a(be) exists if and only if (ab)c exists, in which case they are equal.
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(A2) a(be) exists if and only if ab and bc exist.

(A3) (a*)* =a.

(A4) If ab exists, then b*a* exists and (ab)* = b*a*.

(A5) For any a € G, a*a exists and a*a is the unique projection of G such that Ja(a*a)

and a(a*a) = a. We write a*a = d(a) and call it the domain identity.
(A6) a < b implies a* < b*.
(AT) For a,b,c,d € G, if a <b, ¢ < d, Jac and 3bd, then ac < bd.

(A8) Let a € G and e € P(G) such that ¢ < d(a). Then there exists a unique element (a|e),
called the restriction of a to e, such that (ale) < a and d(ale) = e.

(A9) E(G) is an order ideal.

Proposition 2.1. If S is a locally inverse x-semigroup, then S(-,*,<) is an ordered x-
groupoid, where - denotes the restricted product of S defined in Section 1.

Proof. Assume that a-(b-c¢) exists. By Lemma 1.4, we have b*bce*b*b = b*b, cc*b*bec* = cc*,
a*a(be)(be)*a*a = a*a and (be)(be)*a*a(be)(be)* = (be)(be)*. Then

a*a = a*a(b(b*bcc*b*b)b* Ja*a = a*ab(b*b)b*a*a = a*abb*a*a

bb* = b(b*b)b* = b(b*bec*b*b)b* = (be)(be)* = (be)(be)* a*a(be)(be)* = bb* a* abb*

(ab)*(ab) = b*a*ab = b*(a*abec*b*a*a)b = (ab)* (ab)cc* (ab)* (ab)

ec* = cc*b*bee® = cc*b*(bb* )bee* = ec*b*(bb* a*abb* )bee* = cc*(ab)* (ab)ec*
Thus a-b and (a-b) - ¢ exist. It is obvious that a- (b-¢) = (a-b) - c. Thus we have (Al) and
(Azg'ince S is a locally inverse *-semigroup, (A3), (A4), (A3), (A6) and (A7) holds. Axiom
(A8) follows from Result 1.5 (1).

Let e € E(S) and a € S such that a < e. By the definition <, there exist p,q € P(S5)
such that a = pe = eq. Then

(a*a)(aa”)(a*a) = (pe)"(pe)(eq)(eq)” (pe)*(pe)
= ¢'pege’ppe
= (pe)*(pe)(pe)* (pe)
= da’a
Similarly, (aa*)(a*a)(aa*) = aa*. Thus a - a exists. Moreover, a -« = aa = (pe)(eq) =
pleq) = p(pe) = pe = a, and we have (A9). Hence S(-, *, <) is an ordered *-groupoid. O
Proposition 2.2. Let G be an ordered x-groupoid. Then we have the following.

(1) For any a € G, aa® exists and aa® is the unique element of P(G) such that I(aa*)a
and (aa*)a = a. We write aa® = r(a) and call it the range identity.

(2) Let a € G and e € P(G) such that e < r(a). Then there exists a unique element (e|a),
called the corestriction of a to e, such that (e|la) < a and r(ela) = e.

(3) Jab if and only if Id(a)r(b), Ir(b)d(a) and d(a)r(b)d(a) = d(a) and r(b)d(a)r(b) =
r(b).
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If Jab, then d(ab) = d(b) and r(ab) = r(a).
If Jab, then d(a)r(b) and r(b)d(a) are idempotents.

(4)
(5)
(6) For any e € E(S), there exist p,q € P(S) such that e = pq.
(7) Ifa <b, then d(a) < d(b) and r(a) < r(b).

(8)

If Aab and e is a projection such that ¢ < d(ab), then
(able) = (al(r(d(a)r(b)r(ble)))(ble).
(9) If 3ab and e is a projection such that ¢ < r(ab), then
(elab) = (ela)(d((d(ela)|d(a)r(b))D).
) If ¢ < ab, then there ezist a' and V' such that o'V, o’ < a, b < b and c = d'l.
) If e < f < d(a), then (ale) < (alf) < a.
(12) If e < f < r(a), then (c|a) < (f]a) < a.
)

Let a,b € G and e, f € P(G) such that a < b, e < f, e < d(a) and f < d(b). Then
(ale) < (0 f).
(14) P(G) is an order ideal.

Proof. (1) It immediately follows from Axioms (A1), (A3), (A4) and (A5) that aa* € P(S)
and ( )a = a. To show the uniqueness, let ¢ € P(S) such that e« = a. Then a*e =
a*. On the other hand, by (A5), aa* = (a*)*a* is the unique projection such that

a*(aa*) = a*, and hence ¢ = aa*.

(2) Let a € G and e € P(G) such that e < r(a). Then e < d(a*), and by (A8), there
exists (a*|e) such that (a*|e) < a* and d(a*|e) = e. Let (e|la) = (a*|e)*. By (A6), (ela) =
(a*|e)* < (a*)* = a. Moreover, r(ela) = (ela)(ela)* = (a*|e)*((a*|e)*)* = d(a*|e) =
To show the uniqueness, assume that b < a and r(b) = e. Then b* < o*, by (A6), and
d(b*) = e. By the uniqueness of (A8), b* = (a*|e), and hence b = (b*)* = (a*|e)* = (ela).

(3) Assume that Jab. By (1) above, r( b) = abb*a* is the unique projection such that
r(abjab = ab. On the other hand, aa* is a projection such that (aa*)ab = ab. Then
abb*a* = aa*, and we have

d(a) = a*a = a*(aa™)a = a*(abb*a*)a = d(a)r(b)d(a).

Similarly, we have r(b)d(a)r(b) = r(b). The converse is obvious.

(4) Let Jab. By (3), we have
d(ab) = (ab)*ab = b*(bb*a™abb™ )b = b* (r(b)d(a)r(b))b = b*r(b)b = d(b).

Similarly we have r(ab) = r(a).
(5) This immediately follows from (3).

(6) Let € be any idempotent. Then it is obvious that ee* and e*e are projections. Since
e* = (ee)* = e*e*, we have e = ee*e = (ee*)(e*e).
(7) This immediately follows from (A6) and (A7).
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(8) Let Jab and e € P(S) such that e < d(ab). By (4), we have e < d(ab) =
hence the restriction (b|e) is defined. Since (ble) < b, we have r(ble) < ( ) =r(b
d(d(a)r(b)), and hence (d(a)r(b)|r(ble)) exists. Since (d(a)r(b)|r(ble)) < d(a)r(b),
r(d(a)r(b)|r(ble)) < r(d(a)r(b)) = d(a)r(b)d(a) = d(a). Thus (alr(d(a)r(b)]r(
By (5) and (A9), (d(a)r(b)|r(ble)) = f, say, is an idempotent. Then

d(alr(d(a)r(b)|r(dle))) = r(d(a)r(d)|r(ble)) = r(f) = fF~
r(ble) = d(d(a)r(b)r(ble)) = d(f) = f*f

ince 3 n dempotent, (/1) (HF*) = 11° wnd (1 NFF)F"1) = 5, and henc
(a|r(d(a)r(d)|r(ble)))(ble) exists. Since (a|r(d(a)r(b)|r(ble))) < a and (ble) < b, we have

o (B ) (be) < b by (A7) O the other s, (o) Vb)) -
d(ble) = e by (4). Thus it follows from (A8) that (able) = (a|r(d(a)r(b)|r(ble)))(ble)

(9) Similar to the proof of (8).

(10) Let ¢ < ab. By (7), we have d(c¢) < d(ab), and hence (ab|d(c)) exists. Since
d(abld(c)) = d(c) and (ab|d(c)) < ab, we have ¢ = (ab|d(c)). It follows from (8) that

(abld(c)) = (alr(d(a)r(b)|r(bld(c)))(bld(c))-
Put ' = (a|(r(d(a)r(b)|r(ble)))(ble) and b’ = (b]d(c)). Then it is obvious that o’ < a, b’ <b
and ¢ = (ab|d(c)) = a'l’.

(11) Let e < f < d(a). Obviously, (ale) and (a|f) exist. Since e < d(alf), ((a|f)|e)
exists. On the other hand, d(ale) = € and (ale) < a. Then ((a|f)|e) = (ale), and hence
(ale) < (alf)-

(12) Similar to the proof of (11).

(13) It follows from (11) that (ble) < (b|f). On the other hand, (ale),(ble) < b and
d(ale) = d(ble). By Axiom (A8), we have (ale) = (ble), and hence (ale) < (b]f).

(14) Let a € G and e € P(G) such that @ < e. By Axioms (A6) and (A7), we have
a*a < e*e = e. Since d(a) = a*a = d(a*a), it follows from Axiom (A8) that @ = a*a €
P(G). O

d(b), and

Jd(a)r(b) =
b)., we have
le

)) exists.

3 Locally inductive x-groupoids An ordered *-groupoid G is called a locally inductive
k-groupoid if it satisfies

(LG) For any e, f € P(G), there exists the maximum element in < ¢,f >= {(g,h) €
P(G) x P(G): g <e, h < f and dgh}.

Proposition 3.1. If S be a locally inverse x-semigroup. then S(-,*,<) is a locally inductive
*k-groupoid.

Proof. Let S be alocally inverse #-semigroup. Let e, f € P(S). Then we can easily see that
(efe, fef) is the maximum element in < e, f >. O

The locally inductive #-groupoid associated with S, above, is denoted by G(.5).

Let G(-,*,<) be a locally inductive #-groupoid. For any a,b € G, there exists the
maximun element (e, f) in < d(a),r(b) > = {(g,h) € P(S) x P(S) : g < d(a), h <
r(b), dgh}. We define a new product ® on G as follows:

a@b= (ale)(f]b).

and we call it a pseudoproduct of a and b.
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Proposition 3.2. For a locally inductive *-groupoid G, G(®,+*), defined above, is a locally
inverse *-semigroup, which is denoted by S(G).

Proof. First, we show that (a®b)®c = a® (b®c¢) for any a,b,¢ € G. By Axiom (LG), there
exists the maximum element (e, f) in < d(a ® b),r(c) > and (a ® b) ® ¢ = (a @ ble)(flc).
Moreover, there exist g, h € P(S) such that (g, h) is the maximum element of < d(a),r(b) >,
and a ® b = (a|g)(h|b). Since (a @ b)le) < a @b = (alg)(h|b), there exist o' < (alg) and
b < (h|b) such that (a @ ble) = a’V’, by Proposition 2.2(10). Thus

(a @b) @c=(a't)(fle) = d'(V'(fle)).

It follows from 3b'(flc) that 3d(d')r(f|c). Since ' < (h|d) < b and (flc) < ¢, we have
(d(d"),r(fle)) €< d(b),r(c) >. Thus V'(fle) < b® e. Similarly, Id(a")r(b'(flc)), ¢’ < a
and b'(flc¢) < b® ¢ imply that (¢ ® b) ® ¢ = ' (V'(f|e)) < a® (b ® ¢). Similarly, we have
a®(b@ec) <(a®b)® e, and hence G(®) is a semigroup.

It is clear that G(®, *) is a regular *-semigroup. To show that G(®, *) is a locally inverse
k-semigroup, it is sufficient to prove that, for any e € P(G), P(e @ G ® €) ia a semilattice.
Let f,g € P(e® G ® e). Then it is clear that f < e and g < e. There exists the maximum
element (4,7) in < g,h > such that f @ g = (f|i)(j]g) = ij. Since s < f < eand 7 < g <e,
we have 7j < e. By Proposition 2.2 (14), ij € P(G), and so ij = (ij)* = j*i* = ji. Thus
f®g=17=7i=¢® f, and hence P(e ® G @ ¢) ia a semilattice. |

Theorem 3.3. (1) For a locally inverse x-semigroup S, we have S(G(S)) = S.
(2) For a locally inductive x-groupoid G(-,*,<), we have G(S(G(-,*,<))) = G(-,*,<).

Proof. (1) Let a and b be any elements of S. Then
a©b = (ale) - (fIb),

where (e, f) is the maximum element of < a*-a, b-b* >. Then e < a*a, f < bb*, efe = ¢
and fef = f, since v -y = ay if x -y exists. By Result 1.5, (ale) = ae, (f|b) = fb,
e = a*abb*a*a, f = bb*a*abb* and a ® b = ae - fb = a(a*abb*a*a)(bb* a*abb*)b = ab. Hence
we have S(G(S)) = S.

(2) First, we show that the partial order <, say, on G(S(G(-, *,<))) is equal to <. We

remark that a @ a* = a-a* and a* @ a = a* - a for any a € G. Assume that a < b. It follows

from Result 1.3 that a* -a = a* ® a <b* ® b = b* - b. By Result 1.2,
a*-a=(a"-a)@ @ -a) @b -b)y=0"-0) @@ - a)" @ (a"-a)

Then a* - a = (a* . a,) & (b* . b) = (b* . b) R (a* -a,). Let (e, f) be the maximum element of
< a*-a,b*-b>. It is clear that (f,e) is the maximum element of < b* - b, a* - @ >. Then
e<a*a, f<b*-be-f-e=cand f-e-f=f. Moreovere,

ale) - (fIb"-b)=e-f
= (b7 -blf) - (e]a” - ):f-e
Thene-f=f-candsoa*-a=¢e¢-f=e-f-e=e<a*-a. Thus we havea*-a=¢ = f.
By using Result 1.2 again, a =0 Q@ a* @ a=b® a* - a = (b|f) - (e|a* - a) = (ble) - e = (ble).
Hence we have a < b.

Conversely, let a < b in G(-, *,<). Then d(a) < d(b), r(a) < r(b) and a = (b|d(a))
(r(a)|b). Since (d(a),d(a)) is the maximum element of < d(b), r(d(a)) > and (r(a),r(a)) is
the maximum element of < d(r(a)), r(b) >, we have

bRa*®a = b@d" -a=(bld(a))- dla)=(blda))=a
a®a*®@b = a-a*@b=r(a)- (r(a)lb) = (r(a)b) = a

o a = (*
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Thus we have a < b.

Next, we prove that, for a,b € GG, a @ b exists if and only if a - b, where ® denotes the
restricted product of G(S(G(-, *,<))). Assume that a ® b exists. Then (a* -a) @ (b-b*) ®
(a* ~a) =a*-a and (b-b*)@(a* -a)@(b-b*) =0b-b%,since a* @a =a*-a and bR b* = b-b*.
Let (e, f) be the maximum element of < a*a, bb* >. Then e < a*a, f < bb*, e-f-e=c¢
and f-e- f = f. Thus

atra=(a"a)@ (D)@ (a¢" -a)=(a"-ale) - (f]b-d") (ela*-a)=€-f-e=e<a"-a

Hence a* - a = e. Similarly, we have b-0* = f. So (a*-a)-(b-b*) - (a* -a) = a* - a and
(b-0*)-(a*-a)-(b-b*) =b-b*, and hence a - b exists. The converse is clear. Now, we have

G(®,*, =) = G(-,*,<). O
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