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Abstract. For a d-dimensional simplicial complex � � IRd such that � and all

its links are pseudomanifolds, we consider the module C�(�) of mixed splines. In

particular, we study the freeness of the module C�(b�) for a triangulation � � IR2

of a topological disk and for a non-negative integer vector � of length f01 (�), whereb� � IR3 is the join of � with the origin in IR3 and f01 (�) is the number of interior

edges in �. We completely characterize � for which C�(b�) is free for any non-negative

integer vector �. Moreover, we obtain a method for determining whether C�(b�) is
free for a triangulation � � IR2 of a topological disk which has a totally interior edge,

and for a generic non-negative integer vector �.

Introduction. Let � � IRd be a d-dimensional simplicial complex such that � and all

its links are pseudomanifolds. We de�ne Cr(�) to be the set of piecewise polynomial

functions on � which are continuously di�erentiable of order r. The elements of Cr(�)

are also known as Cr-splines. Such functions are used in the �nite element method for

solving partial di�erential equations, and play an important role in computer-aided design

and computer graphics.

Fundamental problems in spline theory are to determine the dimension of the vector space

Cr
k(�) over IR which consists of Cr-splines of degree at most k, to determine whether the

module Cr(�) is free, and to determine whether the module Cr(b�) is free, where b� � IRd+1

is the join of � with the origin in IRd+1. The algebraic structure of Cr(�), including these

problems, has been studied by [1], [2], [3], [4], [7], [8], [9], and [10]. In this paper, we consider

the set C�(�) of mixed splines, which are obtained by extending Cr-splines.

We denote the set of i-faces of � by �i, the set of interior i-faces of � by �0
i (all d-faces

are considered interior), and the set of interior faces of � by �0. Moreover, fi(�) denotes

the number of i-faces of �, and f0i (�) denotes the number of interior i-faces of �. Let

t = fd(�). We �x an ordering �1; : : : ; �t of the elements in �d. For this ordering, we can

represent F in C�(�) as a t-tuple F = (f1; : : : ; ft) of polynomials, where fi = F j�i for each

i = 1; : : : ; t, and we can view C�(�) as a module over the polynomial ring in d variables.

Similarly, C�(b�) is a module over the polynomial ring in (d+ 1) variables. It is natural to

consider the above fundamental problems for mixed splines. One of these problems is the

determination of the dimension of C�
k (�) as a vector space over IR, where C�

k (�) is the set

of F = (f1; : : : ; ft) in C�(�) such that, for each i, fi has degree at most k. In [3], Billera

and Rose showed how the theory of Gr�obner bases can be used to compute the dimension

of Cr
k(�) as a vector space over IR as well as the explicit basis for this vector space (see also

[5] for the theory of Gr�obner bases). In the same way, we can use the theory of Gr�obner

bases to compute the dimension of C�
k (�) as a vector space over IR as well as the explicit

basis for this vector space. Moreover, in [6], Geramita and Schenck derived a formula for

the dimension of C�
k (�) in high degree in the case d = 2.
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We focus on the problem of the freeness of the module C�(b�). This problem is useful,

since if C�(b�) is free, then C�(�) has a reduced basis (see [4] for the materials on reduced

bases). In this paper, we study the freeness of the module C�(b�) for a triangulation � � IR2

of a topological disk.

We call an edge � 2 � totally interior, if both vertices of � are interior vertices. We

say that � = (��1 ; : : : ; ��e ) 2 ZZ
e
�0 (e = f01 (�) = f02 (

b�)) is generic if ��i 6= ��j for any

v 2 �0
0 and for every pair �i; �j 2 �0

1 such that v 2 �i and v 2 �j . For each �i 2 �0
1, let

l�i 2 R = IR[x; y; z] be the homogeneous linear polynomial de�ning the plane containingb�i � IR3, where b�i is the convex hull of �i and the origin in IR3. Moreover, for each v 2 �0
0,

we set Hv := fl
��j+1

�j : v 2 �jg and construct the set Lv � Hv in the following manner.

If there are l
��p+1
�p ; l

��q+1
�q 2 Hv such that l�p = l�q and ��p � ��q , then we remove l

��q+1
�q

from Hv. Moreover, for each totally interior edge � 2 �0
1 and for each vertex v� 2 �0

0 of � ,

we set Kv� := f �j 2 �0
1 : l

��j+1

�j 2 Lv� ; ��j < �� g and mv� := jKv� j.

The main results in this paper are as follows:

Theorem 3.4. The module C�(b�) over R is free for all � 2 ZZ
e
�0 if and only if �

possesses no totally interior edge.

Theorem 3.11. Let � � IR2
be a triangulation of a topological disk which has at least

one totally interior edge, and let � 2 ZZ
e
�0 be generic. Then, C�(b�) is a free R-module if

and only if, for any totally interior edge � 2 �0
1, there exists a vertex v� of � such that

either (i) or (ii) below is satis�ed:

(i) @l��+1� =2 Lv� ;

(ii) @l��+1� 2 Lv� , mv� � 2, and

�� + 1 >

X
�j2Kv�

(��j + 1)�mv�

mv� � 1
:

This paper is organized as follows. First, in Section 1, we introduce some preliminary

notions on simplicial complexes. Second, in Section 2, we de�ne the set C�(�) of mixed

splines and describe some algebraic properties of C�(�) and C�(b�). Finally, in Section

3, we focus on the freeness of C�(b�) for a triangulation � � IR2 of a topological disk. In

particular, we prove our main results above.

1 Preliminaries. A simplicial complex in IRd is a �nite set � of simplices in IRd such

that

(i) if � 2 �, then each face of � is in �;

(ii) if �; � 2 �, then � \ � is a face of � and of � .

If � is a simplicial complex in IRd, each simplex of � is called a face of �. Moreover, the

dimension of � is de�ned to be

dim� := maxfdim� : � 2 �g:
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Let � be a simplicial complex in IRd and let � be a face of �. Then, the link of � in �

is de�ned by

link�(�) := f� 2 � : � \ � = ;; and CONV(� [ � ) 2 �g:

Moreover, we set link�(;) = �.

We say that a d-dimensional simplicial complex � in IRd is a pseudomanifold if the

following conditions are satis�ed:

(i) each face in � such that its dimension is less than or equal to d� 1 is a face of some

d-face in �;

(ii) for any two d-faces �; �0 2 �, there is a sequence of d-faces

� = �1; �2; : : : ; �m = �0

such that each �i \ �i+1 is a (d � 1)-face of � for each i; 1 � i � m� 1.

2 The module C�(�) and its algebraic properties. In this section, let � be a d-

dimensional simplicial complex in IRd such that � and all its links are pseudomanifolds.

Let R = IR[x1; : : : ; xd]. We now de�ne Cr(�) more explicitly.

De�nition 2.1. For r 2 ZZ�0 and � � IRd, Cr(�) is the set of functions F : j�j �! IR

such that

(i) F j� is given by a polynomial in R for all � 2 �d;

(ii) F is continuously di�erentiable of order r.

Let t = fd(�). Given an ordering �1; : : : ; �t of �d, G 2 Cr(�) can be represented as a

t-tuple of polynomials in R, i.e., G = (g1; : : : ; gt), where each gi is just Gj�i . If �i; �j 2 �d

are adjacent (i.e., �i \ �j 2 �0
d�1), let l� 2 R be the linear polynomial de�ning the aÆne

hyperplane containing � = �i \ �j 2 �0

d�1.

Proposition 2.2 ([3, Corollary 1.3]). Let F be a piecewise polynomial function on � � IRd
,

and for each i, 1 � i � t, let fi = F j�i 2 R. Then F = (f1; : : : ; ft) 2 Cr(�) if and only if,

for every adjacent pair �i; �j 2 �d, fi � fj 2 (lr+1� ), where � = �i \ �j 2 �0
d�1.

By Proposition 2.2, the elements of Cr(�) are piecewise polynomial functions F =

(f1; : : : ; ft) such that, for every adjacent pair �i; �j 2 �d, the partial derivatives up to

order r of fi and fj agree at every point in � = �i \ �j 2 �0

d�1.

Mixed splines are obtained by extending Cr-splines. Let e = f0d�1(�). We �x an ordering

�1; : : : ; �e of �
0
d�1. We now de�ne mixed splines.

De�nition 2.3. For � � IRd and � = (��1 ; : : : ; ��e) 2 ZZ
e
�0, C

�(�) is the set of functions

F : j�j �! IR such that

(i) F j�i is given by a polynomial in R for all �i 2 �d;

(ii) for every adjacent pair �i; �j 2 �d, the partial derivatives up to order ��s of F j�i and

F j�j agree at every point in �s = �i \ �j 2 �0
d�1, that is, F j�i � F j�j 2 (l

��s+1
�s ).

We call the elements of C�(�) mixed splines.
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Figure 1:

Note that if ��s = r for every s, 1 � s � e, then C�(�) is the set of Cr-splines, that is,

Cr(�).

Example 2.4. Let � � IR2 be the simplicial complex shown in Figure 1. Let �1 = �1 \�2,

�2 = �2 \ �3, �3 = �3 \ �4, and �4 = �1 \ �4. Then l�1 = l�3 = x, and l�2 = l�4 = y. Let

� = (1; 2; 3; 4). Then, for example, (y5; x4+y5; x4; 0) 2 C�(�), and (y5; x4+y5; x4; x4) =2

C�(�).

We now describe some important properties of C�(�). Let t = fd(�). Fixing an ordering

�1; : : : ; �t of �d, we can represent F 2 C�(�) as a t-tuple of polynomials in R, i.e., F =

(f1; : : : ; ft), where fi = F j�i 2 R for each i. In this way, we can view C�(�) as a submodule

of Rt. Moreover, we can easily see that C�(�) is a �nitely generated R-module of rank t.

We say that � is central if there is some vertex v 2 � such that every �i 2 �d contains

v. For example, the simplicial complex in Figure 1 is central. If � is central, then C�(�)

is a graded R-module.

Let � � IRd and R = IR[x1; : : : ; xd]. We de�ne b� � IRd+1 in the following manner. We

think of � as a subset of the hyperplane xd+1 = 1 � IRd+1. Let b� be the join of � with

the origin in IRd+1, which we de�ne to be the complex � [ f�̂ : � 2 �g, where �̂ denotes

the convex hull of � and the origin in IRd+1. Then, b� is a (d + 1)-dimensional simplicial

complex in IRd+1 such that b� and all its links are pseudomanifolds. Therefore, for � � IRd,

we can consider the set C�(b�). Since b� is central, C�(b�) is a �nitely generated gradedbR-module of rank fd+1(b�) = fd(�), where bR = IR[x1; : : : ; xd+1].

In the next section, we will focus on the problem of the freeness of the module C�(b�) in

the case d = 2.

3 Conditions for C�(b�) to be free when d = 2. Let d = 2 and R = IR[x; y; z]. The

module C�(b�) over R can be free only if � � IR2 has genus zero. So, let � � IR2 be a

triangulation of a topological disk. We �x an ordering �1; : : : ; �e of �
0
1, where e = f01 (�) =

f02 (
b�). Let l�j 2 R be the homogeneous linear polynomial de�ning the plane containingb�j � IR3. We de�ne a complex J as

J : 0 �!
M

�k2�2

J (�k)
@2
�!

M
�j2�

0
1

J (�j)
@1
�!

M
vi2�

0
0

J (vi) �! 0;



THE FREENESS OF MODULES OF MIXED SPLINES 13

where J (�k) := 0 for �k 2 �2, J (�j) := ( l
��j+1

�j ) for �j 2 �0
1, J (vi) := ( l

��j+1

�j : �j 2

�0
1; vi 2 �j ) for vi 2 �0

0, and @i is the usual (relative to @�) simplicial boundary map, and

we de�ne H�(J ) to be the homology of this complex. Moreover, we de�ne a complex R as

R : 0 �! Rf2 @2
�! Rf01

@1
�! Rf00 �! 0;

where R(�) := R = IR[x; y; z] for any � 2 �0, and we de�ne H�(R) to be the homology of

this complex. Let R=J be the quotient of R by J , and let H�(R=J ) be the homology of

this complex. From the short exact sequence of complexes 0 �! J �! R �! R=J �! 0,

we get a long exact sequence in homology:

0! H2(R)! H2(R=J )! H1(J )! H1(R)! H1(R=J )! H0(J ) ! 0:

By the same argument as [9, Theorem 4.1], it follows that C�(b�) is a free R-module if

and only if H1(R=J ) = 0. Moreover, since H1(R) = 0 if � � IR2 is a triangulation of a

topological disk, H1(R=J ) �= H0(J ). So, it follows that C�(b�) is a free R-module if and

only if H0(J ) = 0. In this section, we characterize � and � such that C�(b�) can be free.

We call an edge � 2 � totally interior, if both vertices of � are interior vertices in �.

For example, none of the edges in the simplicial complex in Figure 1 is totally interior. We

de�ne K� �
L

�2�0
1

Re� to be the submodule generated by

fe� : � 2 �0
1 is not totally interiorg

and (X
v2�

a�e� :
X
v2�

a� l
��+1
� = 0; a� 2 R

)
for each v 2 �0

0, where e� 2 IRe is the vector such that the component corresponding to �

is 1 and all the other components are 0. Then, there exists an exact sequence

0 �! K�
�!

M
�2�0

1

Re� �! H0(J ) �! 0:

Putting the above argument together, we get the following result.

Proposition 3.1. The module C�(b�) over R is free if and only if e� 2 K� for any � 2 �0
1.

Proof. By the above argument, C�(b�) is a free R-module if and only if H0(J ) = 0.

Moreover, by the above exact sequence, it follows that H0(J ) = 0 if and only if K� =L
�2�0

1
Re� .

Let � � IR2 be a triangulation of a topological disk which has at least one totally interior

edge. For each v 2 �0
0, we set Hv := fl

��j+1

�j : v 2 �jg and construct the set Lv � Hv in

the following manner. If there are l
��p+1
�p ; l

��q+1
�q 2 Hv such that l�p = l�q and ��p < ��q ,

then we remove l
��q+1
�q from Hv. If there are l

��p+1
�p ; l

��q+1
�q 2 Hv such that l�p = l�q and

��p = ��q , then we may remove either of l
��p+1
�p and l

��q+1
�q from Hv since l

��p+1
�p = l

��q+1
�q ,

but we consider l
��p+1
�p ; l

��q+1
�q as distinct polynomials from a viewpoint that l

��p+1
�p is the

polynomial corresponding to �p and l
��q+1
�q is the polynomial corresponding to �q. Thus, we

can get distinct Lv from Hv by removing l
��p+1
�p or removing l

��q+1
�q .
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Proposition 3.2. Let � � IR2
be a triangulation of a topological disk which has at least one

totally interior edge. If the following condition holds, then C�(b�) is not a free R-module:

Whatever Lv (v 2 �0
0) we construct, we have a totally interior edge � 2 �0

1 such that8<: l��+1� =2
�
l
��j+1

�j 2 Lv� : �j 6= �; ��j � ��

�
;

l��+1� =2
�
l
��j+1

�j 2 Lw�
: �j 6= �; ��j � ��

�
;

(1)

where v� ; w� are the vertices of � .

Proof. By assumption, there are totally interior edges �1; : : : ; �s which satisfy the following

condition:

��1 = � � � = ��s ; l�1 = � � � = l�s and for each i = 1; : : : ; s� 1, �i and �i+1 share a common

vertex, and furthermore

l
��1+1
�1 =2

�
l��+1� : � 2 �0

1; v0 2 �; � 6= �1; �� � ��1
�
;

l
��1+1
�1 = l

��2+1
�2 =2

�
l��+1� : � 2 �0

1; v1 2 �; � 6= �1; �2; �� � ��1
�
;

l
��2+1
�2 = l

��3+1
�3 =2

�
l��+1� : � 2 �0

1; v2 2 �; � 6= �2; �3; �� � ��2
�
;

...(2)

l
��s�1+1

�s�1 = l
��s+1
�s =2

�
l��+1� : � 2 �0

1; vs�1 2 �; � 6= �s�1; �s; �� � ��s�1
�
;

l
��s+1
�s =2

�
l��+1� : � 2 �0

1; vs 2 �; � 6= �s; �� � ��s
�
;

where, for i = 1; : : : ; s � 1, vi is the vertex which �i and �i+1 share, v0 is the vertex of �1
which is di�erent from v1, and vs is the vertex of �s which is di�erent from vs�1.

In fact, we assume that the condition (2) does not hold for some vertex vi. If we construct

Lv0 = fl
��1+1
�1 ; : : :g; : : : ; Lvi�1 = fl

��i+1
�i ; : : :g;

Lvi+1 = fl
��i+1+1

�i+1 ; : : :g; : : : ; Lvs = fl
��s+1
�s ; : : :g;

then none of the edges �1; : : : ; �s satis�es the condition (1) in Proposition 3.2 whatever Lvi

we construct. Hence, if there are not �1; : : : ; �s as above, then we can construct the sets

Lv (v 2 �0
0) such that the condition (1) in Proposition 3.2 does not hold for any totally

interior edge. This contradicts the assumption.

For each vi 2 �0
0
, we set

K�
vi
:=

(X
vi2�

a�e� :
X
vi2�

a� l
��+1
� = 0; a� 2 R

)
:

For any element
P

v02�
a� e� in K�

v0
, the constant term a0�1 of a�1 2 R is 0. In fact, we

assume that a0�1 6= 0. Since
P

v02�
a�e� 2 K�

v0
,

a�1 l
��1+1
�1 +

X
v02�; � 6=�1

a� l
��+1
� = 0:

Comparing the homogeneous parts of degree ��1 + 1 on both sides, we get

a0�1 l
��1+1
�1 +

X
v02�; � 6=�1

a0� l
��+1
� = 0;
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where a0� 2 R. This contradicts the condition (2). Hence, it follows that a0�1 = 0. Similarly,

for any element
P

vs2�
a�e� in K�

vs
, the constant term a0�s of a�s 2 R is 0.

Moreover, for any element
P

vi2�
a�e� in K�

vi
(i = 1; : : : ; s � 1), let a0�i (resp. a

0
�i+1

) be

the constant term in a�i 2 R (resp. a�i+1 2 R). Then, it holds that a0�i + a0�i+1 = 0. In fact,

we assume that a0�i + a0�i+1 6= 0. Since
P

vi2�
a�e� 2 K�

vi
, it follows that

a�i l
��i+1
�i + a�i+1 l

��i+1+1

�i+1 +
X
vi2�

� 6=�i; �i+1

a� l
��+1
� = 0:

Since l
��i+1
�i = l

��i+1+1

�i+1 , we get

(a�i + a�i+1 ) l
��i+1
�i +

X
vi2�

� 6=�i; �i+1

a� l
��+1
� = 0:

Comparing the homogeneous parts of degree ��i + 1 on both sides,

(a0�i + a0�i+1 ) l
��i+1
�i +

X
vi2�

� 6=�i; �i+1

a0� l
��+1
� = 0;

where a0� 2 R. This contradicts the condition (2). Hence, it follows that a0�i + a0�i+1 = 0.

In this way, if, for any element in the submodule generated by
Ss

i=0K
�
vi
, we denote the

constant term in the coeÆcient of e�i by a�i , then it follows that
Ps

i=1 a�i = 0. Hence, for

any element in K�, the sum of the constant terms in the coeÆcients of e�1 ; : : : ; e�s is also

0. Therefore, it follows that e�1 =2 K�. This implies that K� 6=
L

�2�0
1

Re� . Hence, by

Proposition 3.1, C�(b�) is not a free R-module.
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Example 3.3. Let � � IR2 be the simplicial complex shown in Figure 2. We order the

elements in �0
1 as

�1 = �1 \ �2; �2 = �2 \ �3; �3 = �3 \ �4;

�4 = �1 \ �4; �5 = �4 \ �5; �6 = �5 \ �6;

�7 = �6 \ �7; �8 = �7 \ �8; �9 = �8 \ �9;

�10 = �6 \ �9; �11 = �9 \ �10; �12 = �3 \ �10:
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If � = (2; 3; 1; 3; 2; 2; 3; 1; 2; 0; 3; 3), then

Lv1 = fl2�3 ; l
4

�2
g or fl2�3 ; l

4

�4
g;

Lv2 = fl�10 ; l
3

�5
; l3�6g;

Lv3 = fl�10 ; l
3

�9
g:

Hence, whatever Lvi (i = 1; 2; 3) we construct, the condition in Proposition 3.2 holds for

�10. Therefore, by Proposition 3.2, C�(b�) is not a free R-module.

If � = (2; 1; 1; 1; 2; 2; 1; 3; 1; 1; 3; 3), then

Lv1 = fl2�2 ; l
2

�3
g or fl2�3 ; l

2

�4
g;

Lv2 = fl2�3 ; l
3

�5
; l3�6g or fl

2

�10
; l3�5 ; l

3

�6
g;

Lv3 = fl2�7 ; l
2

�10
g or fl2�9 ; l

2

�10
g:

Hence, whatever Lvi (i = 1; 3) we construct, the condition in Proposition 3.2 holds for �3
if Lv2 is the former, and the condition in Proposition 3.2 holds for �10 if Lv2 is the latter.

Therefore, by Proposition 3.2, C�(b�) is not a free R-module.

We now come to the �rst main result in this paper.

Theorem 3.4. The module C�(b�) over R is free for all � 2 ZZ
e
�0 if and only if � possesses

no totally interior edge.

Proof. If � does not have a totally interior edge, none of the edges in � is totally interior.

Hence, for all � 2 ZZ
e
�0, it follows that e� 2 K� for any � 2 �0

1. Therefore, by Proposition

3.1, C�(b�) is a free R-module for all � 2 ZZ
e
�0.

On the other hand, by Proposition 3.2, it follows that if � has a totally interior edge,

there exists � 2 ZZ
e
�0 such that C�(b�) is not a free R-module.
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@
@
@
@
@
@
@
@
@
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@
@
@
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Figure 3:

Example 3.5. Let � � IR2 be the simplicial complex in Figure 3. By Theorem 3.4, C�(b�)

is free for all � 2 ZZ
8

�0, since � does not have a totally interior edge.

We next consider the freeness of C�(b�) for a triangulation � � IR2 of a topological disk

which has at least one totally interior edge.
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Proposition 3.6. Let � � IR2
be a triangulation of a topological disk which has at least

one totally interior edge. If the following condition holds, then C�(b�) is a free R-module:

We can construct the sets Lv (v 2 �0
0) such that, for any totally interior edge � 2 �0

1,

there is a vertex v� 2 �0
0 of � such that

l��+1� 2

�
l
��j+1

�j 2 Lv� : ��j < ��

�
:

Proof. By Proposition 3.1, in order to prove that C�(b�) is a free R-module, it suÆces to

show that e� 2 K� for any � 2 �0
1. Since e� 2 K� for any edge � 2 �0

1 which is not totally

interior, we have only to show that e� 2 K� for any totally interior edge � 2 �0
1.

First, we set

r1 := minf�� : � 2 �0
1 is totally interiorg;

and take any totally interior edge �1 2 �0
1 such that ��1 = r1. By assumption, there is a

vertex v1 2 �0
0 of �1 such that

l
��1+1
�1 2

�
l��+1� 2 Lv1 : �� < ��1

�
:

By the choice of r1, the edge � 2 �0
1 satisfying �� < ��1 is not totally interior. Hence, if

l
��1+1
�1 =

X
v12�; ��<��1

a� l
��+1
� ;

where a� 2 R, then it follows that

e�1 �
X

v12�; ��<��1

a� e� 2 K�:

Since � is not totally interior, e� 2 K�. Therefore, it follows that e�1 2 K�.

We next set

r2 := minf�� : � 2 �0
1 is a totally interior edge such that �� 6= r1g;

and take any totally interior edge �2 2 �0
1 such that ��2 = r2. By assumption, there is a

vertex v2 2 �0
0 of �2 such that

l
��2+1
�2 2

�
l��+1� 2 Lv2 : �� < ��2

�
:

By the choice of r2, the edge � 2 �0
1
satisfying �� < ��2 is not a totally interior edge or is

a totally interior edge such that �� = r1. In either case, it follows that e� 2 K�. Hence, if

l
��2+1
�2 =

X
v22�; ��<��2

a� l
��+1
� ;

where a� 2 R, then it follows that

e�2 �
X

v22�; ��<��2

a� e� 2 K�:

Since e� 2 K�, it follows that e�2 2 K�.

Since the number of totally interior edges in �0
1 is �nite, by the repeat of this process,

it follows that e� 2 K� for any totally interior edge � 2 �0
1. This implies that C�(b�) is a

free R-module.
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Example 3.7. Let � � IR2 be the same simplicial complex as in Example 3.3. If � =

(1; 3; 2; 3; 2; 2; 2; 4; 2; 3; 3; 3), then

Lv1 = fl2�1 ; l
4

�2
g or fl2�1 ; l

4

�4
g;

Lv2 = fl3�3 ; l
3

�5
; l3�6g;

Lv3 = fl3�7 ; l
4

�10
g or fl3�9 ; l

4

�10
g:

Since

l3�3 2 ( l2�1 ); l4�10 2 ( l3�3 ) � ( l3�3 ; l
3

�5
; l3�6 );

the condition in Proposition 3.6 holds. Hence, by Proposition 3.6, C�(b�) is a free R-module.

We say that � = (��1 ; : : : ; ��e) 2 ZZ
e
�0 is generic if ��i 6= ��j for any v 2 �0

0 and for

every pair �i; �j 2 �0
1
such that v 2 �i and v 2 �j . By Proposition 3.2 and Proposition 3.6,

we get the following result.

Proposition 3.8. Let � � IR2
be a triangulation of a topological disk which has at least

one totally interior edge, and let � 2 ZZ
e
�0 be generic. Then, the following conditions are

equivalent:

(i) C�(b�) is a free R-module;

(ii) for any totally interior edge � 2 �0
1, there is a vertex v� 2 �0

0 of � such that

l��+1� 2

�
l
��j+1

�j 2 Lv� : ��j < ��

�
:

Proof. First, by Proposition 3.6, it follows immediately that (ii) ) (i). Thus, we must

prove that (i) ) (ii). We now assume that there is a totally interior edge � 2 �0
1 such that

l��+1� =2
�
l
��j+1

�j 2 Lv� : ��j < ��

�
;

l��+1� =2
�
l
��j+1

�j 2 Lw�
: ��j < ��

�
;

where v� ; w� are the vertices of � . Then, since � is generic, it follows that

l��+1� =2
�
l
��j+1

�j 2 Lv� : �j 6= �; ��j � ��

�
;

l��+1� =2
�
l
��j+1

�j 2 Lw�
: �j 6= �; ��j � ��

�
:

Hence, by Proposition 3.2, C�(b�) is not a free R-module, which contradicts (i).

By the following lemma, we can determine whether l��+1� 2 ( l
��j+1

�j 2 Lv� : ��j < �� )

or not for each totally interior edge � 2 �0
1 and for each vertex v� 2 �0

0 of � .

Lemma 3.9 ([6, Corollary 2.5]). Let f1; : : : ; fs 2 S = IR[x; y] be homogeneous linear

polynomials which are pairwise linearly independent, and let 0 < c1 � c2 � � � � � cs be

integers. Then, for m � 2,

f
cm+1

m+1
=2 (fc1

1
; : : : ; fcmm ) () cm+1 �

Pm

i=1 ci �m

m� 1
:
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Remark 3.10. Let S = IR[x; y] and R = IR[x; y; z]. For each �i 2 �0
1; i = 1; : : : ; s, contain-

ing the vertex v 2 �0
0, let l�j 2 R be the homogeneous linear polynomial de�ning the plane

containing b�j � IR3. Suppose that the set fl�1 ; : : : ; l�sg is pairwise linearly independent.

Let 0 < c1 � c2 � � � � � cs be integers. Moreover, let f�i = aix+ biy + di 2 S be the linear

polynomial de�ning the line containing �i � IR2 and let f 0�i = aix + biy 2 S. Then, for

m � 2,

f 0�m+1

cm+1
2 (f 0�1

c1; : : : ; f 0�m
cm) () lcm+1

�m+1
2 (lc1�1 ; : : : ; l

cm
�m
):

Hence, we can determine whether l
cm+1

�m+1
2 (lc1�1 ; : : : ; l

cm
�m
) or not by using the inequality in

Lemma 3.9.

For each totally interior edge � 2 �0
1, and for each vertex v� of � , we set

Kv� := f �j 2 �0

1 : l
��j+1

�j 2 Lv� ; ��j < �� g;

mv� := jKv� j:

By Proposition 3.8 and Lemma 3.9, we obtain a method for determining whether C�(b�) is
a free R-module if � � IR2 is a triangulation of a topological disk which has at least one

totally interior edge and � 2 ZZ
e
�0 is generic.

Theorem 3.11. Let � � IR2
be a triangulation of a topological disk which has at least one

totally interior edge, and let � 2 ZZ
e
�0 be generic. Then, C�(b�) is a free R-module if and

only if, for any totally interior edge � 2 �0
1, there exists a vertex v� of � such that either

(i) or (ii) below is satis�ed:

(i) @l��+1� =2 Lv� ;

(ii) @l��+1� 2 Lv� , mv� � 2, and

�� + 1 >

X
�j2Kv�

(��j + 1) �mv�

mv� � 1
:

Proof. Let � 2 �0
1 be any totally interior edge, and let v� 2 �0

0 be a vertex of � . If

l��+1� =2 Lv� , then there is l
��0+1

� 0 2 Lv� such that l� = l� 0 ; �� > �� 0 . Hence,

l��+1� 2

�
l
��j+1

�j 2 Lv� : ��j < ��

�
:

If l��+1� 2 Lv� and mv� � 2, then it follows from Lemma 3.9 and Remark 3.10 that

l��+1� 2

�
l
��j+1

�j 2 Lv� : ��j < ��

�
() �� + 1 >

X
�j2Kv�

(��j + 1)�mv�

mv� � 1
:

If l��+1� 2 Lv� and mv� � 1, then

l��+1� =2
�
l
��j+1

�j 2 Lv� : ��j < ��

�
:

In this way, for the totally interior edge � 2 �0
1 and for the vertex v� 2 �0

0 of � , the

condition (i) or (ii) holds if and only if

l��+1� 2

�
l
��j+1

�j 2 Lv� : ��j < ��

�
:

Hence, we obtain the desired result by Proposition 3.8.
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Figure 4:

Example 3.12. Let � � IR2 be the simplicial complex shown in Figure 4. Then, �5 is the

only totally interior edge of �. For example, let � = (0; 4; 2; 1; 3; 4) 2 ZZ
6

�0. Then � is

generic. In this case,

Hv = fl�1 ; l
2

�4
; l4�5 ; l

5

�6
g;

Lv = fl�1 ; l
2

�4
; l4�5g;

Kv = f�1; �4g;

and

3 + 1 = 4 >
(0 + 1) + (1 + 1)� 2

2� 1
= 1:

Therefore, by Theorem 3.11, C�(b�) is free.

Moreover, let � = (0; 2; 3; 2; 1; 4) 2 ZZ
6

�0, which is also generic. In this case, for the

vertex v,

Hv = fl�1 ; l
3

�4
; l2�5 ; l

5

�6
g;

Lv = fl�1 ; l
3

�4
; l2�5g;

Kv = f�1g;

and for the vertex w,

Hw = Lw = fl3�2 ; l
4

�3
; l2�5g;

Kw = ;:

Therefore, by Theorem 3.11, C�(b�) is not free.
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