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Abstract. This paper deals with an optimal distribution of search e�ort for a target

moving on two-dimensional search space, say a geographical space with time 
ow.

In most researches published so far on this subject, the amount of available search

e�ort has an upper limit only at each time so that the algorithm of repeatedly solving

a kind of resource allocation problem at each time worked well to obtain optimal

solutions. However, on the two-dimensional search space, we have to consider the

nested constraints of search e�ort, which mean constraints on the total amount of

available e�ort on the whole space as well as at each time and make the problem

diÆcult to be solved. In this paper, we derive necessary and suÆcient conditions for

optimality and propose two algorithms for an optimal solution, which perform better

than some well-known nonlinear programming methods in terms of computational

time.

1 Introduction This paper deals with an optimal distribution of search e�ort for a

target moving on two-dimensional search space, say a geographical space with time 
ow.

Since Koopman[9] studied �rst the search problem where continuous search e�ort is dis-

tributed for a stationary target on one-dimensional geographical space, many researchers

have been dealing with the problem. de Guenin[2] generalized the Koopman's work and

derived some optimality conditions by a variational method. In the case of discrete search

e�ort, Kadane[7] found an optimal distribution for a stationary target hiding in one of some

cells. When we consider a moving target, we need another space other than the geographi-

cal space to express the movement of the target, that is time space. Earlier studies on the

moving target problem owe to Brown[1], Washburn[15], Iida[6] and other researchers who

clari�ed the similarity and the di�erence between the stationary target problem and the

moving target one, and devised methods of giving optimal solutions. In their problems, they

set limits on the amount of the available e�ort only at each time but not during the whole

time. It enabled them to construct methods for optimal solutions by repeatedly solving a

stationary target problem at each time. Stromquist and Stone[14] mathematically general-

ized those results and Stone[13] compiled a wide variety of optimal distribution problems

of search e�ort in a book. Among those researchers, only Stone had been going to deal

with the multi-layered constraints, which mean constraints on the total amount of avail-

able search e�ort during the whole time as well as at each time. He developed his theory

with the concept of deterministic target motion which means that a certain parameter at

initial time determines the whole motion of the target ever since. Furthermore, he assumed

the separability of time t and geographical coordinate x for the function to be dealt with,

which he called factorability. Those characteristics made calculations on the process be

executed separably with respect to t and x so that he avoided the diÆculties involved in the

two-dimensional problem. We[3] confronted a problem on one-dimensional space, where an
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objective is non-separable for variables but the constraint is given only on the total amount

of variables, and proposed a new method for optimal solution. However, it is not strong

enough to solve the general search problem for the moving target. It has to be extended to

the problem with the nested constraints of variables on a two dimensional search space.

In this paper, we formulate the search problem with the nested constraints of search

e�ort as a concave maximization problem and propose two methods of giving an optimal

solution. The problem is more diÆcult than so-called resource allocation problem[5], which

is usually de�ned as a concave maximization problem with a constraint only on the total

amount of resources. However it is simpler than nonlinear problem or global optimization

problem[8, 10, 11, 4]. The problem will be modeled as a search problem. But the methods

proposed in this paper could be applied to many practical problems as long as they are

formulated as a concave maximization with doubly layered constraints. In this paper,

it will be clari�ed how better the proposed methods perform than well-known nonlinear

programming methods in terms of computational eÆciency.

We describe a search problem and formulate a concave maximization problem in the

next section. In Section 3, we derive necessary and suÆcient conditions for an optimal

solution by introducing Lagrange multipliers. In Section 4, two methods are proposed

for an optimal solution with the proof of these algorithmic validities. We compare the

computational eÆciency of the proposed methods with some methods known well in the

�eld of nonlinear programming.

2 Modeling and Formulation of Problem Let us consider a search problem, where

a searcher is searching a target with the limited amount of available search e�ort.

(1) A searcher wants to detect a target by distributing search e�ort in the search space

of a discrete cell space and a discrete time space. The cell space and the time space

are denoted by K = f1; � � � ;Kg and T = f1; � � � ; Tg, respectively.

(2) The search e�ort can be continuously divided in the search space. Let '(i; t) be the

e�ort distributed at a point (i; t) 2 K � T . The available search e�ort has some

constraints on its amount. Its local constraint is given by 0 � '(i; t) � mit. The total

amount of e�ort at each time t and during the whole time periods must not be beyond

�(t) and M , respectively, that is,
P

i '(i; t) � �(t) for t 2 T and
P

t

P
i '(i; t) �M .

(3) The target has a set of several possible paths, denoted by 
. The target selects a

path ! 2 
 with probability �(!). The path ! is represented by a sequence of cells

according to time 
ow, f!(t); t 2 T g where !(t) is the target's position in the cell

space at time t. Such path information is given to the searcher in advance. It is

assumed that
P

!2
 �(!) = 1.

(4) By search e�ort '(i; t) distributed at a point (i; t) 2K � T , the target is detected at

time t with probability 1 � exp(��i'(i; t)) given that he exists there. The positive

real number �i indicates the detectability of cell i. Events of the detection at each

time are assumed to occur independently one another.

(5) The searcher wants to know an optimal distribution of search e�ort so as to maximize

the detection probability of the target.

First of all, let us derive the detection probability, which is an objective function. Using a

search plan ' = f'(i; t); (i; t) 2 K � T g, the detection probability of target on path ! is
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given by 1� exp(�
P

t �!(t)'(!(t); t)) and therefore the entire detection probability P (')

has the following expression.

P (') = 1�
X
!2


�(!) exp

 
�

TX
t=1

�!(t)'(!(t); t)

!
: (1)

The function is �nite, increasing and strictly concave for variable f'(i; t); (i; t) 2 Sg where
S � f(!(t); t); t = 1; � � � ; T; ! 2 
g � K � T . Now we can formulate the problem as a

concave maximization problem as follows.

max
'

P (') (2)

s:t: 0 � '(i; t) � mit ; (i; t) 2K � T (3)X
i

'(i; t) � �(t) ; t 2 T (4)X
t

X
i

'(i; t) �M: (5)

In the case of
PK

i=1mit � �(t), the limit �(t) is not necessary for the problem and similarly

in the case of
PT

t=1�(t) � M , so is M . Therefore, we assume the following inequalities

without loss of generality.

KX
i=1

mit > �(t); t 2 T (6)

TX
t=1

�(t) >M : (7)

If
P

i;t '(i; t) < M , we can increase P (') by additionally distributing residual e�ort M �P
i;t '(i; t) on any point (i; t). Therefore, we can replace an inequality sign with an equality

sign in constraint (5). In result, the last formulation of our problem is as follows.

PM : max
'

P (') (8)

s:t: 0 � '(i; t) � mit ; (i; t) 2K � T (9)X
i

'(i; t) � �(t) ; t 2 T (10)X
t

X
i

'(i; t) =M : (11)

In the �eld of search theory, many researcher[6, 1, 15] have so far concentrated their e�ort

on a special case of this problem, that is the problem with only the constraint of (10). Since

constraints are given each time point in those studies, they can obtain an optimal solution

as a convergence point by repeating the polynomial-time algorithm proposed for the typical

resource allocation problem and improving current solution on the process at each time t.

An additional constraint (11) of searching resources makes problem PM harder to be solved

because the balance of searching e�ort has to be taken account of on time 
ow.

3 Optimality Conditions Let 	 be a feasible region satisfying constraints (9)-(11),

which is a closed convex set. Since problem PM is to maximize a strictly concave objective

function on a closed convex feasible region, it has a unique optimal solution. For some (i; t),

we denote a set of paths coming in cell i at time t by 
it, that is 
it = f! 2 
j!(t) = ig.
Here we elucidate necessary and suÆcient conditions for optimality by introducing Lagrange

multipliers and the relation between the constraints of the problem and the multipliers.
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3.1 Necessary and suÆcient conditions for optimality

Theorem 1 (Necessary and SuÆcient Conditions) A solution ' 2 	 is optimal if
and only if there exit a positive multiplier � and nonnegative multipliers �t; t = 1; � � � ; T;
which satisfy, for every (i; t) 2K � T ,

if '(i; t) = 0 ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
� � + �t (12)

if 0 < '(i; t) < mit ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
= �+ �t (13)

if '(i; t) =mit ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
� �+ �t (14)

and for every t 2 T ,

if �t > 0 ;

KX
i=1

'(i; t) = �(t) : (15)

Proof: Except for the positivity of �, the conditions above in the theorem are given as

Kuhn-Tucker conditions[12] by considering the following Lagrangean function

L(';�; �t; �
1
it; �

2
it) = P (') + �

 
M �

TX
t=1

KX
i=1

'(i; t)

!
+

TX
t=1

�t

 
�(t) �

KX
i=1

'(i; t)

!

+

TX
t=1

KX
i=1

�1it'(i; t) +

TX
t=1

KX
i=1

�2it(mit � '(i; t)) ; (16)

where �; �t; �
1
it and �2it; i = 1; � � � ;K; t = 1; � � � ; T are nonnegative multipliers and by

noting that

@P

@'(i; t)
= �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
:

We can prove � > 0 as follows.
PK

i=1 '(i; t) = �(t) can not be true for all t 2 T because

of condition (7). It follows that �t = 0 for some t. For the t, condition (14) can not always

hold for i 2 K because of condition (6). It needs � > 0 to hold either of conditions (12)

and (13) for some i 2K. Q.E.D.

The solution satisfying conditions (12)-(14) can be expressed as follows, using optimal

multipliers � > 0; �t � 0.

'(i; t) = [
it(� + �t;')]
mit

0 (17)

where


it(� + �t;') �
1

�i
log

�i
P

!2
it
�(!) exp

�
�
PT

�=1;� 6=t �!(�)'(!(� ); � )
�

�+ �t
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and symbol [�]ba indicates [x]ba = fb if b � x; x if a < x < b; a if x � ag. Using this

notation, we can rewrite conditions (15) and (11) as follows.

If �t > 0 ;

KX
i=1

[
it(�+ �t;')]
mit

0 = �(t) (18)X
t

X
i

[
it(�+ �t;')]
mit

0 =M : (19)

3.2 Relation between upper limits and Lagrange multipliers Consider two prob-

lems of PM1
and PM2

. The problem PM1
has limits fM1;�1(t)g and the problem PM2

has

limits fM2;�2(t)g while other local upper limits fmitg are the same for both problems.

Assume that PM1
and PM2

have '1 and '2 as their optimal solutions, respectively, and

f�1; �1tg and f�2; �2tg as their optimal Lagrange multipliers. For '1 and '2; '1 6= '2, we

have the following inequality from the strict concavity of objective function P (�).

P ('2) < P ('1) +
X
i;t

@P

@'1(i; t)
('2(i; t) � '1(i; t)) : (20)

Let I0 � f(i; t)j'1(i; t) = 0g; I1 � f(i; t)j0 < '1(i; t) < mitg and I2 � f(i; t)j'1(i; t) = mitg.
From the optimality of '1 satisfying conditions (12)-(14), it follows that @P=@'1(i; t) �
�1 + �1t for (i; t) 2 I0, @P=@'1(i; t) = �1 + �1t for (i; t) 2 I1 and @P=@'1(i; t) � �1 + �1t
for (i; t) 2 I2. Now we proceed further the transformation of (20).

P ('2) < P ('1) +
X

(i;t)2I0

(�1 + �1t)'2(i; t) +
X

(i;t)2I1

(�1 + �1t)('2(i; t) � '1(i; t))

+
X

(i;t)2I2

(�1 + �1t)('2(i; t) �mit)

= P ('1) +
X
i;t

(�1 + �1t)('2(i; t) � '1(i; t))

= P ('1) + �1

0@X
i;t

'2(i; t) �
X
i;t

'1(i; t)

1A+
X
t

�1t

 X
i

'2(i; t) �
X
i

'1(i; t)

!

= P ('1) + �1(M2 �M1) +
X

ftj�1t>0g

�1t

 X
i

'2(i; t) ��1(t)

!

� P ('1) + �1(M2 �M1) +
X
t

�1t(�2(t) � �1(t)) :

Our �nal result is as follows.

P ('2) < P ('1) + �1(M2 �M1) +
X
t

�1t(�2(t)� �1(t)) : (21)

Lemma 1 Between total limit M of search e�ort and Lagrange multiplier �, there exist the
following relations.

(i) When two problems PM1
; PM2

with di�erent total limitsM1; M2 and the same subtotal
limits �(t) have optimal multipliers �1 and �2, respectively, it follows that �1 < �2 if
M1 > M2 and vice versa.

(ii) When � approaches �max � maxi;t �i
P

!2
it
�(!), an optimal solution becomes ' =

f0; � � � ; 0g. That is, �! �max corresponds to the limit of M = 0.
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Proof: Now let us prove part (i). Suppose that problems PM1
; PM2

have optimal solutions

'1; '2 and optimal multipliers �1; �2, respectively, where '1 6= '2 of course. By applying

�1(t) = �2(t) to inequality (21), we obtain P ('2) < P ('1) + �1(M2 �M1). Similarly we

have P ('1) < P ('2) + �2(M1 �M2) and consequently the following relation holds.

�1(M1 �M2) < P ('1)� P ('2) < �2(M1 �M2) :

It tells us that �1 < �2 if M1 >M2 and �1 > �2 if M1 < M2.

From (i), as M becomes smaller, the corresponding multiplier � becomes larger. As M

approaches 0, all search e�ort are shrinking to 0 and then all �t are going to be 0 because

of the complementary slackness (15). Applying these to the expression of optimal solution

(17), it follows that � is supposed to be �max as M ! 0. Now the assertion of (ii) has be

done. Q.E.D.

Similarly we can obtain the relation between �(t) and �t.

Lemma 2 There are the following relations between subtotal limit of search e�ort �(t) and
Lagrange multiplier �t at time point t 2 T .

(i) Two problems, which have di�erent subtotal limits �1(t) and �2(t) only at time t

but the same subtotal limits at any other time and the same total limit M , have
optimal multipliers �1t > 0 and �2t > 0, respectively. Then it follows that �1t < �2t if
�1(t) > �2(t) and vice versa.

(ii) Let ' be an optimal solution of the following relaxed problem which is made by remov-
ing limit �t at a certain time t.

RPLt : max
'

P (') (22)

s.t.

0 � '(i; � ) �mi� ; i 2K; � 2 T (23)

KX
i=1

'(i; � ) � �(� ); t 6= � 2 T (24)

TX
�=1

KX
i=1

'(i; � ) �M : (25)

Let us denote the subtotal amount of the solution at time t by �max(t) =
P

i '(i; t).
For any problem with subtotal limit �(t) > �max(t), an optimal solution remains
unchanged and an optimal multiplier �t is zero.

Proof: Let us denote optimal solutions of relevant two problems by '1 and '2. Noting

that '1 6= '2 from
P

i '1(i; t) = �1(t) 6= �2(t) =
P

i '2(i; t), we may follow the same way

used in Lemma 1 to verify part (i) in this Lemma.

Let ' and '� be optimal solutions for the relaxed problem RPLt and the original one

with limit �(t) at time t, respectively. Since �max(t) =
P

i '(i; t), we have ' = '�max

and hence P (') = P ('�max
). For arbitrary �(t) (> �max(t)), P ('�) � P (') holds, of

course. At the same time, P ('�) � P (') because ' is an optimal solution for the relaxed

problem. Now we have obtained P ('�) = P (') or '� = ' from the uniqueness of optimal

solution. In this case, we have
P

i '�(i; t) = �max(t) < �(t) which indicates �t = 0 from

(15). Q.E.D.
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In Lemma 1, we have clari�ed that a total upper limit of search e�ort M; 0 < M <P
t �(t) corresponds to a unique optimal multiplier �; �max > � > 0. There is a similar

correspondence between subtotal limit �(t) and multiplier �t with the exception of the case

of �t = 0, as we see in Lemma 2. These properties implicitly point out that Lagrange

multipliers could be pointers to be easily manipulated for �nding an optimal solution.

4 Methods for Optimal Solution Here we propose two methods for optimal solution

of PM .

4.1 Gradient-completion method This method repeats making up feasible solutions

such that Eqs. (18) and (19) are kept satis�ed until Eqs. (12)-(14) are ful�lled. The

equations (12)-(14) are optimal conditions associated with the gradient of the Lagrangean

function. That is why we call the algorithm the gradient-completion method. Before de-

scribing the algorithm, let us discuss about how to compute optimal Lagrange multipliers

by using an optimal solution from now.

Let '� = f'�(i; t); i 2 K t 2 T g be an optimal solution for problem PM . Here we

consider a procedure to derive optimal Lagrange multipliers ��; f��t g from '�. We de�ne

a function of y � 0 and ' 2 	 which indicates the subtotal amount of search e�ort at time

t using the expression of optimal solution (17).

St(y; ') �

KX
i=1

[
it(y;')]
mit

0 : (26)

St(y; ') is a monotone continuous decreasing function for y in the range of values of

(0;
P

imit) and there exists a unique root �(t; ') in (0;maxif�i
P

!2
it
�(!)g) for the equa-

tion St(�(t; '); ') = �(t), where 0 < �(t) <
P

imit. Now we sort f�(t; '�); t 2 Tg in the

order of values, such as �(t1; '
�) � �(t2; '

�) � � � � � �(tT ; '
�). Suppose �� < �(t; '�). Then

since St(�
�; '�) > St(�(t; '

�); '�) = �(t), condition St(�
� + ��t ; '

�) � �(t) requires ��t > 0

and we have �� + ��t = �(t; '�) from condition (15). Suppose �� � �(t; '�). If ��t > 0,

St(�
� + ��t ; '

�) < St(�
�; '�) � St(�(t; '

�); '�) = �(t) holds which is inconsistent with (18).

Therefore ��t = 0. Summarizing the above discussion, we have the following relation among

��; ��t and �(t; '�).

If �� < �(t; '�); �� + ��t = �(t; '�) and
X
i

'�(i; t) = �(t) ; (27)

if �� � �(t; '�); ��t = 0 : (28)

The multiplier �� must be equal to or greater than �(t1; '
�). Otherwise the supposition

of �� < �(t1; '
�) implies that equality holds in condition (10) at all t 2 T from (27) and

contradicts the basic assumption (7). Now there is a certain integer I such that �(tI ; '
�) �

�� < �(tI+1; '
�). From (27) and (28), we obtain ��t1 = � � � = ��tI = 0 and �� + ��tk =

�(tk; '
�); k = I + 1; � � � ; T; and the optimal solution as follows.

'�(i; tk) =

�
[
itk (�

�;'�)]
mit

k

0 ; k = 1; � � � ; I ;

[
itk (�(tk; '
�);'�)]

mitk

0 ; k = I + 1; � � � ; T :
(29)

Now we can de�ne the total amount of distributed search e�ort by the above expression.

Q(�;') �

��(')X
k=1

KX
i=1

[
itk(�;')]
mit

k

0 +

TX
k=��(')+1

KX
i=1

[
itk(�(tk; ');')]
mit

k

0

=

��(')X
k=1

KX
i=1

[
itk(�;')]
mit

k

0 +

TX
k=��(')+1

�(tk) (30)
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where

��(') � maxfk j �(tk; ') � �g : (31)

By the de�nition that the second term of (30) ought to be omitted in the case of ��(') = T ,

Q(�;') is available in the case of �(tT ; '
�) � �� as well. We can derive the optimal multiplier

�� by solving the equation Q(��; '�) = M . Other optimal multipliers f��t g are given by

��tk = 0 for k = 1; � � � ; ���('
�) and ��tk = �(tk; '

�) � �� for k = ���('
�) + 1; � � � ; T . Then

the optimal solution '� is represented by

'�(i; tk) =

�
[
itk (�

�;'�)]
mitk

0 ; k = 1; � � � ; ���('
�)

[
itk (�(tk; '
�);'�)]

mit
k

0 ; k = ���('
�) + 1; � � � ; T

(32)

where T time points are sorted into t1; t2; � � � ; tT according to values of f�(t; '�); t =

1; � � � ; Tg, such that �(t1; '
�) � �(t2; '

�) � � � � � �(tT ; '
�).

We are ready to explain the algorithm of the gradient-completion method.

Algorithm GC

(G1) Set j = 0 and make an initial feasible solution 'j , e.g. '(i; t) =M�(t)=(K
P

t �(t)).

(G2) For t 2 T , calculate f�(t; 'j) j t 2 T g satisfying St(�(t; '
j); 'j) = �(t) and assign

each element of T numbers t1; � � � ; tT in the order of 0 < �(t1; '
j) � � � � � �(tT ; '

j).

Obtain � satisfying Q(�;'j ) =M .

Generate a new feasible solution b'j using �(tk; 'j) and � as follows.

b'j(i; tk) = � �

itk (�;'

j)
�mit

k

0
; k = 1; � � � ; ��('

j)�

itk (�(tk; '

j);'j)
�mitk

0
; k = ��('

j) + 1; � � � ; T:
(33)

(G3) If b'j = 'j, terminate. The current 'j is the optimal solution. Otherwise, execute the

following line search and generate the next feasible solution 'j+1 = 'j + ��(b'j �'j).

P ('j + ��(b'j � 'j)) = max
0<���

P ('j + �(b'j � 'j)) ; (34)

where � = minf�1; �2; �3g and �1; �2; �3 are given by four estimations.

�1 �

�
1 ; if there is no (i; t) satisfying b'j(i; t) � 'j(i; t) < 0

mini;tf�'
j(i; t)=(b'j (i; t) � 'j(i; t))

�� b'j(i; t) � 'j(i; t) < 0g; otherwise
(35)

�2 �

�
1 ; if there is no (i; t) satisfying b'j(i; t) � 'j(i; t) > 0

mini;tf (mit � 'j(i; t))=(b'j (i; t) � 'j(i; t))
�� b'j(i; t) � 'j(i; t) > 0g; otherwise

(36)

�3 �

8<:
1 ; if there is no t satisfying

P
i(b'j(i; t) � 'j(i; t)) > 0

mintf (�(t) �
P

i '
j(i; t))=(

P
i(b'j(i; t) � 'j(i; t)))

��P
i(b'j(i; t) � 'j(i; t)) > 0g;

otherwise

(37)

Increase j by one, j = j + 1, and go to (G2).

The range of � in the line search (34) is estimated by considering the feasibility of

'0(i; t) = 'j(i; t) + �(b'j(i; t) � 'j(i; t)), that is, 0 � '0(i; t) � mit and
P

i '
0(i; t) � �(t).

From de�nitions (35)-(37), all of �1; �2; �3 are equal to or more than 1 and at least one of

them is �nite and hence 1 � � <1.
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The representation (33) in Step (G2) are the same as (29) assuming that 'j is optimal.

By (33), b'j is generated so as to satisfy conditions (18) and (19). If b'j = 'j, the conditions

(12)-(14) become valid at the same time, which indicates that current solution is optimal.

In the case of b'j 6= 'j in (G2), the new solution 'j+1 is generated. Then if we can

clarify that P ('j) < P ('j+1), the proof that limj!1 P ('j) converges to an optimal value

will be completed from the boundedness of the feasible region 	 and the �niteness of P (�).
Since 'j+1 is given by the line search in the direction of b'j � 'j , if the direction always

becomes an ascent direction, that is, rP ('j)(b'j �'j) > 0, we have P ('j) < P ('j+1). The

assertion of rP ('j)(b'j � 'j) > 0 is seen from the strict concavity of P (�) as follows.

rP ('j)(b'j � 'j) =
X
i;t

�i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'
j(!(� ); � )

!
(b'j(i; t) � 'j(i; t))

=
X
i;t

�i

X
!2
it

�(!) exp

0@� TX
�=1;� 6=t

�!(�)'
j(!(� ); � )� �i b'j(i; t)

1A
� exp

�
��i('

j(i; t) � b'(i; t))� (b'j(i; t) � 'j(i; t)) :

We subdivide K � T into I0 � f(i; t) j b'j(i; t) = 0g, I1 � f(i; t) j 0 < b'j(i; t) < mitg and
I2 � f(i; t) j b'j(i; t) = mitg, and then we can transform the above expression as follows.

�
X

(i;t)2I0

(�+ �t) exp
�
��i'

j(i; t)
�
(�'j(i; t))

+
X

(i;t)2I1

(� + �t) exp
�
��i('

j(i; t) � b'(i; t))� (b'j(i; t) � 'j(i; t))

+
X

(i;t)2I2

(� + �t) exp
�
��i('

j(i; t) �mit)
�
(mit � 'j(i; t))

=
X
i;t

(� + �t) exp
�
��i('

j(i; t) � b'(i; t))� (b'j(i; t) � 'j(i; t))

=
X
i;t

(� + �t)
�
exp

�
�i(b'(i; t) � 'j(i; t))

�
� 1
	
(b'j(i; t) � 'j(i; t))

+
X
i;t

(� + �t)(b'j(i; t) � 'j(i; t))

>
X
i;t

(� + �t)(b'j(i; t) � 'j(i; t))

= �(M �M) +
X

ftj�t>0g

�t

X
i

(b'j(i; t) � 'j(i; t))

=
X

ftj�t>0g

�t

 
�(t) �

X
i

'j(i; t)

!
� 0 :

We can see the validity of these transformation from the facts that (exp �x�1)x is positive-

valued for a coeÆcient � > 0 with the exception of x = 0 and
P

i b'j(i; t) = �(t) for �t > 0.

Now the proof is completed. The gradient-completion method generates a sequence of

feasible solutions '0; '1; '2; � � � with the increasing values of P ('0) < P ('1) < P ('2) < � � �
and terminates to give an optimal solution.

4.2 Total amount-completion method We know that there is a simple relation be-

tween the optimal multiplier � and the total amount of search e�ort as stated in Lemma
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1. We calculate an optimal solution '�� and the marginal limit M� corresponding to �. If

M� >M , the algorithm adjusts � in an adequate direction which is pointed out in Lemma

1 and �nds a solution satisfying
P

i;t '
��(i; t) = M at last. The varying of � means the

indirect adjustment of the total amount of search e�ort. That is why we call the algorithm

the total amount-completion method. Let '� be the optimal solution of the problem. The

outline of the algorithm is as follows.

Algorithm TAC

(T1) Set � = 0 and � = �max which is de�ned in Lemma 1.

(T2) Update � by � = (� + �)=2 and calculate '�� by subprocedure AL�.

(i) If
P

i;t '
��(i; t) =M , terminate. The current solution '�� is optimal.

(ii) If
P

i;t '
��(i; t) >M , set � = � and repeat (T2).

(iii) If
P

i;t '
��(i; t) <M , set � = � and repeat (T2).

AL� is the subprocedure to give the optimal solution '�� corresponding to the given

multiplier �.

Algorithm AL�

(A1) As a tentative solution, take ' delivered from the procedure TAC. Let us substitute

fe'(i; t); i 2Kg, which is derived after the execution of steps (A2)-(A4) at time t 2 T ,
for a part f'(i; t); i 2 Kg of '. We denote this operation by operator �t. Repeat

the operation of ' = �t' for all t 2 T and make ' converge to a vector which is '��.

(A2) At a �xed time point t, initialize �t = 0 and obtain f'(i; t); i 2Kg satisfying '(i; t) =
[
it(� + �t;')]

mit

0 by a subprocedure AL�(�t) which is described later. If
P

i '(i; t) �
�(t), terminate. Otherwise estimate �t and ' satisfying

P
i [
it(� + �t;')]

mit

0 = �(t)

by the following steps (A3) and (A4).

(A3) Set � = 0 and � being large enough.

(A4) Set �t = (� + �)=2 and obtain f'(i; t); i 2 Kg satisfying '(i; t) = [
it(�+ �t;')]
mit

0

by subprocedure AL�(�t).

(i) If
P

i '(i; t) = �(t), terminate.

(ii) If
P

i '(i; t) > �(t), set � = �t and repeat (A4).

(iii) If
P

i '(i; t) < �(t), set � = �t and repeat (A4).

Algorithm AL�(�t)

Substitute [
it(� + �t;')]
mit

0 for '(i; t) for i = 1; 2; � � � ;K.

The total amount-completion method terminates and then gives an optimal solution '�

as the gradient-completion method does. Algorithm AL�(�t) produces a solution satisfying

'(i; t) = [
it(�+ �t;')]
mit

0 at time point t.
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In steps (A3) and (A4) of Algorithm AL�, while �xing ' at any other time point except

t, f'(i; t); i 2Kg satisfying the following conditions at t is obtained.

'(i; t) = [
it(� + �t;')]
mit

0 ; i 2K

if �t > 0 ;
X
i

'(i; t) = �(t) :

These conditions are equivalent to the following conditions as seen by analogy to Theorem

1.

If '(i; t) = 0 ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
� �+ �t

if 0 < '(i; t) < mit ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
= �+ �t

if '(i; t) = mit ; �i

X
!2
it

�(!) exp

 
�

TX
�=1

�!(�)'(!(� ); � )

!
� �+ �t

for i 2K and

if �t > 0 ;
X
i

'(i; t) = �(t) :

These conditions are necessary and suÆcient for an optimal solution of the following convex

programming problem LPt(�) with a �xed t.

LPt(�) : max
'

8<:P (')� �
X
i;�

'(i; � )

9=;
s.t.

0 � '(i; t) �mit; i 2KX
i

'(i; t) � �(t)

f'(i; � ); i 2K; t 6= � 2 T g are given:

Since the objective function bP (') = P (')��
P

i;� '(i; � ) is strictly concave and the feasible

region is a closed convex set, the problem has a unique optimal solution. By the operation of

�t', f'(i; t); i 2Kg is changed to fe'(i; t); i 2Kg which is the optimal solution of problem

LPt(�) and hence bP (') � bP (�t') where equality holds only if ' = �t'. By the repetition

of �t for t = 1; � � � ; T , the solution converges to a solution which is just the optimal solution

of the following problem LP (�).

LP (�) : max
'

8<:P (')� �
X
i;t

'(i; t)

9=;
s:t: 0 � '(i; t) � mit; i 2K; t 2 TX

i

'(i; t) � �(t); t 2 T :

Denoting the total amount of the solution of AL� by M� =
P

i;t '(i; t), it follows that

'(i; t) = [
it(� + �t;')]
mit

0 for all (i; t) and
P

i '(i; t) = �(t) if �t > 0 for t 2 T and
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moreoverM� =
P

i;t '(i; t). This means that we already have obtained the optimal solution

'�� with its total amount M� corresponding to the multiplier �. Therefore, just whenP
i;t '

��(i; t) =M occurs by adjusting multiplier � in (T2), we have obtained an ultimately

optimal solution. Now we have proved the validity of the total amount-completion method.

The revising method of � = (� + �)=2 in (T2) or �t = (� + �)=2 in (A4) is simply

binary search. There could be other ideas for revising the multipliers. We can exploit the

monotonicity of the relation between the multipliers and the upper limits of searching e�ort

as explained in Lemma 1 and 2. That is, assuming that there is an inversely proportional

relation between them, we obtain a new revising method for � in (T2) or �t in (A4).

Let M andM (M >M ) be the total limits corresponding to � and �, respectively. The

new revising of � is as follows.

� =
M �M

M �M
�+

M �M

M �M
� : (38)

Similarly, letting �t and �t (�t > �t) be the subtotal limits corresponding to � and � at

time t 2 T , respectively, we may revise �t in (A4) by the following estimation.

�t =
�t � �(t)

�t ��t

� +
�(t) ��t

�t � �t

� : (39)

5 Computational EÆciency of Proposed Methods We could �nd some intriguing

examples concerning with the optimal distribution of search e�ort. However we concentrate

our e�ort on investigating the computational eÆciency of the proposed methods. It will

be done by comparing them with some well-known nonlinear programming methods; the

gradient projection method and the multiplier method.

Problems are randomly generated as follows. First we decide the number of cells K, the

number of time points T and the number of target paths j
j. A target path is constructed

in such a way that a cell is randomly selected from K cells at each of T time points. The

one-path-construction is repeated until the procedure generates j
j paths in all, and we

set �(!) = 1=j
j. For the detectability parameter �i of cell i, a real number is randomly

chosen in the interval [�;�]. Finally, we set the limits of search e�ort mit; �(t); M and

then �nish the generation of a problem. Through all computer experiments here, we set

j
j = 10; � = 0:1; � = 0:5; M = 5; �(t) = 1 and mit = 6 which means that the local limit

mit gives no practical constraint on the amount of search e�ort. We change K and T by

K = 5; 20(5); T = 5; 20(5) to measure CPU-times of solving many sizes of problems. Using

a HITACHI S3600/120A mainframe computer and programming language FORTRAN 77,

we solve each problem by four methods: the gradient-completion method, the total amount-

completion method, the gradient projection method and the multiplier method which are

abbreviated to the GC method, the TAC method, the GP method and the M method for

short, respectively. For each size, 50 problems are generated and solved by each of four

methods. CPU-times are averaged for 50 problems and shown in Table 1. A symbol ***

indicates the case that the algorithm did not terminate in 300 seconds. Approximately,

problems larger than K = 10 and T = 10 could not be solved by the M method, or larger

than K = 20 and T = 20 by the GP method.

The computational time of the M method is approximately 100 � 1000 times as much as

the proposed methods. The GP method always expends more CPU-time than the proposed

methods, especially for largeK and T . For small problems, its computational time is 3 � 10

times as much as the proposed methods and 10 � 100 times as much for large problems.

Among two of the proposed methods, superiority varies depending on the size of problem.
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On the whole, the GC method is superior to the TAC method. We have veri�ed the

superiority of the proposed methods over the well-known nonlinear programming methods.

Table 1 CPU-times(sec) of four methods.

K n T 5 10 15 20

GC 5:3� 10�2 2:7� 10�1 4:7� 10�1 7:1� 10�1

5 TAC 4:0� 10�2 4:1� 10�1 8:3� 10�1 1:3� 100

GP 1:9� 10�1 9:2� 10�1 2:6� 100 5:9� 100

M 7:9� 100 2:6� 10+2 � � � � � �

GC 8:9� 10�2 4:4� 10�1 7:8� 10�1 1:2� 100

10 TAC 5:8� 10�2 7:6� 10�1 1:4� 100 2:3� 100

GP 1:1� 100 6:2� 100 2:3� 10+1 5:5� 10+1

M 6:0� 10+1 � � � � � � � � �

GC 1:4� 10�1 6:5� 10�1 1:1� 100 1:8� 100

15 TAC 7:6� 10�2 1:1� 100 1:9� 100 3:7� 100

GP 4:0� 100 2:6� 10+1 7:7� 10+1 � � �
M � � � � � � � � � � � �

GC 1:8� 10�1 6:6� 10�1 1:3� 100 2:1� 100

20 TAC 1:1� 10�1 1:3� 100 2:5� 100 4:3� 100

GP 1:0� 10+1 6:1� 10+1 � � � � � �
M � � � � � � � � � � � �

6 Conclusions This paper deals with a moving target search problem with nested con-

straints of search e�ort, which have been left untouched so far. We derive necessary and

suÆcient conditions for optimality and propose two methods to give an optimal solution.

Since this problem can be formulated as a concave maximization problem, other nonlinear

programming methods can be applied to it. However, by numerical examination, it is clari-

�ed that the proposed methods are 10 to 1000 times as fast as some of well-known nonlinear

programming methods for large size of problems.
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