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ABSTRACT. A compact Riemann surface is said to be extremal if it admits extremal
disks. In the present paper we shall find every extremal disk embedded in extremal
surfaces of genus two. As a consequence, we shall show that an extremal surface of
genus two admits at most four extremal disks.

1 Introduction Let S be a compact Riemann surface of genus g > 2. Then S is equipped
with a metric induced by the hyperbolic metric of the hyperbolic plane. We shall use the
unit disk A = {2 € C;
from the differential

z| < 1} as a model of the hyperbolic plane with the metric derived

2|dz|
ds = ———.
TTI-PR
Let D(r) be a disk of radius r > 0 isometrically embedded in S. It is known that radius r
is bounded by R,, which is determined by the genus ¢ as follows [1]:

A disk D(R,) is said to be extremal, and a surface S admitting extremal disks is also said
to be extremal. There exists an extremal surface that can admit more than one extremal
disk if g = 2 [1] or g = 3 [3]. But every extremal surface admits a unique extremal disk if
g > 4 [3]. In the present paper we shall find every extremal disk embedded in the extremal
surface of genus two. As a consequence, we shall show that an extremal surface of genus
two admits at most four extremal disks.

2 A regular polygon Let S be an extremal surface of genus ¢ > 2 and = : A — S the
universal covering map. Then S has a regular (129 — 6)-gon F, C A with every angle 27/3
as a closed fundamental region. One of the extremal disks embedded in S is the image by
m of the disk inscribed in the boundary 0F, with center at the origin [1].

We shall consider a regular 18-gon F = Fj in the case of genus two. We label each side
of the polygon as C, (Figure 1), where we take n modulo 18. Put R = Ry and 8 = =/18.
Each side C,, is an arc of the Euclidean circle

1

(1) " sinh R’

‘ 622nﬂ

“ tanh R
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Figure 1: An 18-gon

so that
62inﬂ 1
- | > —
tanh R sinh R

(2) F={\{zeA: |

n=0

1.

We note that F is inscribed in the Euclidean circle

2sin 203
tanh R

}.

Let A, m be the side pairing transformation of F' from €y onto Cy,, that is, the Md6bius
transformation of A onto itself which maps C,, onto Cy,. Then A, , is of the form

(3) {zeA; z]=

icosh R elm=m)B, _ iginh R et (mtn)s

(4) m(2) isinh Re—i(m+n)B, _ jcosh Re—i(m—n)p

In particular, Ag », : C9 — Cly, is of the form

cosh R e'™B~ 4 sinh R e'™8
sinh Re—imBz 4 cosh Re—tmB "

(5) Ag,m(2) =

By using the rotation r4(2) = ¢'?z around the origin, we see that every side pairing transfor-
mation A, ,, is conjugate to Ag ; for some [, precisely, Ay, , = reflAg‘l rg, wherel = 94+m—n

(mod 18) and 6§ = 2(9 — n)f (mod 27).

Lemma 2.1 If m =n+x3,nt4,...,n+8n+9 (mod 18), then A, . s hyperbolic; if
m=nz1l,n=+2 (mod 18), then A, n is elliptic. Hence A, na1 and Ay, nto do not appear
in the side pairing transformations of F.

Proof. By considering the rotations around the origin, it is sufficient to show in the case

n=9and m=0,%1,...,£8. Since coshR = 1/(2sin 3), the trace of Ag , is

trace(Agm) = |coshRe™? 4 coshRe ™7 |

cosmf

= | 2cosh Rcosmf |=

sinf3
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If m=0,£1,...,46, then trace(Ag ) > 2, namely, Ay, is hyperbolic. If m = £7,48,
then trace(Ag ) < 2, namely, Ay, is elliptic. O

The axis of hyperbolic transformation Ag , is the hyperbolic line through the two fixed
points of Ag ,,. The following lemma gives the form of the axis of Ag y,.

Lemma 2.2 The azis of Ay (m ==+1,...,46) is an arc of the Euclidean circle

tanh R ¢?(O+m)8 B \/tanh2 R —sin®* mp

sinmf B | sinmf |

z —

The azis of Ag o s the Buclidean segment on the real azis.

We have an equation for the hyperbolic distance with respect to the axis (cf. [2] p.163).

Lemma 2.3 Let zo € A. Let L = {z € A; |2 — 20| = r} be a hyperbolic line of A, that
is, 12 = |20|? — 1. Then the hyperbolic distance p(w, L) between w € A and L satisfies the
equation

. |1+ |w]? — 2R(Z0w)
sinh p(w, L) = IR PEY ‘

3 The number of extremal disks Let S be an extremal surface and p € S the
center of an extremal disk. Let {pr}52,; be the strictly increasing sequence of the hy-
perbolic distances of two distinct points in #7'(p) C A. Then, as mentioned in [1]
(p.197), p1 = 2sinh ' (sinh2Rsin ) = 2R ~ 3.438, py = 2sinh ' (sinh 2R sin 23) ~ 4.746,
ps = 2sinh™ ! (sinh 2R sin 33) ~ 5.496.

We define the closed subset K,, as

K, = {ZE F; P(Z,Cn) < R} (n:()j:tl,... ,:l:8,9).

Figure 2: Ky
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Lemma 3.1 If z € K, then it follows that

6 e?inﬂ 1

— < .
(6) ‘Z 2tanhR‘ ~ 2tanh R
In particular, if n =9, then
(7) 2 < —|z|* tanh R.

Proof. By Lemma 2.3 and (1), the inequality p(z,C,) < R implies

1 P 2 2R 1 —2ing
sinhR| ikl 1 <tan|}21Re 2l <sinh R,
— |z
that is,
(8) ‘1 + |22 — : hR(x cos 2nf + ysinZnﬂ)‘ <1-—|z%
an

From (2) it follows that

eQinﬂ - 1
“ 7 tanhR| < Sinh R’
that is,
1+ |z 2 (2 cos 2nf + ysin2n3) > 0
z tonh g ¢ 008 206 +y sin2nf3) > 0.
Therefore (8) becomes
|z|* — m(;& cos2nf + ysin2n3) < 0.

Hence (6) holds.

Remark. More precisely, we note that K, is a proper subset of
eZin,@’ 1

. _ <
Fn{zeA; |z 2tanhR| ~ 2tanh R

}.

Lemma 3.2 For z € F, the number of K, containing z s 4, 5, 6, 7, 8, 9, or 18 according
to the location of z (Figure 3), where if z 1s on the curve in Figure 8, then the number is

the greatest one; if z 1s at the origin, then the number is 18.

Theorem 3.3 For a side pairing transformation Ay, m @ Cp, — Cp and for z € Ky, it
follows that p(z, An m(z)) < ps. Consequently p(z, An.m(z)) = pr (k =1,2) because w(z)

w(Anm(2)).

Proof. It is sufficient to show our theorem when n = 9. Hence suppose that z € Ky. From

(5) we have

zcosh R + sinh R 2 B | 2|2 + tanh? R + 2z tanh R

Ao m (2)]” =

zsinhR+ coshR| |z|? tanh? R+ 14 22 tanh R
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Figure 3: The number of the intersection of {I, }

From [2] (p.131) and (7) we have

|2 = Agm (2)]

(1= =) = [Ag,m(2)[?)
|z = Ay m(2)[”

(1—1]=%)

1
sinh? 5,0(27 Ag m (7))

(|Z|2 sinh? R + cosh? R + 2z sinh R cosh R)

)
1‘2
((12|+2))2(Z|2 sinh? R + cosh? R — 2|2|* tanh Rsinh R cosh R)
-z
cosh® R — |z|? sinh® R

(1—1z[)?

IN

Since f(r) = (cosh? R — r?sinh® R)/(1 — r)? is the increasing function of r, 0 < r < 1,
(cosh® R — |z?sinh® R)/(1 — |2])? has its maximum at z € Kg with the maximal absolute
value |z|. As noted in (3), K,, C {z € A; |z| < (2sin20)/tanh R}. Hence we obtain

2sin 203
tanh R

51 1
sinh? §/)<Z,Ag7m(2’)) <f < ) ~ 60.27 < sinh’ 5P ™ 60.45.
Consequently p(z, Ag . (2)) < ps. O

Theorem 3.4 The set Ep n(pr) = {z € A p(z,Anm(2)) = pr} (k = 1,2) is on the set
Ly m(pr) U My m(pr) described as follows:
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if k=1, then

Lym(pr)

anh ' tanh | |
‘ tanh R el(ner)ﬁ" bR 4n 10 (mod 18)),

T 2cos(n —m)3 2| cos(n —m)0|

62in5 .
Mm D oz= —telmEI (1 ¢ R
Mo.m(p1) tanh R c (t€ B),
if k=2, then
Lo m(ps) ; tanh R e!(ntm)f8 _ 2sinh Rsin 23
n,m\P2 M4+ cos(n — m),@ T M+ cos(n — m),@’
tanh R ¢i(ntm)s 2sinh Rsin 23
Afn,m(pZ) z+ = 3
M — cos(n —m)j M — cos(n —m)j

where M = \/‘ca‘nh2 R(4dcos? f — 1)+ cos?(n —m)0.

Remark. In the case of m = n + 9 (mod 18), we can regard L, m(p1) as the Euclidean
line My m(p1).

Proof of Theorem 3.4. By considering the rotations around the origin, it is sufficient

to consider the case n = 9. Furthermore, since the set Eg ,,(pr) derived from Ag ., are

complex conjugate to that from Ag _,, it is sufficient to consider Ag ,, (m =0,1,... ,6).
Since Ag ., is a hyperbolic transformation, we have the equation [2](p.174)

1 1
(9) sinh §p(z, Ag m(z)) = coshp(z,ax(Ag m))sinh 51“(/—197,11)7

where ax(Ag m) denotes the axis of Ay, and T(Ag ,,) denotes the translation length of
Ag m. Since the translation length T'(Ag ,,,) is determined by

1 1
(10) cosh §T(A97m) = §|trace(A9,m)| = cosh R cosmf3,
we have

o1 2
(11) sinh ET(Ag’m) = 4/cosh” R cos?mf — 1.

Also, since p = 2sinh™'(sinh 2Rsink3) (k = 1,2), the equation p(z, A9 m(2)) = p
implies
1
(12) sinh §p(2,/-’197m(2)) = sinh 2Rsinkp.
Substitute (11) and (12) for (9), and we have
_ sinh 2R sin k3
V/cosh? R cos? mf3 — 1

(13) cosh p(z, ax(Ag m))

Hence

sinh? 2R sin® kB — cosh® R cos? mf3 + 1

cosh® R cos2mf3 — 1

(14) sinhp(z,ax(Ag 1m)) = \/

\/4 sinh® R sin? k8 — tanh® R + sin? mf3

tanh® R — sin® mf3
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On the other hand, by Lemma 2.2 and 2.3,

(15)  sinh p(z, ax(Ag.m)) = |sinmf3(]z|? + 1) — 2tanh R (y cosmf3 — xsinm/6)|.
4 7 7 Vtanh® R — sin® mg3(1 — |2|?)

Therefore, by (14) and (15), we obtain

|sinmf3 (]z]> +1) — 2tanh R (y cosmf3 — z sin m/3)|

1— 2|2

(16)

= \/4 sinh® R sin? kS — tanh? R + sin® mp.

If k=1, m # 0, and sinmB3(]z]* + 1) — 2tanh R (y cosmB — xsinm/3) > 0, then (16)

becomes

tanh R\ > tanh R cosmf 2 tanh? R
x + +ly—

2 2sinmp3 = 4sin? m3’

that is, z is on the curve

tanh R

tanh R Lio4m)p| _
2sinmf’

L m N .
o.m(p1) 2sinmf

If k=1 and sinmf(|z]* + 1) — 2tanh R (y cosmf3 — x sinmf3) < 0, then (16) becomes

sinmg
inmQ — B+ ——— =
@ sinm, ycosmf3 + tonh B 0,
that is, z is on the Euclidean line
My m(p1): 2= tel™h — L (t € R)
" ' tanh R ’

If k =2 and sinmf3(|2|? + 1) — 2tanh R (y cosmf3 — x sinm/3) > 0, then (16) becomes

tanh R sinm/f ? tanh R cosm(3 ? 4 sinh® Rsin? 24
M +sinmp M +sinmf - (M +sinmpB)?’

that is, z is on the curve

tanh R e/®tm)8
M 4+ sinm(

_ 2sinh R sin 23
- M +sinmf

z —

Ly m(p2) :

If k =2 and sinmf3(|2|? + 1) — 2tanh R (y cosmf3 — x sinmf3) < 0, then (16) becomes

tanh R sinm/f ? tanh R cosm(3 ? 4 sinh® Rsin? 24
" M — sinmf Y M —sinmf (M —sinmfB)?’

that is, z is on the curve

tanh R e/Otm)5)

M — sinmf3

_ 2sinh R sin 23

Mg : i )
My m(p2) M —sinmf3

z+

Hence we showed our theorem. O

The possible side pairings of the fundamental region F' of 18 sides are completely ob-
tained, and there are essentially 8 cases [4].
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Proposition 3.5 The side pairings of F are listed below, where (n,m) denotes the pair of
C, and C,,.

Case 1. (0,9),(1,4),(2,6),(3,7),(5,8), (=8, —5), (=7, —3), (=6, —2), (—4, —1)
Case 2. (0,9),(1,4),(2,-3),(3.~2),(5,8), (6,—7),(7,—6), (=8, —5), (—4, 1)
Case 3. (0,3),(1,7),(2,8),(4,—6). (5, —3), (6,9), (=8, —4), (=7, —2), (=5, —1)
Case 4. (0,9),(1,-5),(2,6), (3, —2), (4,—8), (5, —1),(7,—6), (8, —4), (=7, —3)
Case 5. (0,9),(1,—7),(2.5), (3, —4), (4,—3), (6, —8), (7, 1), (8,—6), (=5, —2)
Case 6. (0,5),(1,8),(2,—5), (3, —2),(4,9), (6, —7), (7, —4), (=8, —3), (6, —1)
Case 7. (0,9),(1,—6), (2, —4),(3,7), (4,—2), (5, —8),(6,—1),(8,—5), (=7, —3)
Case 8. (0,9),(1,4),(2,=7),(3,=6),(5.8), (6,—3),(7,—2). (=8, —5), (=4, —1)

We shall give our main theorem, which shows that an extremal surface of genus two
admits at most four extremal disks.

Theorem 3.6 Let S be an extremal surface of genus two. Then the centers of extremal
disks embedded in S are the following, where 7 = w|p: F — S:

’

R
Case 1. #(0), 7(— tanh 5)

Case 2. 7(0), W(—tanhg);

1cosh R

)i
tanh R\/4cosh? R — 1

Case 4. #(0), W(ftanhg);

Case 3. #(0), n(

1
C 5. (———=);
ase 5. w(0), T(sinhR)’
Vdecosh’R —1 .. Vdcosh? R —1 .. V4cosh? R -1 _.
C 6. N —— 3if , A 12} ; [ —ify.
ase m(0), =( sinh R cosh R ), w( sinh R cosh R "), w( sinh R cosh R ™)

; 1
Case 7. #(0), =( =
tanh R (1 4 tanh” R)

Case 8. 7(0).

),.

Proof. Let z € F and suppose that the image of z by 7|p : F — S is the center of an
extremal disk embedded in S. If z € K, for some n, then, by Theorem 3.3, the side pairing
transformation A, ,, from the side Cy, to another side Cy, satisfies p(z, Ap m(2)) = pr (k =
1.2). Hence z must be on the set K, N Ey m(pr). Consequently z is on K, N Ep m(pk)
for every n satisfying K, 3 z. So that a necessary condition for 7(z) € S to be the center
of an extremal disk is that z is the intersection point of such sets K, N E, 5 (px) with the
intersection number N, where N is determined by the location of z in Figure 3. For each
case 1,2,... .8, Figure 4 shows points {z;} satisfying the necessary condition. By simple
calculations, we have {z;} as follows:
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Case 1. zp =0, z; = —tanh(R/2), z; = tanh(R/2). Note that m(z;) = 7(z2);

Case 2. zp =0, z; = —tanh(R/2), zo = tanh(R/2). Note that m(z;) = 7(z2);

Case 3. 29 =0, z; =i cosh R/(tanh R\/4 cosh® R — 1);

—tanh(R/2), zz = tanh(R/2). Note that 7(z1) = 7(22);

Case 4. 20 =0, »;

Case 5. 29 =0, 2; = 1/sinh R;
Case 6. 20 =0, zy = 7‘63’/6, Z9 = relal'g, z3 = r827"3, z4 = T'€7“3, z5 — relglﬁ, Z6 ,

7 o= reM'P 2y = re®P 2y = 138 where r = V/4cosh® R — 1/(sinh R cosh R).
Note that 7(z1) = 7(22) = 7(23), 7(z4) = 7(25) = 7(2¢ ), and 7(z7) = 7(2s) = 7(29);

— T,eSlz,@

Case 7. z0 =0, z; = 1/(tanh R(1 + tanh? R));
Case 8. zg = 0.

Since 7(0) is the center of an extremal disk [1], a sufficient condition for =(z;) (i # 0)
to be the center of an extremal disk is that there exists an automorphism f:.S — S such
that f(w(0)) = m(z;). Let I be a Fuchsian group representing S, namely, A/T" = S. Then
every automorphism f is represented by an Mobius transformation v : A — A such that
Iy = ~4I. Since I is finitely generated by the side pairing transformations {Ay .}, it is
sufficient to find v € T satisfying that vA, ,,7 ' € T’ and that (0) = z; for the existence of
f such that f(7w(0)) = =(2;). For every z; (i # 0), we shall give ~, hence we see that 7(z;)
is the center of an extremal disk embedded in S.

Case 1. z; = —tanh(R/2), v(z) = (2 + z1) /(212 + 1).

’7A0,9 = A0,9”/ ’7A1,4 = A5,8”/’ 'YAZ,G = 445,8/'17,3’)’
’7A3,7 = A0,9A7,37 ’7A5,8 = AO,9A8,5'Y A/'A78,75 = A75,78AQ,07
’7A77,73 = 4473‘77/49,0’7' 7A76,72 = 4473‘77/478,757 ’?’A74,71 = A78,75’Y

Case 2. z; = —tanh(R/2), v(z) = (2 + z1) /(212 + 1).
’7A0,9 = A0,9”/ ’)’A1,4 = A5,87 ’)’A2,73 = A6,77'Y

’7A3,72 = A7,767 ’)’A5,8 = A0,9A8,5”/ 7’A6,77 = A0,9A2,73A9,0’7
7A7,76 = A0,9A3,72A9,0A/ ’)’/'Ls,fs = A75,78A9,0'\/ ’)’A74,71 = A78,757

Case 3. z1 = icoshR/(tanhR\/4cosh2 R—1),~v(z)=(—z+21)/(z212+1).

’7A0,3 = A6,9’7’ 7’141‘7 = A7,1“/ ’)’Az‘s = As,z“/

7A4,76 = A76,4’Y 7’145‘73 = A73,5W ')’AG‘Q = A0,3“/

7A78,74 = 4473‘5A3,0”/ 7’1477,72 = A73,5A4‘76"/ 7’1475,71 = A976A4776')’
Case 4. z; = —tanh(R/2), v(z) = (2 + z1) /(212 + 1).

7Aoo = Aoy vAL s = Ay sy vAz 6 = AogAe 2y

’YAs,fz = A7,76’Y 7’144‘78 = A079A&747 %45,71 = A8‘74"/

7A7,76 = A4,78A2‘6A9,0"/ ’)’As‘fz; = A4,78AQ70')’ %477773 = A7,76147478A9,0’7

Case 5. z; = 1/sinh R, y(z) = (—z 4+ z1)/(—z12 + 1).
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”/Ao,g = A9,07’ %41,77 = A77,1“/ ”/A‘z,s = A,57,27
“,/A3,74 = 447473’)’ %44,73 = A73,4“/ “/A6,78 = 449701471,7’7
“/A7,—1 = A—1,77 ‘y’As,—G = A—7,1A0,9‘y’ “/A—5,—2 = A2,5V

Case 6.1. z; = ré®® y(2) = (—2 4+ 21)/(—5H12 + 1).

A/Ao,5 = As,o’)’ 7’141,8 = A8,1‘7 ‘y’Az,—5 = A—5,2‘7

A/A?),—z = A—2,3’>’ ’}’A4,9 = A8,1A0,5‘/ ‘y’Ae,—7 = A—5,2A3,—2‘40,5’Y

A/A7,—4 = A—5,2A1,8‘7 ’}’A—s,—s = A—5,2A—3,—8A2,—5’Y ‘/A—G,—l = A—2,3A2,—5’Y
Case 6.2. zy = re"? y(2) = (=2 + 24) /(=212 + 1).

A/Ao,s = As,oﬁ’ ’)’Al,s = A72,3A5,0’Y %42,75 = A72,3A7,74’Y

A/A3,72 = A9,4’Y vAy = A72,37 7446,77 = A72,3A2,75’Y

A/A7,74 = A9,4A2,75’7 ’)’/'Ls,73 = A9,4A3,72’)’ 74476,71 = A9,4A74,7A3,727

Case 6.3. z9 = T635iﬂ, v(z)=(—z+29)/(—29z + 1).

“/Ao,5 = A—G,—ﬂ/ 7A1,8 = A—6,—1A—3,—8“/ ’7’442,—5 = A8,1A—3,—8’Y
7/143,—2 = A—2,3’>’ ‘7144,9 = A—ﬁ,—1 A—3,—8A—1,—6’>’ ’}"46,—7 = A5,0A—1,—6’)’
%47,—4 = A8,1 A—1,—6‘/ ')/A—S,—f% = A8,1 A0,5’>’ '}"4—6,—1 = A0,5‘/

Case 7. z1 = 1/(tanhR(1 + tanh? R))7 7/(2) = (—z + 21)/(—212 + 1).

“/Ao,g = Ag,o‘y’ '}/Al,—G = A—6,1‘y’ “/Az,—4 = A—4,27
A,/A3,7 = A9,0‘4—3,—7‘7 ’)’A4,—2 = A—2,4’Y ‘y’As,—s = Ag,oA—1,6‘/
A/Ae,—1 = A—1,6’)’ ’)’As,—s = A—6,1 ‘40,9’}’ ‘y’A—7,—3 = A7,3A0,9‘/

Finally we shall draw pictures of disks in A which are the inverse images of extremal

disks by 7 : A — S (Figure 5).
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Casel, 2,4

Figure 5: Inverse images of the extremal disks



