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ABSTRACT. Henstock’s strongly variational integral for Banach-valued functions is
called the HL integral, which is in the form of Henstock’s Lemma. In this paper, we
shall prove a controlled convergence theorem for such integrals.

The Henstock integral for Banach-valued functions has been discussed in [1-8, 10, 12, 17-23].
However Henstock’s Lemma may not hold for such integral [2, 17-20]. The stronger version
(see Definition 1.2) [2, 12], using Henstock’s Lemma as a definition of an integral, has richer
properties. For example, it has differentiation and measurability properties [2, 4, 6, 21, 23].
On the other hand, the Denjoy-Dunford, Denjoy-Pettis and Denjoy-Bochner integrals have
been discussed in [7, 9, 11, 16, 24]. In [24], a controlled convergence theorem is claimed to
be true without proof, for the Denjoy-Bochner integral. In this note, following the idea in
[14], we shall prove a controlled convergence theorem for the HL integral. We remark that
we do not follow the idea in [13, p40], since in [13, p40, line 17], we do not know whether
the primitive function is differentiable a.e.

1 HL integral and AC*(X) In this section, we shall define the HL integral and discuss
properties of AC*(X).

Definition 1.1. Let § be a positive function on a closed interval [a,b]. A division
D = {([u,v], &)} of [a,b] is said to be Henstock -fine if £ € [u,v] C (£ — 6(€),& + 6(€)) for
every ([u,v],€) € D.

In the following, we always use partial divisions instead of divisions. D = {([u,v],£)} is
said to be a partial division of [a, b] if {[u,v]} is a collection of nonoverlapping subintervals
of [a,b]. The union of [u,v] in D may not equal to [a, b].

Definition 1.2. Let (B, ]| ||) denote a Banach space with norm || ||. A function f : [a,b] —
(B,|| |I) is HL integrable on [a,b] if there exists a function F : [a,b] — (B,] ||) satisfying
the following property: for every e > 0, there exists a positive function 6(£) on [a, b] such
that if D = {([u,v],&)} is a Henstock é-fine partial division of [a,b], we have

(D) NFE) 0 =) = Flu,v)]
where F(u,v) = F(v) — F(u).

< €
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Henceforth, a Banach-valued function shall be referred to as a function with values in

(B, [L1])-

Definition 1.3. A Banach-valued function F is said to be absolutely continuous on
[a,D] if for every € > 0 there exists 5 > 0 such that for every finite or infinite sequence of
non-overlapping intervals {[a;, b;]}, with Z|b,¢ — a;| < n we have

S 1P (s bl < e
where F(a;,b;) = F(b;) — F(a;).

Definition 1.4. Let X C [a,b]. A Banach valued function F' defined on X is said to be
AC(X) if for every € > 0 there exists n > 0 such that for every finite or infinite sequence of

non-overlapping intervals {[a;, b;]} satisfying Z |b; — ai| < n where a;,b; € X for all i, we

i

ZHF (ai,bi)|| <€

where the endpoints a;, b; € X for all s.

have

Definition 1.5. A Banach-valued function F' defined on X C [a,b] is said to be AC*(X)

if for every e > 0 there exists n > 0 such that for every finite or infinite sequence of

non-overlapping intervals {[a;, b;]} satisfying Z |b; — ai| < n where a;,b; € X for all i, we
i

have

Zw(F; [a;, b;]) < e

l

where w denotes the oscillation of F over [a;,b;], i.e.,
w(F;[ai, bi]) = sup{|| F(x, y)l; v,y € [ai, bil}-

Definition 1.6. A Banach-valued function F' is said to be ACG* on X if X is the union
of a sequence of closed sets {X;} such that on each X;, F is AC*(X;).

Following ideas in [13, pp27-28], we can prove
Lemma 1.7. Let X be a closed set in [a,b] and (a,b) \ X be the union of (cx,dy) for
k=1,2,... Suppose a Banach-valued function F is continuous on [a, b]. Then the following
statements are equivalent:

(i) Fis AC*(X)
(i) F is AC(X andz iler, di]) < oo

(iii) Definition 1.4 holdq with a; or b; belonging to X for every i.

To justify that X is closed in Definition 1.6, we shall prove the following lemma.

Lemma 1.8. Let X C [a,b]. If Fis AC*(X) and continuous on [a,b], then F is AC*(X),
where X is the closure of X.
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Proof. Suppose F is AC*(X). Then for every e > 0, there exists n > 0 such that for
every finite or infinite sequence of non-overlapping intervals {[a;,;]} with a;,b; € X and

Z | b; — a; |< n, we have
Y IF(bi) — F(a)| < e.

Now, let {[ci,d;]} be any finite or infinite sequence of non-overlapping intervals with
¢i,d; € X and Z | di —¢; |< n. For each i, there exist u;,v; € X with u; < v; and

Z | vi —u; |< n such that

[

|F(u) = Flei)l < 5 and (o) = F(d)] < 5.

Observe that {[u;,v;]} may not be non-overlapping intervals. However, we can divide
{[ci,d;i]} into two parts, wherein intervals in each part are disjoint, so that we can choose
{[ui, vi]} to be disjoint. Hence we may assume {[u;, v;]} to be non-overlapping. As a result,
we have

SUF@) - Fe)l < Y IF) - Fw)ll + 3 1) — P
+ 3 IF () - Fle)|

< €4+ e+e.

Therefore, F' is AC*(Y). m|

Remark 1.9. Similarly, we can prove that if the statement (iii) in Lemma 1.7 holds for
X, then it also holds for X. Hence, when referring to AC*(X), we may assume that X is
closed.

Definition 1.10. A sequence {f,} of Banach-valued functions is said to be control con-
vergent to f on [a,b] if the following conditions are satisfied:

(1) fu(z) = f(z) a.e. in [a,b] as n — oo where each f,, is HL integrable in [a, ];

(i1) the primitives F,, of f, are ACG* uniformly in n, i.e., [a,b] is the union of a sequence
of closed sets X; such that on each X;, the functions F,, are AC*(X;) uniformly in n;

(iil) the primitives F, converge uniformly on [a, b].
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2 Properties of HL integral Most of the theorems that we will be using in proving
our main theorem shall be discussed in this section.

Lemma 2.1. If f(z) =0 a.e. in [a,b], i.e., for all x € [a,b] except perhaps on a set X of
measure zero, then f is HL integrable to 0 on [a, b].

The proof is standard [13, p6].
Theorem 2.2. If f is HL integrable on [a,)], then its primitive F' is continuous on [a, b].
Proof. See [13, p12].
Theorem 2.3. If f is HL integrable on [a,b], then its primitive F is ACG* on [a, b].

Proof. The proof is standard. However we shall give the detail here.

For every € > 0, there is a function §(£) > 0 such that for any Henstock d-fine partial
division D = {[u,v]; £} in [a, b], we have

(D)D) 1F(w.v) = f(€)(v —u)|| < e
We may assume that §(¢) < 1. Let

1 —1

Xpi = (€ la ] (@) <mi < d(e) <

1 ]
and z € [a+ ,a,—i—i)}
1 n

n—
forn=2,3,...,i =1,2,... Fix X,,; and let {[ay, bx]} be any finite sequence of non-overlapping
intervals with ag, by € X,; for all k. Then {([ag,bs],ar)} is a Henstock d-fine partial

division of [a, b]. Furthermore, if a; < uy < vy < by, then {([ar, ur], ar)}, {([vk,bx],br)} are
Henstock d-fine partial divisions of [a,b]. Thus,

LN I M LORRED MCRATED ML
< st R lon)n— anll+ S 10— )
3 s )]
) :

3e +3n Z(bk — Clk).
k

Choose n < i and Zk:(bk —ag) <n. Then

Zw(F; [ak,br]) < e+ e.
k

Therefore, F is AC*(X,,;) and also AC*(YM). Consequently, F' is ACG* on [a,b]. O
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Theorem 2.4. If f is HL integrable on [a,b], then its primitive F' is differentiable a.e.
and F'(z) = f(x) a.e. on [a,b].

Proof. See [13, p21].

Theorem 2.5. Let (B, ||||) be a Banach space and f : [a,b] = (B, ||||). Suppose there exists
a function F : [a,b] — B which is continuous and ACG* on [a,b] such that F'(z) = f(z)
a.e. in [a,b]. Then f is HL integrable on [a,b] with primitive F.

Proof. See [13, p31].

The following is a special version of Egoroff’s theorem for Banach-valued functions.

Lemma 2.6. If f,(2) — f(z) a.e. in [a,b] as n — oo where each f,, is HL integrable then
for every n > 0 there exists an open set G with |G| < 1 such that f,, converges uniformly

to f on [a,b] \ G.

Theorem 2.7. Suppose
(1) falz) = f(2) ae. in [a,b] as n — oo where each f, is HL integrable on [a, ]
(ii) the primitives F,, of f, are uniformly absolutely continuous.
Then for every € > 0 there exists a positive integer NV such that for every partial partition

D = {[u,v]} of [a,]] we have

(D)3 [[Fu(u,0) = Bl o) < ¢

whenever n,m > N.
Proof. See[13, pp 37 - 38].

Theorem 2.8. Suppose
(i) fu(z) = f(x) a.e. in [a,b] as n — oo, where each f,, is HL integrable on [a, b];
(ii) the primitives F), of f, are uniformly absolutely continuous.

Then f is HL integrable on [a,b] and

b b
/fn—>/f as n — oo.

Proof. See [13, p38].

Theorem 2.9. Let {f,} be a sequence of Banach-valued functions on [a, b] which is control
convergent to f on [a,b]. Then for each X; and for every € > 0, there exists a positive integer
N such that for every partial partition D = {[u,v]} of [a,b] with u,v € X, , we have

(D) Z w(Fp — F;[u,v]) < e
whenever n,m > N.

Proof. Fix X; and let X = X,. Assume that a,b € X. Define G,,(¢) = F,(v) when

x € X and linear elsewhere in [a,b]. More precisely, let (a,b) \ X = LJ(OL;c7 br) and define
k
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F,(x) if v € X
= b R 93 LT 2
Gn(2) L Fa(ar) + - Fo(by) if o € (ag, i),k = 1,2,
by — ay, by, — ay,

Observe that if {[u;, v;]} is a finite or infinite sequence of non-overlapping intervals contained
in (ag,by), then

B by — v v; — ay
S G wiell = S UGE T Faon) e Fulte)
bk—ul Us;
F.(ai (D
P ) 4 1 )|

= ZH v — z n(bk) Fn(ak))H

by — ay
[ En (0k) — Fn(ar)|
= T—— Z lv; — uil. (2.1)
On the other hand, Z Wi [ak,bx]) converges uniformly in n, due to the fact that F), is

AC*(X) uniformly in n. Hence, by (2.1), we need only to consider the first finite number
of intervals [ax,bi], k = 1,2,...,m. It is clear from (2.1) that the functions G, are abso-
lutely continuous on each [ag, bi]. Consequently, the functions G,, are uniformly absolutely
continuous on [a,b] in view of the fact that G, (z) = F,(z) on X.

Now, define

fn( ) ifreX
gn(®) = Fnlbr) — Fnlag)

if Jbe).
— if v € (ag,br)

Then g,, converges a.e. on [a,b] and g,(r) — f(x) a.e. on X. We shall now use Definition
1.2 to prove that each g, is HL integrable on [a,b] and the primitive of g, is G,. First,
note that if £ € (ag,br), we can choose §(£) > 0 such that whenever ([u,v],£) is d-fine, we
have [u,v] C (ag,bg). By linearity of G,, on (ag,bx) and definition of g,,, we have

llgn (&) (v —u) = Gn(u, )| = 0.

Secondly if £ € X, we consider interval-point pairs of the form ([u, €], €) or ([¢,v],€). For
the case u,v € X, we observe that

192 (E)(§ = w) = Galw, I = [fa()E = u) = Fulu, -

Similarly for the case ([£,v],&). Hence we need only to consider the case when u,v ¢ X.
Now suppose u € (ag,b) for some k. Then

[9n(E)(€ = 1) = Gu(u, )
< A€ = br) = Galbr, Nl + [[fa(E) (b — w) — Galu, by) |
= (€ = br) = Fnlbr, Ol + 1 (E) (b — w) = G (w0, by
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Therefore finally we need only to consider

||fn( )(bk - u) - Gn(uvbk)”

Let X, ={£ € X;q—-1<||ful®)] <q},¢g=1,2,.... Let g be fixed. Given € > 0, we first
choose ¢ such that

(o @)
Z |bk — ak| <
k=t

Let ¢ € X, and € # ayg, b for all k. Now we choose §(¢) > 0 such that when [ag,bx] C
(£—=46(8), E+5(E)) we have k > (. Hence, if D = {([u,£],£)} is a d-fine partial division with
£ € Xy, we have

€
and Z i [ak, bk]) < %

D) N fal€) (b = u) = Gulu, by
DY (&) — W)l + (D) Y (|G, b1

€ €

When ¢ € X, and { = a, or b, for some p, in view of the continuity of G,, at £, we can
choose §(£) > 0 such that when ([u,v],£) in d-fine, we have

1gn(E)(v —u) = Gulu,v)]|
| fn(§)(v = u) = Gulu,v)||
| (&) (v —u)|| + |Gr(u,v)
/2P +€/27.

AN

From the above analysis, ¢, is HL integrable on [a, b] with primitive G,,. By Theorem 2.7
we get the required result, without oscillation. To get the required result with oscillation,
we observe that, for each n, there exist py,qx € [ak, bi] such that

w(Fy = Fslak, b)) = [[(Fn — F)(pr. ai)|l-

However, p; and ¢ depend on n. Now we do some adjustment. Let cg,dp € (ag,br)
with ¢ < dj and fixed, independent of n. Define Hyp(z) = Fy(z) — F(2) if # € X and
linearly on [ag, ¢k], [ck,dk] and [dy, by] with Hy(ar) = (Fp — F)(ar); Hp(cx) = (Fo— F)(bi);
Hp(dr) = (Fn — F)(pr,qr) + Hn(cx) and Hy (b)) = Hy(cr). Hence ||Hy(di) — Hp(cr)l| =
w(F, — F;lak,bi]), and the oscillation of H, over [aj,b;] is equal to that of F,, — F over
[ak, br]-

As in the proof of the first part with G,,(2) replaced by H,,(z) and {[ay,b]} replaced by
{lak, ck], [ck, dk], [dk, bi]}, by Theorem 2.7, given any e > 0, there exists a positive integer
N such that for any partial partition D = {[u,v]} of [a,b], we have

D) S | Ha(u,v) — Hun(u,0)]| < €

whenever n,m > N. Note that the limit of the sequence H,(z) exists as n — oo for each
and in view of (iii) of Definition 1.10, it is zero. Thus, the above inequality implies that
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(D) | Halw.v)| < € (2.2)

whenever n > N. Observe that if u,v € X and [p, ¢] C (u,v) with p,¢ & X, we can divide

[p, q] into three sub-intervals, where two of them are in | J[ag, bx] and another with endpoints
3

in X, namely [p, q] = [p, s] U[s,t] U [t, ¢], where p € [a;,b;], ¢ € [a},b;] and s, € X. Then

I(Fa = F)pea)l < N(Fu = F)ps)ll + [ (Fa = F)s, )| + [(Fn = F)(t,q)
w(Fy — F3[ai. b)) + [ (Fa — F)(s,8)]| + w0(Fy — Fila;.b,))

[Hn(cisdi) | + ([ Hals, )]l + [[Halej, dj)]|

IAIA

Hence, by (2.2), for any partial partition D = {[u,v]} of [a,b] and any [p, q] C [u,v], we
have

(D)) I(Fo = F)(p.q)]| < e

whenever n > N. Note that [p, ¢] is any subinterval of [u,v]. Thus

(D) Z w(F, — F;u,v]) <e

whenever n > N. Consequently

(D) Z w(Fy — Fy; [u,v]) < 2

whenever n,m > N.

3 Main Result Theorem 3.1. Controlled Convergence Theorem
If a sequence of Banach-valued functions {f,} is control convergent to f on [a,b], then

f is also HL integrable on [a,b] and

/ab fule)de — /abf(x)dx as n — oo.

Proof. In view of Lemma 2.1, we may assume f,(z) — f(z) everywhere in [a,b] as n — oc.
Since each f, is HL integrable on [a,b], with primitive F,,, then given ¢ > 0 there exists
3,(&) > 0 such that for any Henstock d,-fine partial division D = {[u,v]; £} of [a,b], we
have

(D) Y 1 £a(€)(0 — ) = Fuu, )| < 27", (3.1)
Since fn(x) — f(x), there exists a positive integer m = m(e, £) such that
1 (&) = FOI < (3.2)
By the hypothesis, we also have
lim F,(u,v) = F(u,v) exists (3.3)

n—o
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for any sub-interval [u,v] of [a, b].

From the definition of control convergence, [a,b] is the union of a sequence of closed
sets X; such that on each X;, the functions F,, are AC*(X;) uniformly in n. By Theorem
2.9, it follows that, for each i, there exists a positive integer N (i) such that for any partial
partition D = {[u,v]} of [a,b] with u,v € X;, we have

(D)S w(Fy — Filu0]) < e
whenever n > N(7).
Hence, for each i, there exists a subsequence {F,(; ;)}52, of {F,};2, such that

(D)> w(Fogijy — Filu,v]) < e277 (3.4)
for any partial partition D = {[u, v]} of [a, b] with u,v € X;. We may assume that for each
i > 1, {F,i ) }52, is a subsequence of {Fl,(;_y ;) }32;. From now onwards, n(j,j) is denoted
by m(j), and we only consider subsequences { f,,,(j)} and {F,,(j)}. Now we shall define §(¢)
onfa,b]. f€eY, = X,\(X1UXoU---UX,_y), where Xg = ), then we choose m(j) > m(7)
such that || f,,,;y(§) — f(§)|| < e. Note that m(j) depends on §. We denote m(j) by m(&).
Define 6(§) = &,n(¢)(§). Let D = {([u,v]:{)} be any Henstock é-fine partial division of [a, b],

we shall prove that

(D) IFE@ —u) — Flu,v)|| < eb — a) +2e, (3.5)

First

(D) 1IF(€)(v = u) = F(u,v)]

< (D)) NFE) = Fuie)(OI(v = u)
D)D" e ()0 — 1) = Fingey (u, 0)|
+(D) Y N[ Fimge) (w,v) = Flu,v)|

The first sum on the right side of the above inequality is less than €(b—a). The second sum
can be written as

D (D) N fme ()0 = u) = Fugey(u. vl
j=1

where D; = {([u,v],£)} is a subset of D and each ¢ in D; induces the same m(j) i.e.
m(&) = m(y) for all £ in D;. Hence the second sum is less than

e Y 27, by (3.1)
j=1

Consequently it is less than e. Now we shall handle the third sum. For convenience, we
may assume that a,b € X;, for all i. For any ([u,v],£) in D, [u,v] = [u,&] U [{,v]. Suppose
e, = X,\\(X1UXyU---UX,;_1). Then either u € X; or [u,{] lies in an interval with
endpoints in X;. On the other hand, the third sum can be written as
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Z > >, [ Eney (e v) = F(u,v)].
J EeX;m(&=m(j)
Recall that m(f) = ) = n(j,7) > n(i,i). Thus j > i. Hence {n(j,k)}2, is a
subsequence of {n(7, k } m(j) =n(j,7) = n(i,k(j)) for some k(7). Hence, by (3.4),

Z ||Fm(5)(u,v) — F(u,v)|| < 1=k
£eXi m(§)=m(j)

Note that {n(j + 1,k)}%2, is a subsequence of {n(j,k)}32,. We may choose {n(j +

1,E)}2, such that k(j) is strictly increasing. Thus the third sum is less than e. Conse-
quently, (3.5) holds. With (3.5) and (3.3), the proof is complete.

Remark. In general, a Banach-valued function F which is ACG* may not be differentiable

a.e.

From the result of proof, we know that F'is differentiable a.e. if it satisfies the conditions

of Theorem 3.1, however the ideas in [13, p40] does not work for proving the above theorem,
since in the proof, we use the result “F is differentiable a.e.”.

[15]
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