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Abstract. Henstock's strongly variational integral for Banach-valued functions is

called the HL integral, which is in the form of Henstock's Lemma. In this paper, we

shall prove a controlled convergence theorem for such integrals.

The Henstock integral for Banach-valued functions has been discussed in [1-8, 10, 12, 17-23].

However Henstock's Lemma may not hold for such integral [2, 17-20]. The stronger version

(see De�nition 1.2) [2, 12], using Henstock's Lemma as a de�nition of an integral, has richer

properties. For example, it has di�erentiation and measurability properties [2, 4, 6, 21, 23].

On the other hand, the Denjoy-Dunford, Denjoy-Pettis and Denjoy-Bochner integrals have

been discussed in [7, 9, 11, 16, 24]. In [24], a controlled convergence theorem is claimed to

be true without proof, for the Denjoy-Bochner integral. In this note, following the idea in

[14], we shall prove a controlled convergence theorem for the HL integral. We remark that

we do not follow the idea in [13, p40], since in [13, p40, line 17], we do not know whether

the primitive function is di�erentiable a.e.

1 HL integral and AC�(X) In this section, we shall de�ne the HL integral and discuss

properties of AC�(X).

De�nition 1.1. Let Æ be a positive function on a closed interval [a; b]. A division

D = f([u; v]; �)g of [a; b] is said to be Henstock Æ-�ne if � 2 [u; v] � (� � Æ(�); � + Æ(�)) for

every ([u; v]; �) 2 D.

In the following, we always use partial divisions instead of divisions. D = f([u; v]; �)g is
said to be a partial division of [a; b] if f[u; v]g is a collection of nonoverlapping subintervals

of [a; b]. The union of [u; v] in D may not equal to [a; b].

De�nition 1.2. Let (B; k k) denote a Banach space with norm k k. A function f : [a; b]!
(B; k k) is HL integrable on [a; b] if there exists a function F : [a; b] ! (B; k k) satisfying
the following property: for every � > 0, there exists a positive function Æ(�) on [a; b] such

that if D = f([u; v]; �)g is a Henstock Æ-�ne partial division of [a; b], we have

(D)
X

kf(�)(v � u)� F (u; v)k < �

where F (u; v) = F (v) � F (u).
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Henceforth, a Banach-valued function shall be referred to as a function with values in

(B; k k).

De�nition 1.3. A Banach-valued function F is said to be absolutely continuous on

[a; b] if for every � > 0 there exists � > 0 such that for every �nite or in�nite sequence of

non-overlapping intervals f[ai; bi]g, with
P
i

jbi � aij < � we have

X
kF (ai; bi)k < �

where F (ai; bi) = F (bi)� F (ai).

De�nition 1.4. Let X � [a; b]. A Banach valued function F de�ned on X is said to be

AC(X) if for every � > 0 there exists � > 0 such that for every �nite or in�nite sequence of

non-overlapping intervals f[ai; bi]g satisfying
X
i

jbi � aij < � where ai; bi 2 X for all i, we

have

X
i

kF (ai; bi)k < �

where the endpoints ai; bi 2 X for all i.

De�nition 1.5. A Banach-valued function F de�ned on X � [a; b] is said to be AC�(X)

if for every � > 0 there exists � > 0 such that for every �nite or in�nite sequence of

non-overlapping intervals f[ai; bi]g satisfying
X
i

jbi � aij < � where ai; bi 2 X for all i, we

have

X
i

!(F ; [ai; bi]) < �

where ! denotes the oscillation of F over [ai; bi], i.e.,

!(F ; [ai; bi]) = supfkF (x; y)k;x; y 2 [ai; bi]g:

De�nition 1.6. A Banach-valued function F is said to be ACG� on X if X is the union

of a sequence of closed sets fXig such that on each Xi, F is AC�(Xi).

Following ideas in [13, pp27-28], we can prove

Lemma 1.7. Let X be a closed set in [a; b] and (a; b) n X be the union of (ck; dk) for

k = 1; 2; ::: Suppose a Banach-valued function F is continuous on [a; b]. Then the following

statements are equivalent:

(i) F is AC�(X)

(ii) F is AC(X) and

1X
k=1

!(F ; [ck; dk]) <1

(iii) De�nition 1.4 holds with ai or bi belonging to X for every i.

To justify that X is closed in De�nition 1.6, we shall prove the following lemma.

Lemma 1.8. Let X � [a; b]. If F is AC�(X) and continuous on [a; b], then F is AC�(X),

where X is the closure of X.
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Proof. Suppose F is AC�(X). Then for every � > 0, there exists � > 0 such that for

every �nite or in�nite sequence of non-overlapping intervals f[ai; bi]g with ai; bi 2 X andX
i

j bi � ai j< �, we have

X
i

kF (bi) � F (ai)k < �:

Now, let f[ci; di]g be any �nite or in�nite sequence of non-overlapping intervals with

ci; di 2 X and
X
i

j di � ci j< �. For each i, there exist ui; vi 2 X with ui < vi and

X
i

j vi � ui j< � such that

kF (ui)� F (ci)k <
�

2i
and kF (vi)� F (di)k <

�

2i
:

Observe that f[ui; vi]g may not be non-overlapping intervals. However, we can divide

f[ci; di]g into two parts, wherein intervals in each part are disjoint, so that we can choose

f[ui; vi]g to be disjoint. Hence we may assume f[ui; vi]g to be non-overlapping. As a result,
we have

X
i

kF (di)� F (ci)k �
X
i

kF (di)� F (vi)k +
X
i

kF (vi)� F (ui)k

+
X
i

kF (ui) � F (ci)k

< �+ �+ �:

Therefore, F is AC�(X). 2

Remark 1.9. Similarly, we can prove that if the statement (iii) in Lemma 1.7 holds for

X, then it also holds for X. Hence, when referring to AC�(X), we may assume that X is

closed.

De�nition 1.10. A sequence ffng of Banach-valued functions is said to be control con-

vergent to f on [a; b] if the following conditions are satis�ed:

(i) fn(x) ! f(x) a.e. in [a; b] as n!1 where each fn is HL integrable in [a; b];

(ii) the primitives Fn of fn are ACG� uniformly in n, i.e., [a; b] is the union of a sequence

of closed sets Xi such that on each Xi, the functions Fn are AC�(Xi) uniformly in n;

(iii) the primitives Fn converge uniformly on [a; b].
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2 Properties of HL integral Most of the theorems that we will be using in proving

our main theorem shall be discussed in this section.

Lemma 2.1. If f(x) = 0 a.e. in [a; b], i.e., for all x 2 [a; b] except perhaps on a set X of

measure zero, then f is HL integrable to 0 on [a; b].

The proof is standard [13, p6].

Theorem 2.2. If f is HL integrable on [a; b], then its primitive F is continuous on [a; b].

Proof. See [13, p12].

Theorem 2.3. If f is HL integrable on [a; b], then its primitive F is ACG� on [a; b].

Proof. The proof is standard. However we shall give the detail here.

For every � > 0, there is a function Æ(�) > 0 such that for any Henstock Æ-�ne partial

division D = f[u; v]; �g in [a; b], we have

(D)
X

kF (u; v)� f(�)(v � u)k < �:

We may assume that Æ(�) � 1. Let

Xni = fx 2 [a; b] : kf(x)k � n;
1

n
< Æ(x) �

1

n� 1
and x 2 [a+

i� 1

n
; a+

i

n
)g

for n = 2; 3; :::; i = 1; 2; ::: FixXni and let f[ak; bk]g be any �nite sequence of non-overlapping
intervals with ak; bk 2 Xni for all k. Then f([ak; bk]; ak)g is a Henstock Æ-�ne partial

division of [a; b]. Furthermore, if ak � uk � vk � bk, then f([ak; uk]; ak)g; f([vk ; bk]; bk)g are
Henstock Æ-�ne partial divisions of [a; b]. Thus,

X
k

kF (uk; vk)k �
X
k

kF (ak; uk)k+
X
k

kF (vk; bk)k+
X
k

kF (ak; bk)k

� 3� +
X
k

kf(ak)(uk � ak)k+
X
k

kf(bk)(bk � vk)k

+
X
k

kf(ak)(bk � ak)k

� 3� + 3n
X
k

(bk � ak):

Choose � �
�

3n
and

X
k

(bk � ak) < �. Then

X
k

!(F ; [ak; bk]) � 3�+ �:

Therefore, F is AC�(Xni) and also AC�(Xni). Consequently, F is ACG� on [a; b]. 2
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Theorem 2.4. If f is HL integrable on [a; b], then its primitive F is di�erentiable a.e.

and F 0(x) = f(x) a.e. on [a; b].

Proof. See [13, p21].

Theorem 2.5. Let (B; kk) be a Banach space and f : [a; b] ! (B; kk). Suppose there exists
a function F : [a; b] ! B which is continuous and ACG� on [a; b] such that F 0(x) = f(x)

a.e. in [a; b]. Then f is HL integrable on [a; b] with primitive F .

Proof. See [13, p31].

The following is a special version of Egoro�'s theorem for Banach-valued functions.

Lemma 2.6. If fn(x) ! f(x) a.e. in [a; b] as n!1 where each fn is HL integrable then

for every � > 0 there exists an open set G with jGj < � such that fn converges uniformly

to f on [a; b] nG.

Theorem 2.7. Suppose

(i) fn(x) ! f(x) a.e. in [a; b] as n!1 where each fn is HL integrable on [a; b]

(ii) the primitives Fn of fn are uniformly absolutely continuous.

Then for every � > 0 there exists a positive integer N such that for every partial partition

D = f[u; v]g of [a; b] we have

(D)
X

kFn(u; v) � Fm(u; v)k < �

whenever n;m � N .

Proof. See [13, pp 37 - 38].

Theorem 2.8. Suppose

(i) fn(x) ! f(x) a.e. in [a; b] as n!1, where each fn is HL integrable on [a; b];

(ii) the primitives Fn of fn are uniformly absolutely continuous.

Then f is HL integrable on [a; b] and

Z b

a

fn �!

Z b

a

f as n!1:

Proof. See [13, p38].

Theorem 2.9. Let ffng be a sequence of Banach-valued functions on [a; b] which is control
convergent to f on [a; b]. Then for eachXi and for every � > 0, there exists a positive integer

N such that for every partial partition D = f[u; v]g of [a; b] with u; v 2 Xi , we have

(D)
X

!(Fn � Fm; [u; v]) < �

whenever n;m � N .

Proof. Fix Xi and let X = Xi. Assume that a; b 2 X. De�ne Gn(x) = Fn(x) when

x 2 X and linear elsewhere in [a; b]. More precisely, let (a; b) nX =
[
k

(ak; bk) and de�ne
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Gn(x) =

8<
:

Fn(x) if x 2 X
bk � x

bk � ak
Fn(ak) +

x� ak

bk � ak
Fn(bk) if x 2 (ak ; bk); k = 1; 2; : : :

Observe that if f[ui; vi]g is a �nite or in�nite sequence of non-overlapping intervals contained
in (ak ; bk), then

X
i

kGn(ui; vi)k =
X
i

k(
bk � vi

bk � ak
Fn(ak) +

vi � ak

bk � ak
Fn(bk))

�(
bk � ui

bk � ak
Fn(ak) +

ui � ak

bk � ak
Fn(bk))k

=
1

bk � ak

X
i

k(vi � ui)(Fn(bk)� Fn(ak))k

=
kFn(bk)� Fn(ak)k

bk � ak

X
i

jvi � uij: (2:1)

On the other hand,
X
k

!(Fn; [ak; bk]) converges uniformly in n, due to the fact that Fn is

AC�(X) uniformly in n. Hence, by (2.1), we need only to consider the �rst �nite number

of intervals [ak; bk]; k = 1; 2; :::;m. It is clear from (2.1) that the functions Gn are abso-

lutely continuous on each [ak; bk]. Consequently, the functions Gn are uniformly absolutely

continuous on [a; b] in view of the fact that Gn(x) = Fn(x) on X.

Now, de�ne

gn(x) =

8<
:

fn(x) if x 2 X
Fn(bk)� Fn(ak)

bk � ak
if x 2 (ak ; bk):

Then gn converges a.e. on [a; b] and gn(x) ! f(x) a.e. on X. We shall now use De�nition

1.2 to prove that each gn is HL integrable on [a; b] and the primitive of gn is Gn. First,

note that if � 2 (ak; bk), we can choose Æ(�) > 0 such that whenever ([u; v]; �) is Æ-�ne, we

have [u; v] � (ak; bk). By linearity of Gn on (ak; bk) and de�nition of gn, we have

kgn(�)(v � u)�Gn(u; v)k = 0:

Secondly if � 2 X, we consider interval-point pairs of the form ([u; �]; �) or ([�; v]; �). For

the case u; v 2 X, we observe that

kgn(�)(� � u)�Gn(u; �)k = kfn(�)(� � u)� Fn(u; �)k:

Similarly for the case ([�; v]; �). Hence we need only to consider the case when u; v 62 X.

Now suppose u 2 (ak; bk) for some k. Then

kgn(�)(� � u)�Gn(u; �)k

� kfn(�)(� � bk) �Gn(bk; �)k + kfn(�)(bk � u)�Gn(u; bk)k

= kfn(�)(� � bk) � Fn(bk; �)k + kfn(�)(bk � u)�Gn(u; bk)k:



CONTROLLED CONVERGENCE THEOREMFOR BANACH-VALUED HL INTEGRALS 267

Therefore �nally we need only to consider

kfn(�)(bk � u)�Gn(u; bk)k:

Let Xq = f� 2 X; q � 1 � kfn(�)k < qg, q = 1; 2; : : : . Let q be �xed. Given � > 0, we �rst

choose ` such that

1X
k=`

jbk � akj <
�

q � 2q
and

1X
k=`

!(Fn; [ak; bk]) <
�

2q
:

Let � 2 Xq and � 6= ak, bk for all k. Now we choose Æ(�) > 0 such that when [ak; bk] �
(�� Æ(�); �+ Æ(�)), we have k � `. Hence, if D = f([u; �]; �)g is a Æ-�ne partial division with
� 2 Xq , we have

(D)
X

kfn(�)(bk � u)�Gn(u; bk)k

� (D)
X

kfn(�)(bk � u)k+ (D)
X

kGn(u; bk)k

<
�

2q
+

�

2q
:

When � 2 Xq and � = ap or bp for some p, in view of the continuity of Gn at �, we can

choose Æ(�) > 0 such that when ([u; v]; �) in Æ-�ne, we have

kgn(�)(v � u)�Gn(u; v)k

= kfn(�)(v � u)�Gn(u; v)k

� kfn(�)(v � u)k+ kGn(u; v)k

< �=2p + �=2p:

From the above analysis, gn is HL integrable on [a; b] with primitiveGn. By Theorem 2.7

we get the required result, without oscillation. To get the required result with oscillation,

we observe that, for each n, there exist pk; qk 2 [ak; bk] such that

!(Fn � F ; [ak; bk]) = k(Fn � F )(pk ; qk)k:

However, pk and qk depend on n. Now we do some adjustment. Let ck; dk 2 (ak ; bk)

with ck < dk and �xed, independent of n. De�ne Hn(x) = Fn(x) � F (x) if x 2 X and

linearly on [ak; ck], [ck; dk] and [dk; bk] with Hn(ak) = (Fn�F )(ak); Hn(ck) = (Fn�F )(bk);

Hn(dk) = (Fn � F )(pk; qk) +Hn(ck) and Hn(bk) = Hn(ck). Hence kHn(dk) �Hn(ck)k =
w(Fn � F ; [ak; bk]), and the oscillation of Hn over [ak; bk] is equal to that of Fn � F over

[ak; bk].

As in the proof of the �rst part with Gn(x) replaced by Hn(x) and f[ak; bk]g replaced by
f[ak; ck]; [ck; dk]; [dk; bk]g, by Theorem 2.7, given any � > 0, there exists a positive integer

N such that for any partial partition D = f[u; v]g of [a; b], we have

(D)
X

kHn(u; v) �Hm(u; v)k < �

whenever n;m � N . Note that the limit of the sequence Hn(x) exists as n!1 for each x

and in view of (iii) of De�nition 1.10, it is zero. Thus, the above inequality implies that
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(D)
X

kHn(u; v)k < � (2:2)

whenever n � N . Observe that if u; v 2 X and [p; q] � (u; v) with p; q 62 X, we can divide

[p; q] into three sub-intervals, where two of them are in
S
k

[ak; bk] and another with endpoints

in X, namely [p; q] = [p; s] [ [s; t] [ [t; q], where p 2 [ai; bi], q 2 [aj ; bj ] and s; t 2 X. Then

k(Fn � F )(p; q)k � k(Fn � F )(p; s)k + k(Fn � F )(s; t)k + k(Fn � F )(t; q)k

� w(Fn � F ; [ai; bi]) + k(Fn � F )(s; t)k + w(Fn � F ; [aj ; bj ])

= kHn(ci; di)k + kHn(s; t)k + kHn(cj ; dj)k

Hence, by (2.2), for any partial partition D = f[u; v]g of [a; b] and any [p; q] � [u; v], we

have

(D)
X

k(Fn � F )(p; q)k < �

whenever n � N . Note that [p; q] is any subinterval of [u; v]. Thus

(D)
X

w(Fn � F ; [u; v]) � �

whenever n � N . Consequently

(D)
X

w(Fn � Fm; [u; v]) � 2�

whenever n;m � N .

3 Main Result Theorem 3.1. Controlled Convergence Theorem

If a sequence of Banach-valued functions ffng is control convergent to f on [a; b], then

f is also HL integrable on [a; b] and

Z b

a

fn(x)dx �!

Z b

a

f(x)dx as n!1:

Proof. In view of Lemma 2.1, we may assume fn(x) ! f(x) everywhere in [a; b] as n!1.

Since each fn is HL integrable on [a; b], with primitive Fn, then given � > 0 there exists

Æn(�) > 0 such that for any Henstock Æn-�ne partial division D = f[u; v]; �g of [a; b], we

have

(D)
X

kfn(�)(v � u)� Fn(u; v)k < �2�n: (3:1)

Since fn(x) ! f(x), there exists a positive integer m = m(�; �) such that

kfm(�) � f(�)k < �: (3:2)

By the hypothesis, we also have

lim
n!1

Fn(u; v) = F (u; v) exists (3:3)
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for any sub-interval [u; v] of [a; b].

From the de�nition of control convergence, [a; b] is the union of a sequence of closed

sets Xi such that on each Xi, the functions Fn are AC�(Xi) uniformly in n. By Theorem

2.9, it follows that, for each i, there exists a positive integer N(i) such that for any partial

partition D = f[u; v]g of [a; b] with u; v 2 Xi, we have

(D)
X

w(Fn � F ; [u; v]) < �

whenever n � N(i).

Hence, for each i, there exists a subsequence fFn(i;j)g
1

j=1
of fFng1n=1

such that

(D)
X

w(Fn(i;j) � F ; [u; v]) < �2�i�j (3:4)

for any partial partition D = f[u; v]g of [a; b] with u; v 2 Xi. We may assume that for each

i > 1, fFn(i;j)g
1

j=1
is a subsequence of fFn(i�1;j)g

1

j=1
. From now onwards, n(j; j) is denoted

by m(j), and we only consider subsequences ffm(j)g and fFm(j)g. Now we shall de�ne Æ(�)

on [a; b]. If � 2 Yi = Xin(X1 [X2 [ � � �[Xi�1), where X0 = ;, then we choose m(j) > m(i)

such that kfm(j)(�) � f(�)k < �. Note that m(j) depends on �. We denote m(j) by m(�).

De�ne Æ(�) = Æm(�)(�). Let D = f([u; v]; �)g be any Henstock Æ-�ne partial division of [a; b],
we shall prove that

(D)
X

kf(�)(v � u)� F (u; v)k < �(b � a) + 2�: (3:5)

First

(D)
X

kf(�)(v � u)� F (u; v)k � (D)
X

kf(�) � fm(�)(�)k(v � u)

+(D)
X

kfm(�)(�)(v � u)� Fm(�)(u; v)k

+(D)
X

kFm(�)(u; v) � F (u; v)k

The �rst sum on the right side of the above inequality is less than �(b�a). The second sum

can be written as

1X
j=1

(Dj )
X

kfm(�)(�)(v � u)� Fm(�)(u; v)k;

where Dj = f([u; v]; �)g is a subset of D and each � in Dj induces the same m(j) i.e.

m(�) =m(j) for all � in Dj . Hence the second sum is less than

�

1X
j=1

2�m(j): by (3:1)

Consequently it is less than �. Now we shall handle the third sum. For convenience, we

may assume that a; b 2 Xi, for all i. For any ([u; v]; �) in D, [u; v] = [u; �] [ [�; v]. Suppose

� 2 Yi = Xin(X1 [X2 [ � � � [Xi�1). Then either u 2 Xi or [u; �] lies in an interval with

endpoints in Xi. On the other hand, the third sum can be written as
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X
i

X
j

X
�2Xi;m(�)=m(j)

kFm(�)(u; v) � F (u; v)k:

Recall that m(�) = m(j) = n(j; j) > n(i; i). Thus j > i. Hence fn(j; k)g1k=1
is a

subsequence of fn(i; k)g1k=1
. So m(j) = n(j; j) = n(i; k(j)) for some k(j). Hence, by (3.4),

X
�2Xi;m(�)=m(j)

kFm(�)(u; v) � F (u; v)k � �2�i�k(j):

Note that fn(j + 1; k)g1k=1
is a subsequence of fn(j; k)g1k=1

. We may choose fn(j +
1; k)g1k=1

such that k(j) is strictly increasing. Thus the third sum is less than �. Conse-

quently, (3.5) holds. With (3.5) and (3.3), the proof is complete.

Remark. In general, a Banach-valued function F which is ACG� may not be di�erentiable

a.e. From the result of proof, we know that F is di�erentiable a.e. if it satis�es the conditions

of Theorem 3.1, however the ideas in [13, p40] does not work for proving the above theorem,

since in the proof, we use the result \F is di�erentiable a.e.".
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