CONTROLLED CONVERGENCE THEOREM FOR BANACH-VALUED HL INTEGRALS

LORNA I. PAREDES AND CHEW TUAN SENG

Received August 28, 2001; revised January 6, 2002

ABSTRACT. Henstock's strongly variational integral for Banach-valued functions is called the HL integral, which is in the form of Henstock's Lemma. In this paper, we shall prove a controlled convergence theorem for such integrals.

The Henstock integral for Banach-valued functions has been discussed in [1-8, 10, 12, 17-23]. However Henstock's Lemma may not hold for such integral [2, 17-20]. The stronger version (see Definition 1.2) [2, 12], using Henstock's Lemma as a definition of an integral, has richer properties. For example, it has differentiation and measurability properties [2, 4, 6, 21, 23]. On the other hand, the Denjoy-Dunford, Denjoy-Pettis and Denjoy-Bochner integrals have been discussed in [7, 9, 11, 16, 24]. In [24], a controlled convergence theorem is claimed to be true without proof, for the Denjoy-Bochner integral. In this note, following the idea in [14], we shall prove a controlled convergence theorem for the HL integral. We remark that we do not follow the idea in [13, p40], since in [13, p40, line 17], we do not know whether the primitive function is differentiable a.e.

1 **HL integral and** $AC^*(X)$ In this section, we shall define the HL integral and discuss properties of $AC^*(X)$.

Definition 1.1. Let δ be a positive function on a closed interval [a, b]. A division $D = \{([u, v], \xi)\}$ of [a, b] is said to be *Henstock* δ -fine if $\xi \in [u, v] \subset (\xi - \delta(\xi), \xi + \delta(\xi))$ for every $([u, v], \xi) \in D$.

In the following, we always use partial divisions instead of divisions. $D = \{([u, v], \xi)\}$ is said to be a partial division of [a, b] if $\{[u, v]\}$ is a collection of nonoverlapping subintervals of [a, b]. The union of [u, v] in D may not equal to [a, b].

Definition 1.2. Let (B, || ||) denote a Banach space with norm || ||. A function $f : [a, b] \to (B, || ||)$ is *HL integrable* on [a, b] if there exists a function $F : [a, b] \to (B, || ||)$ satisfying the following property: for every $\epsilon > 0$, there exists a positive function $\delta(\xi)$ on [a, b] such that if $D = \{([u, v], \xi)\}$ is a Henstock δ -fine partial division of [a, b], we have

$$(D) \sum \|f(\xi)(v-u) - F(u,v)\| < \epsilon$$

where F(u, v) = F(v) - F(u).

²⁰⁰⁰ Mathematics Subject Classification. 281305, 26A39.

Key words and phrases. Riemann type integral, controlled convergence theorem, Banach-valued integral. This study was granted financial support by the National University of Singapore (SPRINT, Department of Mathematics), University of the Philippines and the Commission on Higher Education (CHED-COE Grant).

Henceforth, a Banach-valued function shall be referred to as a function with values in $(B, \| \ \|)$.

Definition 1.3. A Banach-valued function F is said to be *absolutely continuous* on [a,b] if for every $\epsilon > 0$ there exists $\eta > 0$ such that for every finite or infinite sequence of non-overlapping intervals $\{[a_i, b_i]\}$, with $\sum |b_i - a_i| < \eta$ we have

$$\sum \|F(a_i,b_i)\| < \epsilon$$

where $F(a_{i}, b_{i}) = F(b_{i}) - F(a_{i})$.

Definition 1.4. Let $X \subset [a, b]$. A Banach valued function F defined on X is said to be AC(X) if for every $\epsilon > 0$ there exists $\eta > 0$ such that for every finite or infinite sequence of non-overlapping intervals $\{[a_i, b_i]\}$ satisfying $\sum_i |b_i - a_i| < \eta$ where $a_i, b_i \in X$ for all i, we

have

$$\sum_i \|F(a_i, b_i)\| < \epsilon$$

where the endpoints $a_i, b_i \in X$ for all *i*.

Definition 1.5. A Banach-valued function F defined on $X \subset [a, b]$ is said to be $AC^*(X)$ if for every $\epsilon > 0$ there exists $\eta > 0$ such that for every finite or infinite sequence of non-overlapping intervals $\{[a_i, b_i]\}$ satisfying $\sum_i |b_i - a_i| < \eta$ where $a_i, b_i \in X$ for all i, we

have

$$\sum_{i} \omega(F; [a_i, b_i]) < \epsilon$$

where ω denotes the oscillation of F over $[a_i, b_i]$, i.e.,

$$\omega(F; [a_i, b_i]) = \sup\{\|F(x, y)\|; x, y \in [a_i, b_i]\}.$$

Definition 1.6. A Banach-valued function F is said to be ACG^* on X if X is the union of a sequence of closed sets $\{X_i\}$ such that on each X_i , F is $AC^*(X_i)$.

Following ideas in [13, pp27-28], we can prove

Lemma 1.7. Let X be a closed set in [a, b] and $(a, b) \setminus X$ be the union of (c_k, d_k) for k = 1, 2, ... Suppose a Banach-valued function F is continuous on [a, b]. Then the following statements are equivalent:

- (i) F is $AC^*(X)$
- (ii) F is AC(X) and $\sum_{k=1}^{\infty} \omega(F; [c_k, d_k]) < \infty$
- (iii) Definition 1.4 holds with a_i or b_i belonging to X for every i.

To justify that X is closed in Definition 1.6, we shall prove the following lemma.

Lemma 1.8. Let $X \subset [a,b]$. If F is $AC^*(X)$ and continuous on [a,b], then F is $AC^*(\overline{X})$, where \overline{X} is the closure of X.

Proof. Suppose F is $AC^*(X)$. Then for every $\epsilon > 0$, there exists $\eta > 0$ such that for every finite or infinite sequence of non-overlapping intervals $\{[a_i, b_i]\}$ with $a_i, b_i \in X$ and $\sum_i |b_i - a_i| < \eta$, we have

$$\sum_{i} \|F(b_i) - F(a_i)\| < \epsilon.$$

Now, let $\{[c_i, d_i]\}$ be any finite or infinite sequence of non-overlapping intervals with $c_i, d_i \in \overline{X}$ and $\sum_i |d_i - c_i| < \eta$. For each *i*, there exist $u_i, v_i \in X$ with $u_i < v_i$ and $\sum_i |v_i - u_i| < \eta$ such that

$$\|F(u_i) - F(c_i)\| < \frac{\epsilon}{2^i} \qquad \text{and} \qquad \|F(v_i) - F(d_i)\| < \frac{\epsilon}{2^i}.$$

Observe that $\{[u_i, v_i]\}$ may not be non-overlapping intervals. However, we can divide $\{[c_i, d_i]\}$ into two parts, wherein intervals in each part are disjoint, so that we can choose $\{[u_i, v_i]\}$ to be disjoint. Hence we may assume $\{[u_i, v_i]\}$ to be non-overlapping. As a result, we have

$$\begin{split} \sum_{i} \|F(d_{i}) - F(c_{i})\| &\leq \sum_{i} \|F(d_{i}) - F(v_{i})\| + \sum_{i} \|F(v_{i}) - F(u_{i})\| \\ &+ \sum_{i} \|F(u_{i}) - F(c_{i})\| \\ &< \epsilon + \epsilon + \epsilon. \end{split}$$

Therefore, F is $AC^*(\overline{X})$.

Remark 1.9. Similarly, we can prove that if the statement (iii) in Lemma 1.7 holds for X, then it also holds for \overline{X} . Hence, when referring to $AC^*(X)$, we may assume that X is closed.

Definition 1.10. A sequence $\{f_n\}$ of Banach-valued functions is said to be *control convergent* to f on [a,b] if the following conditions are satisfied:

- (i) $f_n(x) \to f(x)$ a.e. in [a, b] as $n \to \infty$ where each f_n is *HL* integrable in [a, b];
- (ii) the primitives F_n of f_n are ACG^* uniformly in n, i.e., [a, b] is the union of a sequence of closed sets X_i such that on each X_i , the functions F_n are $AC^*(X_i)$ uniformly in n;
- (iii) the primitives F_n converge uniformly on [a, b].

L		

2 Properties of HL integral Most of the theorems that we will be using in proving our main theorem shall be discussed in this section.

Lemma 2.1. If f(x) = 0 a.e. in [a, b], i.e., for all $x \in [a, b]$ except perhaps on a set X of measure zero, then f is HL integrable to 0 on [a, b].

The proof is standard [13, p6].

Theorem 2.2. If f is HL integrable on [a, b], then its primitive F is continuous on [a, b].

Proof. See [13, p12].

Theorem 2.3. If f is HL integrable on [a, b], then its primitive F is ACG^* on [a, b].

Proof. The proof is standard. However we shall give the detail here.

For every $\epsilon > 0$, there is a function $\delta(\xi) > 0$ such that for any Henstock δ -fine partial division $D = \{[u, v]; \xi\}$ in [a, b], we have

$$(D)\sum \|F(u,v) - f(\xi)(v-u)\| < \epsilon.$$

We may assume that $\delta(\xi) \leq 1$. Let

$$X_{ni} = \{ x \in [a,b] : \|f(x)\| \le n; \frac{1}{n} < \delta(x) \le \frac{1}{n-1} \text{ and } x \in [a + \frac{i-1}{n}, a + \frac{i}{n}) \}$$

for n = 2, 3, ..., i = 1, 2, ... Fix X_{ni} and let $\{[a_k, b_k]\}$ be any finite sequence of non-overlapping intervals with $a_k, b_k \in X_{ni}$ for all k. Then $\{([a_k, b_k], a_k)\}$ is a Henstock δ -fine partial division of [a, b]. Furthermore, if $a_k \leq u_k \leq v_k \leq b_k$, then $\{([a_k, u_k], a_k)\}, \{([v_k, b_k], b_k)\}$ are Henstock δ -fine partial divisions of [a, b]. Thus,

$$\begin{split} \sum_{k} \|F(u_{k}, v_{k})\| &\leq \sum_{k} \|F(a_{k}, u_{k})\| + \sum_{k} \|F(v_{k}, b_{k})\| + \sum_{k} \|F(a_{k}, b_{k})\| \\ &\leq 3\epsilon + \sum_{k} \|f(a_{k})(u_{k} - a_{k})\| + \sum_{k} \|f(b_{k})(b_{k} - v_{k})\| \\ &+ \sum_{k} \|f(a_{k})(b_{k} - a_{k})\| \\ &\leq 3\epsilon + 3n \sum_{k} (b_{k} - a_{k}). \end{split}$$

Choose $\eta \leq \frac{\epsilon}{3n}$ and $\sum_{k} (b_k - a_k) < \eta$. Then

$$\sum_{k} \omega(F; [a_k, b_k]) \le 3\epsilon + \epsilon.$$

Therefore, F is $AC^*(X_{ni})$ and also $AC^*(\overline{X}_{ni})$. Consequently, F is ACG^* on [a, b]. \Box

Theorem 2.4. If f is HL integrable on [a, b], then its primitive F is differentiable a.e. and F'(x) = f(x) a.e. on [a, b].

Proof. See [13, p21].

Theorem 2.5. Let (B, ||||) be a Banach space and $f : [a, b] \to (B, ||||)$. Suppose there exists a function $F : [a, b] \to B$ which is continuous and ACG^* on [a, b] such that F'(x) = f(x)a.e. in [a, b]. Then f is HL integrable on [a, b] with primitive F.

Proof. See [13, p31].

The following is a special version of Egoroff's theorem for Banach-valued functions.

Lemma 2.6. If $f_n(x) \to f(x)$ a.e. in [a, b] as $n \to \infty$ where each f_n is HL integrable then for every $\eta > 0$ there exists an open set G with $|G| < \eta$ such that f_n converges uniformly to f on $[a, b] \setminus G$.

Theorem 2.7. Suppose

(i) $f_n(x) \to f(x)$ a.e. in [a, b] as $n \to \infty$ where each f_n is HL integrable on [a, b]

(ii) the primitives F_n of f_n are uniformly absolutely continuous.

Then for every $\epsilon > 0$ there exists a positive integer N such that for every partial partition $D = \{[u, v]\}$ of [a, b] we have

$$(D)\sum \|F_n(u,v) - F_m(u,v)\| < \epsilon$$

whenever $n, m \geq N$.

Proof. See [13, pp 37 - 38].

Theorem 2.8. Suppose

(i) $f_n(x) \to f(x)$ a.e. in [a, b] as $n \to \infty$, where each f_n is HL integrable on [a, b]; (ii) the primitives F_n of f_n are uniformly absolutely continuous.

Then f is HL integrable on [a, b] and

$$\int_{a}^{b} f_{n} \longrightarrow \int_{a}^{b} f \quad \text{as} \quad n \to \infty.$$

Proof. See [13, p38].

Theorem 2.9. Let $\{f_n\}$ be a sequence of Banach-valued functions on [a, b] which is control convergent to f on [a, b]. Then for each X_i and for every $\epsilon > 0$, there exists a positive integer N such that for every partial partition $D = \{[u, v]\}$ of [a, b] with $u, v \in X_i$, we have

$$(D)\sum \omega(F_n-F_m;[u,v])<\epsilon$$

whenever $n, m \geq N$.

Proof. Fix X_i and let $X = X_i$. Assume that $a, b \in X$. Define $G_n(x) = F_n(x)$ when $x \in X$ and linear elsewhere in [a, b]. More precisely, let $(a, b) \setminus X = \bigcup (a_k, b_k)$ and define

$$G_n(x) = \begin{cases} F_n(x) & \text{if } x \in X \\ \frac{b_k - x}{b_k - a_k} F_n(a_k) + \frac{x - a_k}{b_k - a_k} F_n(b_k) & \text{if } x \in (a_k, b_k), k = 1, 2, \dots \end{cases}$$

Observe that if $\{[u_i, v_i]\}$ is a finite or infinite sequence of non-overlapping intervals contained in (a_k, b_k) , then

$$\sum_{i} \|G_{n}(u_{i}, v_{i})\| = \sum_{i} \|(\frac{b_{k} - v_{i}}{b_{k} - a_{k}}F_{n}(a_{k}) + \frac{v_{i} - a_{k}}{b_{k} - a_{k}}F_{n}(b_{k})) - (\frac{b_{k} - u_{i}}{b_{k} - a_{k}}F_{n}(a_{k}) + \frac{u_{i} - a_{k}}{b_{k} - a_{k}}F_{n}(b_{k}))\|$$

$$= \frac{1}{b_{k} - a_{k}}\sum_{i} \|(v_{i} - u_{i})(F_{n}(b_{k}) - F_{n}(a_{k}))\|$$

$$= \frac{\|F_{n}(b_{k}) - F_{n}(a_{k})\|}{b_{k} - a_{k}}\sum_{i} |v_{i} - u_{i}|.$$
(2.1)

On the other hand, $\sum_{k} \omega(F_n; [a_k, b_k])$ converges uniformly in n, due to the fact that F_n is $AC^*(X)$ uniformly in n. Hence, by (2.1), we need only to consider the first finite number of intervals $[a_k, b_k], k = 1, 2, ..., m$. It is clear from (2.1) that the functions G_n are absolutely continuous on each $[a_k, b_k]$. Consequently, the functions G_n are uniformly absolutely continuous on [a, b] in view of the fact that $G_n(x) = F_n(x)$ on X.

Now, define

$$g_n(x) = \begin{cases} f_n(x) & \text{if } x \in X\\ \frac{F_n(b_k) - F_n(a_k)}{b_k - a_k} & \text{if } x \in (a_k, b_k) \end{cases}$$

Then g_n converges a.e. on [a, b] and $g_n(x) \to f(x)$ a.e. on X. We shall now use Definition 1.2 to prove that each g_n is HL integrable on [a, b] and the primitive of g_n is G_n . First, note that if $\xi \in (a_k, b_k)$, we can choose $\delta(\xi) > 0$ such that whenever $([u, v], \xi)$ is δ -fine, we have $[u, v] \subset (a_k, b_k)$. By linearity of G_n on (a_k, b_k) and definition of g_n , we have

$$||g_n(\xi)(v-u) - G_n(u,v)|| = 0$$

Secondly if $\xi \in X$, we consider interval-point pairs of the form $([u, \xi], \xi)$ or $([\xi, v], \xi)$. For the case $u, v \in X$, we observe that

$$||g_n(\xi)(\xi - u) - G_n(u, \xi)|| = ||f_n(\xi)(\xi - u) - F_n(u, \xi)||.$$

Similarly for the case $([\xi, v], \xi)$. Hence we need only to consider the case when $u, v \notin X$. Now suppose $u \in (a_k, b_k)$ for some k. Then

$$\begin{split} &\|g_n(\xi)(\xi-u) - G_n(u,\xi)\|\\ &\leq \|f_n(\xi)(\xi-b_k) - G_n(b_k,\xi)\| + \|f_n(\xi)(b_k-u) - G_n(u,b_k)\|\\ &= \|f_n(\xi)(\xi-b_k) - F_n(b_k,\xi)\| + \|f_n(\xi)(b_k-u) - G_n(u,b_k)\|. \end{split}$$

266

Therefore finally we need only to consider

$$||f_n(\xi)(b_k - u) - G_n(u, b_k)||.$$

Let $X_q = \{\xi \in X; q-1 \le ||f_n(\xi)|| < q\}, q = 1, 2, \dots$ Let q be fixed. Given $\epsilon > 0$, we first choose ℓ such that

$$\sum_{k=\ell}^{\infty} |b_k - a_k| < \frac{\epsilon}{q \cdot 2^q} \text{ and } \sum_{k=\ell}^{\infty} \omega(F_n; [a_k, b_k]) < \frac{\epsilon}{2^q}$$

Let $\xi \in X_q$ and $\xi \neq a_k$, b_k for all k. Now we choose $\delta(\xi) > 0$ such that when $[a_k, b_k] \subset (\xi - \delta(\xi), \xi + \delta(\xi))$, we have $k \geq \ell$. Hence, if $D = \{([u, \xi], \xi)\}$ is a δ -fine partial division with $\xi \in X_q$, we have

$$\begin{aligned} & (D) \sum \|f_n(\xi)(b_k - u) - G_n(u, b_k)\| \\ \leq & (D) \sum \|f_n(\xi)(b_k - u)\| + (D) \sum \|G_n(u, b_k)\| \\ < & \frac{\epsilon}{2^q} + \frac{\epsilon}{2^q}. \end{aligned}$$

When $\xi \in X_q$ and $\xi = a_p$ or b_p for some p, in view of the continuity of G_n at ξ , we can choose $\delta(\xi) > 0$ such that when $([u, v], \xi)$ in δ -fine, we have

$$\begin{aligned} &\|g_n(\xi)(v-u) - G_n(u,v)\| \\ &= \|f_n(\xi)(v-u) - G_n(u,v)\| \\ &\leq \|f_n(\xi)(v-u)\| + \|G_n(u,v)\| \\ &< \epsilon/2^p + \epsilon/2^p. \end{aligned}$$

From the above analysis, g_n is HL integrable on [a, b] with primitive G_n . By Theorem 2.7 we get the required result, without oscillation. To get the required result with oscillation, we observe that, for each n, there exist $p_k, q_k \in [a_k, b_k]$ such that

$$\omega(F_n - F; [a_k, b_k]) = \|(F_n - F)(p_k, q_k)\|.$$

However, p_k and q_k depend on n. Now we do some adjustment. Let $c_k, d_k \in (a_k, b_k)$ with $c_k < d_k$ and fixed, independent of n. Define $H_n(x) = F_n(x) - F(x)$ if $x \in X$ and linearly on $[a_k, c_k]$, $[c_k, d_k]$ and $[d_k, b_k]$ with $H_n(a_k) = (F_n - F)(a_k)$; $H_n(c_k) = (F_n - F)(b_k)$; $H_n(d_k) = (F_n - F)(p_k, q_k) + H_n(c_k)$ and $H_n(b_k) = H_n(c_k)$. Hence $||H_n(d_k) - H_n(c_k)|| = w(F_n - F; [a_k, b_k])$, and the oscillation of H_n over $[a_k, b_k]$ is equal to that of $F_n - F$ over $[a_k, b_k]$.

As in the proof of the first part with $G_n(x)$ replaced by $H_n(x)$ and $\{[a_k, b_k]\}$ replaced by $\{[a_k, c_k], [c_k, d_k], [d_k, b_k]\}$, by Theorem 2.7, given any $\epsilon > 0$, there exists a positive integer N such that for any partial partition $D = \{[u, v]\}$ of [a, b], we have

$$(D)\sum \left\|H_n(u,v)-H_m(u,v)\right\|<\epsilon$$

whenever $n, m \ge N$. Note that the limit of the sequence $H_n(x)$ exists as $n \to \infty$ for each x and in view of (iii) of Definition 1.10, it is zero. Thus, the above inequality implies that

$$(D)\sum \|H_n(u,v)\| < \epsilon \tag{2.2}$$

whenever $n \ge N$. Observe that if $u, v \in X$ and $[p, q] \subset (u, v)$ with $p, q \notin X$, we can divide [p, q] into three sub-intervals, where two of them are in $\bigcup_{k} [a_k, b_k]$ and another with endpoints in X, namely $[p, q] = [p, s] \cup [s, t] \cup [t, q]$, where $p \in [a_i, b_i]$, $q \in [a_j, b_j]$ and $s, t \in X$. Then

$$\begin{aligned} \|(F_n - F)(p, q)\| &\leq \|(F_n - F)(p, s)\| + \|(F_n - F)(s, t)\| + \|(F_n - F)(t, q)\| \\ &\leq w(F_n - F; [a_i, b_i]) + \|(F_n - F)(s, t)\| + w(F_n - F; [a_j, b_j]) \\ &= \|H_n(c_i, d_i)\| + \|H_n(s, t)\| + \|H_n(c_j, d_j)\| \end{aligned}$$

Hence, by (2.2), for any partial partition $D = \{[u, v]\}$ of [a, b] and any $[p, q] \subset [u, v]$, we have

$$(D) \sum \|(F_n - F)(p, q)\| < \epsilon$$

whenever $n \geq N$. Note that [p,q] is any subinterval of [u,v]. Thus

$$(D)\sum w(F_n-F;[u,v])\leq \epsilon$$

whenever $n \geq N$. Consequently

$$(D)\sum w(F_n - F_m; [u, v]) \le 2\epsilon$$

whenever $n, m \geq N$.

3 Main Result Theorem 3.1. Controlled Convergence Theorem

If a sequence of Banach-valued functions $\{f_n\}$ is control convergent to f on [a, b], then f is also HL integrable on [a, b] and

$$\int_{a}^{b} f_{n}(x) dx \longrightarrow \int_{a}^{b} f(x) dx \quad \text{as} \quad n \to \infty$$

Proof. In view of Lemma 2.1, we may assume $f_n(x) \to f(x)$ everywhere in [a, b] as $n \to \infty$. Since each f_n is *HL* integrable on [a, b], with primitive F_n , then given $\epsilon > 0$ there exists $\delta_n(\xi) > 0$ such that for any Henstock δ_n -fine partial division $D = \{[u, v]; \xi\}$ of [a, b], we have

$$(D) \sum \|f_n(\xi)(v-u) - F_n(u,v)\| < \epsilon 2^{-n}.$$
(3.1)

Since $f_n(x) \to f(x)$, there exists a positive integer $m = m(\epsilon, \xi)$ such that

$$\|f_m(\xi) - f(\xi)\| < \epsilon. \tag{3.2}$$

By the hypothesis, we also have

$$\lim_{n \to \infty} F_n(u, v) = F(u, v) \qquad \text{exists}$$
(3.3)

for any sub-interval [u, v] of [a, b].

From the definition of control convergence, [a, b] is the union of a sequence of closed sets X_i such that on each X_i , the functions F_n are $AC^*(X_i)$ uniformly in n. By Theorem 2.9, it follows that, for each i, there exists a positive integer N(i) such that for any partial partition $D = \{[u, v]\}$ of [a, b] with $u, v \in X_i$, we have

$$(D)\sum w(F_n-F;[u,v])<\epsilon$$

whenever $n \ge N(i)$.

Hence, for each *i*, there exists a subsequence $\{F_{n(i,j)}\}_{i=1}^{\infty}$ of $\{F_n\}_{n=1}^{\infty}$ such that

$$(D) \sum w(F_{n(i,j)} - F; [u, v]) < \epsilon 2^{-i-j}$$
(3.4)

for any partial partition $D = \{[u,v]\}$ of [a,b] with $u, v \in X_i$. We may assume that for each i > 1, $\{F_{n(i,j)}\}_{j=1}^{\infty}$ is a subsequence of $\{F_{n(i-1,j)}\}_{j=1}^{\infty}$. From now onwards, n(j,j) is denoted by m(j), and we only consider subsequences $\{f_{m(j)}\}$ and $\{F_{m(j)}\}$. Now we shall define $\delta(\xi)$ on [a,b]. If $\xi \in Y_i = X_i \setminus (X_1 \cup X_2 \cup \cdots \cup X_{i-1})$, where $X_0 = \emptyset$, then we choose m(j) > m(i) such that $\|f_{m(j)}(\xi) - f(\xi)\| < \epsilon$. Note that m(j) depends on ξ . We denote m(j) by $m(\xi)$. Define $\delta(\xi) = \delta_{m(\xi)}(\xi)$. Let $D = \{([u, v]; \xi)\}$ be any Henstock δ -fine partial division of [a, b], we shall prove that

$$(D) \sum \|f(\xi)(v-u) - F(u,v)\| < \epsilon(b-a) + 2\epsilon.$$
(3.5)

First

$$\begin{split} (D) \sum \|f(\xi)(v-u) - F(u,v)\| &\leq (D) \sum \|f(\xi) - f_{m(\xi)}(\xi)\|(v-u) \\ &+ (D) \sum \|f_{m(\xi)}(\xi)(v-u) - F_{m(\xi)}(u,v)\| \\ &+ (D) \sum \|F_{m(\xi)}(u,v) - F(u,v)\| \end{split}$$

The first sum on the right side of the above inequality is less than $\epsilon(b-a)$. The second sum can be written as

$$\sum_{j=1}^{\infty} (D_j) \sum \|f_{m(\xi)}(\xi)(v-u) - F_{m(\xi)}(u,v)\|,$$

where $D_j = \{([u, v], \xi)\}$ is a subset of D and each ξ in D_j induces the same m(j) i.e. $m(\xi) = m(j)$ for all ξ in D_j . Hence the second sum is less than

$$\epsilon \sum_{j=1}^{\infty} 2^{-m(j)}.$$
 by (3.1)

Consequently it is less than ϵ . Now we shall handle the third sum. For convenience, we may assume that $a, b \in X_i$, for all *i*. For any $([u, v], \xi)$ in D, $[u, v] = [u, \xi] \cup [\xi, v]$. Suppose $\xi \in Y_i = X_i \setminus (X_1 \cup X_2 \cup \cdots \cup X_{i-1})$. Then either $u \in X_i$ or $[u, \xi]$ lies in an interval with endpoints in X_i . On the other hand, the third sum can be written as

$$\sum_{i} \sum_{j} \sum_{\xi \in X_{i}, m(\xi) = m(j)} \|F_{m(\xi)}(u, v) - F(u, v)\|.$$

Recall that $m(\xi) = m(j) = n(j,j) > n(i,i)$. Thus j > i. Hence $\{n(j,k)\}_{k=1}^{\infty}$ is a subsequence of $\{n(i,k)\}_{k=1}^{\infty}$. So m(j) = n(j,j) = n(i,k(j)) for some k(j). Hence, by (3.4),

$$\sum_{\xi \in X_i, m(\xi) = m(j)} \|F_{m(\xi)}(u, v) - F(u, v)\| \le \epsilon 2^{-i - k(j)}.$$

Note that $\{n(j+1,k)\}_{k=1}^{\infty}$ is a subsequence of $\{n(j,k)\}_{k=1}^{\infty}$. We may choose $\{n(j+1,k)\}_{k=1}^{\infty}$ such that k(j) is strictly increasing. Thus the third sum is less than ϵ . Consequently, (3.5) holds. With (3.5) and (3.3), the proof is complete.

Remark. In general, a Banach-valued function F which is ACG^* may not be differentiable a.e. From the result of proof, we know that F is differentiable a.e. if it satisfies the conditions of Theorem 3.1, however the ideas in [13, p40] does not work for proving the above theorem, since in the proof, we use the result "F is differentiable a.e.".

References

- B. Bongiorno, L Di Piazza and K. Musial, An alternate approach to the McShane integral, Real Anal. Exchange 25 (1999/2000) 829 - 848.
- [2] S. Cao, The Henstock Integral for Banach-Valued Functions, SEA Bull. Math. 16 (1992) 35-40.
- [3] S. Cao, On the Henstock-Bochner integral, SEA Bill. Math. Special Issue (1993) 1-3.
- [4] J.-C. Feauveau, A generalized Riemann integral for Banach-valued functions, Real Anal. Exchange 25 (1999/2000) 919-930.
- [5] J.-C. Feauveau, Approximation theorems for generalized Riemann integrals, Real Anal. Exchange 26 (2000/2001), 471-484.
- [6] M. Federson, The Fundamental theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals, Real Anal. Exchange, 25 (2000) 469-480.
- [7] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994) 127-147.
- [8] D. H. Fremlin, The generalized McShane integral, Illinois J. Math. 39 (1995) 39-67.
- J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998) 115-133.
- [10] R. A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990) 557-567.
- [11] R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91.
- [12] R. Henstock, Generalized integrals of vector-valued functions, Proc. Lond. Math. Soc. 19 (1969) 509-536.
- [13] Lee Peng Yee, Lanzhou Lecture on Henstock Integration, World Scientific, Singapore, 1989.
- [14] Lee Peng Yee and Chew Tuan Seng, A Short Proof of the Controlled Convergence Theorem for Henstock Integrals, Bull. Lord. Math. Soc. 19 (1987) 60-62.
- [15] Lee Peng Yee and R. Vyborny, The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, 2000.

- [16] T. J. Morrison, A note on the Denjoy integrability of abstractly-valued functions, Proc. Amer. Math. Soc. 61 (1976) 385-386.
- [17] S. Nakanishi, The Henstock integral for functions with values in nuclear spaces and the Henstock Lemma, J. Math. Study, 27 (1994) 133-141.
- [18] S. Nakanishi, Riemann type integrals for functions with values in nuclear spaces and their properties, Math. Japonica, 47 (1998) 367-396.
- [19] R. M. Rey and P. Y. Lee, A representation theorem for the space of Henstock-Bochner integrable functions, SEA Bull. Math. Special Issue (1993) 129-136.
- [20] V. A. Skvortsov and A. P. Solodov, A variational integral for Banach-valued functions, Real Anal. Exchange 24 (1998/1999) 799-806.
- [21] A. P. Solodov, On conditions of differentiability almost everywhere for absolutely continuous Banach-valued function, Moscow Univ. Math. Bull 54 (1999) 29-32.
- [22] C. Swartz, A gliding hump property for the Henstock-kurzweil integral, SEA Bull. Math. 22 (1998) 437-443.
- [23] Wu Congxin and Yao Xiaobo, A Riemann-type definition of the Bochner integral, J. Math. Study, 27 (1994) 32-36.
- [24] Ye Guoju, Lee Peng Yee and Wu Congxin, Convergence theorems of the Denjoy-Bochner, Denjoy-Pettis and Denjoy-Dunford integrals, SEA Bull. Math. 23 (1999) 135-143.

CHEW TUAN SENG DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF SINGAPORE 2 SCIENCE DRIVE 2 SINGAPORE 117543 E-MAIL : MATCTS@NUS.EDU.SG

LORNA I PAREDES DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE UNIVERSITY OF THE PHILIPPINES DILIMAN, QUEZON CITY 1101 PHILLIPINES