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MULTILINEARIZED LITTLEWOOD-PALEY OPERATORS

SuuicHl SATO anND K6z0 YABUTA
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ABSTRACT. We consider multilinear operators T' = T'(f1, f2,... , fm) of the following form:
T(fisf2s--o s fm)(®@) = [57 ((p1)e * f1) (@) ((p2)e * f2) (@) -+ - ((m)e * fm)(2) dE/t. Tt is known
that under approprla.te conditions on ¢;, there exists C > 0 such that HT(fl, 2y fm)llp <
Cllfillpy If2llpz -~ lfmlpy, for 1 < pi,p2,...,pm < oo, ; = ﬁ +7 < 1. In this paper,
we treat the case without restriction p > 1. To prove this, we use a recent work on multilinear
singular integrals of Grafakos and Torres, and one on Littlewood-Paley’s g-functions by S.
Sato.

§1. INTRODUCTION

Multilinearized Littlewood-Paley operators were first considered by R. R. Coifman and Y.
Meyer in [2]. Since then, many authors treated multilinearized Littlewood-Paley operators.
Recently, Grafakos and Torres [4] established multilinear Calderén-Zygmund theory and got
new estimates for a class of multilinear Fourier multipliers. Also, deep results are developed
on square functions in the Littlewood-Paley theory, Sato [6], etc. In this paper, we report
that we can obtain new estimates for multilinearized Littlewood-Paley operators, by using
their recent results.

We say that an m-linear operator 7" is good if T is a bounded operator from LP* x LP> x

X LPm to LP for 1 < p1,p2,. .. ,Pm < 00, 1% = p1—1+---+pim, i.e., there exists C' > 0 such
that

1T (frs for- s Frdllp < Cllfullp 1 F2llps == [ fomllp, -

We consider the following m-linearized Littlewood-Paley type operator

Torom o (Fis foreen s fn) () = / T (o) * 1)@ (02)e * £)(@) - (Pm)e * fon)(@) 2

t )
In the above and in the sequel, fi(z) denotes ¢ "f(z/t). Let W(z) = (2m)~/2e~lI*/2
be the Gauss kernel, W;(z) = t~"W(z/t), and Wt( ) = BWi(I) W( ) = Wi(z). Then,

W, (&) = e 11°/2 W, (&) = —|t&|?e~11"/2. A consequence of a recent result of Grafakos
and Torres [4] is the following.
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Lemma 1. TW,W,...,W s good.

To prove this, we recall the definition of m-linear Fourier multiplier. An m-linear operator
T, is said to be an m-linear Fourier multiplier with symbol o, if T, has the following form

1 e (£1 4 : 5
To(fi,--o s fm)(2) = W/ et tem) gy 6NV fL(€) - Fn(Em) dEr - - dEnm.
Proof of Lemma 1. The symbol o(&1,&2, ... ,&m) of Ty, as an m-linear Fourier mul-

tiplier is given by
766 ) = [ W )T t8) Tt T

:/ B e N L B L
t
0

= —|€1|2/0 te 1€1°/2 at = —|&y P /|¢P? € O (R"™ \ {0}).

This symbol function is of homogeneous of degree 0. Hence, by a theorem of Grafakos and
Torres, the conclusion holds true. O

The symbol of our operators T, ,,,...,»,. as m-linear Fourier multiplier is given by

[ artenmiee) - anten) T

at least formally, and really if the integrand of the above integral is absolutely integrable.
Clearly this symbol function is of homogeneous of degree 0, however, in general, this is not
n+1

so smooth in R*™ \ {0}. For example, if ¢; is the Poisson kernel P(z) = ¢, (1 + |z|?)” 2

(j=2,...,m), and py(z) = ZE | then the symbol is —|&]/(|&1| + €] + - - + [€ml).

So, in general we cannot use Grafakos-Torres theorem directly.

Known results on multilinearlized Littlewood-Paley opertors are restricted on the case
p > 1, Coifman and Meyer [2], Yabuta [10]. In this paper, we treat the case p > 1/m,
1/m < 1 for m > 2.

§2. PRELIMINARIES AND MAIN RESULT

To state our result, we introduce some definitions. We consider the least non-increasing
radial majorant of a function ¢ defined by

Hy(z) = sup [¥(y)l.

ly|> x|

We also use two seminorms

B. (1) ::/ Wb(@)||zlF dz fore >0,
|z|>1

1/n
D,() = ( / . |¢<x>|"dw> for > 1
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Definition 1. A function ¢(z) is said to belong to LP if ¢ € L*(R"), B.(p) < oo for some
e >0, Dy(p) < oo for some n > 1, and H, € L*(R").

A function ¢(z) is said to belong to LP, if ¢ € LP and [, p(z) dzx = 0.

A function ¢(z) is said to belong to LPy if ¢ € LPy and [;° ¢(sz)s" *ds = 0 for all
non-zero z € R", and H,(z)|log |z|| € L*(R™).

Now we can state our main result.

Theorem 1. Let ¢; € LP, j = 1,2,... ,m. Suppose one of p; belongs to LPyy. Then,
Tor 00, o 15 gOOd.

Corollary 1. Let 1 < p; < co. Let 1 € LPy and ¢; € LP, j = 2,... ,m. Let b(§) be
Qounded function of homogeneous of degree 0 and Sy be the Fourier multiplier defined by
Sy f(€) = b(&)f(€). Suppose Sy is bounded on LP'(R™) and ¢ = Sy is well-defined as an
LY(R™)-function. Then, for 1 <p; < oo (j =2,...,m), 1/p=1/p1+1/ps+- -+ 1/pm
there exists C' > 0 such that

1,05, iom (F15 F2 s )l < Cll 1l [ F2llps - - ([ ],

Example. Let
t

(lzf? + 2)(n+D)/2

, where P = Py, and ¢;(z) = 8Pgﬁ($) |,_,- We can

Pi(x) =cn
be the Poisson kernel. Put ¢(z) = 8(19;(9_”)
check that @1 € LPy, in particular, the condition:

(1) / @1 (tx)t" 1 dt =0 for all non-zero z € R™.
0

So, for p; € LP (j = 2,...,m) we see that Ty, 4, .. o, is good. On the other hand, we
can see that 1 does not satisfy the condition (). Now, let b(§) = —i&;/|€| for £ # 0. Then
Sy is the Riesz transform R;. We observe that ) = R;p;. Therefore, although we cannot
apply Theorem 1 directly to Ty ,.... .x.., by the LP boundedness of the Riesz transform and
by Corollary 1 we can see that Ty o,....,,,. is also good.

§3. PROOFS OF THEOREM 1 AND COROLLARY 1

We first note that if |(z)| < C(1+ |z|)™"7° (z € R™) for some C' > 0 and ¢ > 0, then
p € LP.
To prove our theorem, we prepare some lemmas.

Lemma 2. Let ¢; € LP, j = 1,2,... ,m. Suppose two of ¢; belong to LPy. Then,
T 00, som 18 goOU.

Proof. We may assume @1, 2 € LFy. From the assumption H,, € LY(R") it follows
(@i)e * fi(@)| < CM(f;)(=),

where M (f) denotes the Hardy-Littlewood maximal function (see, for example, Stein-Weiss
[9]). Hence, we have by the Cauchy-Schwarz inequality

|T991,<p2,...,<pm (flv f27 s 7fm)(w)|

<o ([ Jenm@| %) ([ learex @) 2%>;M(f3)(ﬂf)---M(fm)(w)-

By Theorem 1 of S. Sato [6, p. 200], the first two terms in the right hand side of the above
inequality is bounded for every L™(R™) (1 < r < 00). As is well-known, maximal functions
are bounded for every L™(R™) (1 < r < 00). Hence, using Holder’s inequality, we have the
conclusion. O
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Lemma 3. Let ¢ € LY(R") satisfy D,(¢)) < +o0o for some n > 1. Put

‘I’(m):—/loolﬁ :n 5n+1_ /zbsa: " ds.

n
D, (V) < mDn(T/))-

Proof. Using Minkowski’s inequality we have

= </| |<1‘/ Ylse)s™! ds‘ da:> = /01 </|I|<1 |4 (sz)]" da:> ' s"!ds
1 5 )
:/ (/ ()" dy) s*"/"s"*dsgpn(i/,)/ §n(1=1/m)=1 go
0 lzl<s o

_ n
- n(n_l)DW(I/}) U

Lemma 4. Let 1) € L'(R") satisfy B:(¢) < oo for some ¢ > 0 and [~ ¢(sx)s" ' ds =0
for all x #0. Let ¥ be as in Lemma 3. Then,

Then it holds

3=

B.(¥) < 1B.()

Proof. Since [ ¢ (sz)s" ' ds =0, we have ¥(z) = [[7 ¢ (sz)s" ! ds. Hence

B.(7) = / ‘/ P(sz)s"~ 1ds‘|w|8dm
Jz|>1

s ([ et )= [T([ o)t

B.( z/))/ 57— Eds—lBg(z/)). 0

9

Thus

IN

Lemma 5. Suppose [;, Hy(z)|log|z||dz < oo and [~ ¢(sz)s"tds = 0 for all z # 0.
Let U be as in Lemma 3. Then

H\p(x)dmg/ Hy(z)|log|z|| dz.
Rn Rn

Proof. Since |¥(z)| = ‘folqﬁ(sx)s"’l ds‘ < fol H,/,(Sl‘)sn*l ds, we have Hg(z) <

fol H,(sz)s" 1 ds. So, we have, using Fubini’s theorem twice,

1 1
/ Hg(z)dzx < / / Hy(sz)s" ! dsdx = / ( Hy (sz) da:> s""lds
Jz|<1 |z]<1J0 0 Jz|<1
! ds ds
-/ ( Hy(y) dy> Yo mw([ %)
0 ly|<s 8 ly|<1 lyl

- / Hy(y)] log Jy] dy.
ly|<1
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Next, since [ (sz)s" ! ds = 0, we have
oo (e}
U(z) :/ Y(sz)s" ! ds, and hence |¥(z)| S/ Hy(sz)s™ ! ds.
1 1

So,
Hy(z) < sup/ H¢(sy)s"*1ds:/ Hy(sz)s" tds.
1

ly|>]e| /1

Thus, using Fubini’s theorem twice, we have

Hyg(x)dzx < / / Hy(sz)s" ! dsdx = / ( Hy(sz) dm) s"Lds
lo|>1 lel>1 /1 1 \ e

B /100< W) dy) %: /y21H¢(y) (/19 %) dy

= Hy(y)log |y| dy. O
ly|>1

Now we proceed to the proof of our Theorem 1. We may assume ¢; € LPy, and
fR" pj(x)de=1,j=2,...,m. We decompose Ty, ... ., . as follows.

T(ph...,gpm (f17 s 7fm)

= /Om((wl)t * 1) (02 = Wi fo) ((93)e % f3) -+ ((Pm)e * fin) %

[ G0 T £ 1) (o # ) §
0

= T1 +T2

Since [W(z)dz = [a(z)dr = 1, we see easily oo — W € LP,. Hence, by Lemma 2,
we see that T3 is good. So, we have only to show T3 is good. Repeating this procedure,
we may assume @;(x) = W(z), j = 2,...,m. Set ¢y = ¢1 and ¥ be as in Lemma 3.
Then, by Lemmas 3, 4 and 5, we have ¥ € LP. We see also that t% = ;. Noting
that limy_yoo Oy % fi(z) = 0, imyyoo Wi = fj(x) = 0, j = 2,...,m, limy_o ¥; * f1(z) =
fi(z) [O(z)dz, im0 Wy % fj(z) = fj(x), j = 2,... ,m, we have, by integration by parts,

Tapl,...,apm(fly"' 7fm)

> 0
- —(/m)f1<w>f2(x> o fn(2) —/ (W« fi) (@) 5, [T Wex 7)) .
0 e
The first term of the right hand side of the above is clearly good. So, to prove our theorem,
we have only to treat the following one.
dt

Ty o Fovee ) = [ (W )@« W o)+ (Wit 1) -

If [ W(x)dz =0, then it follows that ¥ € LFy, and hence we can apply Lemma 2. Hence,
we may assume [ ¥(z)dx = 1. We decompose Ty, 57 1w (f1, f2,-- -, fm) as before.

T‘I’,W,W,...,W(fl:f% e )fm)
= [T =W )@« £ W x ) (Wi o)
dt

[V @k )Wk i) (Wi )
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We see by Lemma 2 that the first term is good, and by Lemma 1 that the last term is also
good. This completes the proof of Theorem 1. O

Proof of Corollary 1. We note that ¢, * f(z) = (p1)r * (Spf)(x) (this can be seen by
taking the Fourier transform and using the homogeneity of b(¢)), and hence we have

Tpromresom (frofor oo s fm)(@) = Ty pn, om (Sofis fo, ..o, fm)(x).  Therefore applying
Theorem 1 and using LP* boundedness of Sy, we get the conclusion. O

Remark 1. We can also get weighted versions. If w(z) € A
exists C' > 0 such that

in Theorem 1, then there

Pmin

1Ter 020 om (f15 f25 -5 Fr)llLe(wy < Cllfillpes @yl f2ll ez (w) - - | fmll Lom (w)

where A, is the Muckenhoupt weight class and pmin = min(p1, p2, .. , Pm)-

Remark 2. If, in Theorem 1, |p;(z)] < C(1+|z|) " ° (x € R") for some C > 0 and € >0
(j =1,...,m), and each @; satisfies further for some v > 0

/m@ Y —py@)de < Clyl’,  y e R

and if one of p; satisfies [ ¢;(z)dz =0 and [~ @;(sz)s" "' ds = 0 for all non-zero z € R,
then, it holds

Az € R | Tor s, pom (1o for s fm) (@) > A7 < Cllfillps 1 follps - ([ frnllpms A >0

provided one of p; = 1.

Recently, D. Fan and S. Sato showed the following: Suppose ¢ € L' satisfies fR" Y(x)dz
=0, D,(¢) < oo for some n > 1, B.(¢)) < oo for some € > 0, flw|>1H¢(m) dr < oo and
SUp|,|>1 Hy(z) < oo (note that this follows from the condition Hy € L'(R™)). Then the
Littlewood-Paley function

gu(f)(z) = </Ooo [ * () dt/t>1/2

is bounded on L? for all 2 < p < oo (see [3, Corollary 3]). As an application of this, we can
give somewhat weak assertion assuming weaker condition on ¢; in Theorem 1.

Remark 3. Let p; € LP for j = 2,3,...,m, and let ¢; € L' satisfy [, ¢1(z)dz = 0,
Dy(1) < oo for some n > 1, [ ¢y (te)t" 1 dt = 0 for all non-zero z € R, Bc(p1) < 00
for some € > 0 and f‘w‘21/2 H,, (z)log(2|z|) dz < co. (Note that the last two conditions are
always satisfied if 1 is supported in {|z| < 1/2}.) Then we have

1105, om (F1s 2o o5 Fn)llp < Cllfillpy 1 follps - - | Fmllpe

for 2 Spl < o9, 1 < P2,P3;- -+, Pm < 00, l/p: 1/171 +]-/p2++1/pm

Arguing as in the proof of Theorem 1, we can prove this as follows. First, we may assume
pj =W for j =2,3,...,m. To see this, we note that the conditions supy, >, Hy, (z) < 00
and f\z\zl H,, (z)dz < oo follow from our last assumption on ¢q, and so g,, is bounded
on L?, 2 < p < oco. Next, after integration by parts we find that to get the result it suffices
to prove the LPt X --- x LPm — LP boundedness of Tg & ,,  With ¥ = ¥ — cW, where
¥ is as in the proof of Theorem 1, ¢ = fR" ¥ (z)dz and p, p1,...,pm are as above. Now,
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Lemmas 3 and 4 imply D,(¥) < co and B.(¥) < oo, respectively. Furthermore, from the
proof of Lemma 5 we see that

/ Ho () dz < / H,, () log(2]]) dz < 0.
|z[>1/2 |z|>1/2

Therefore we have f\z\>1 Hy(z)dr < oo and sup|, > Hu(z) < co. It is easy to see that v

satisfies the same conditions. Since we also have [, U(z)dx =0, gg is bounded on L,
2 < p < 00. So, arguing as in the proof of Lemma 2, we get the conclusion.
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