ON THE PARASPECTRUM AND THE CONTINUITY OF THE SPECTRUM IN ALGEBRA OF OPERATORS

Slaviša V. Djordjević

Received January 30, 2001; revised April 17, 2001

ABSTRACT. In this paper some conditions are given for the continuity of the spectrum using the paraspectrum of operators. Also, Luecke's theorem for G_1 -operators is given as a simple consequence of those conditions.

1. Introduction

Let X be a complex infinite-dimensional Banach space and let B(X) denotes a Banach algebra of all bounded operators on X. If $T \in B(X)$, then $\sigma(T)$ denotes the spectrum of T. For $A, B \in B(X)$ we define the *-prominance of A by $B, * \in \{\alpha, \beta, \gamma\}$, by

$$\operatorname{prom}_{\alpha}(A; B) = \{\lambda \notin \sigma(A) : \|(A - \lambda)^{-1}\| \cdot \|A - B\| \ge 1\};$$

$$\operatorname{prom}_{\beta}(A; B) = \{\lambda \notin \sigma(A) : \|(A - \lambda)(A - B)\| \ge 1\};$$

$$\operatorname{prom}_{\gamma}(A; B) = \{\lambda \notin \sigma(A) : \|A - B\| \ge d(\lambda, \sigma(A))\}.$$

The *-paraspectrum of A by B is the set

$$\sigma_*(A; B) = \operatorname{prom}_*(A; B) \cup \sigma(A), \qquad * \in \{\alpha, \beta, \gamma\}.$$

It has been introduced in [3] in the case where X is a Hilbert space.

An operator $A \in B(X)$ is a G_1 -operator if A satisfies the growth condition [4]

$$\|(A - \lambda)^{-1}\| \le \frac{1}{d(\lambda, \sigma(A))}, \qquad \lambda \notin \sigma(A).$$

The continuity of spectra for G_1 -operators on a Hilbert space has been discussed by several authors [2,3,4,6]. To discuss it for arbitrary operators on a Banach space, we need the distances d_1 and d_2 among compact subsets in the complex plane. Let M and N be a compact subsets in the complex plane. We define the distances $d_1(M, N)$ and $d_2(M, N)$ between M and N by

$$d_1(M,N) = \sup_{n \in N} \inf_{m \in M} |m-n| = \sup_{n \in N} \operatorname{dist} (n,M)$$
$$d_2(M,N) = \sup_{m \in M} \inf_{n \in N} |m-n| = \sup_{m \in M} \operatorname{dist} (m,N).$$

AMS Subject Classification (1991): 47A10, 47A53

Keywords and Phrases: Paraspectrum, continuity of the spectrum

It is well-known that the distance d(M, N) define by

$$d(M, N) = \max\{d_1(M, N), d_2(M, N)\}\$$

is the Hausdorff distance between compact subsets M and N.

A mapping p, defined on B(X) whose values are compact subset of \mathbb{C} , is said to be upper (lower) semi-continuous at A, provided that if $A_n \to A$ then

$$d_1(p(A), p(A_n)) \to 0 \quad (d_2(p(A), p(A_n)) \to 0), \quad n \to \infty.$$

If p is both upper and lower semi-continuous at A, then it is said to be continuous at A and in this case $\lim p(A_n) = p(A)$.

In this paper we consider the spectral variation inequality

(1.*i*.)
$$d_i(\sigma(A), \sigma(B)) \le ||A - B||, \quad i = 1, 2$$

and we discuss a continuity of the spectrum of A using the *-paraspectrum of A by B.

2. Variation of spectrum

Directly from the definition of the *-paraspectrum follows that $\sigma(A) \subset \sigma_*(A; B), * \in$ $\{\alpha, \beta, \gamma\}$, for every $B \in B(X)$. Also, by [3] we get $\sigma(B) \subset \sigma_{\alpha}(A; B)$ and $\sigma_{\gamma}(A; B) \subset$ $\sigma_{\beta}(A; B) \subset \sigma_{\alpha}(A; B)$ for every $A, B \in B(X)$.

If (τ_n) is a sequence of compact subsets of \mathbb{C} , then its limit inferior is

$$\liminf \tau_n = \{\lambda \in \mathbb{C} : \text{ there are } \lambda_n \in \tau_n \text{ with } \lambda_n \to \lambda\}$$

and its limit superior is

$$\limsup \tau_n = \{ \lambda \in \mathbb{C} : \text{ there are } \lambda_{n_k} \in \tau_{n_k} \text{ with } \lambda_{n_k} \to \lambda \}$$

It is well-known that a mapping p which maps B(X) into the family of compact subset of \mathbb{C} is upper (lower) semi-continuous at A if for every sequence $\{A_n\}$ in B(X) such that $A_n \to A$ holds

$$\limsup p(A_n) \subset p(A) \quad (p(A) \subset \liminf p(A_n)).$$

Theorem 1. Let $A \in B(X)$ and let $\{A_n\}$ be a sequence in B(X) such that $A_n \to A$. Then the next conditions are equivalent:

(1) $\lim \sigma(A_n) = \sigma(A);$ (2) $\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A; A_n) \subset \liminf \sigma(A_n);$ (3) $\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A_n; A) \subset \liminf \sigma(A_n).$

Proof. (1) \Rightarrow (2) Let $\lim \sigma(A_n) = \sigma(A)$ and suppose that (2) is not true. Then there exists a $\lambda \in \left(\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A; A_n)\right) \setminus (\liminf \sigma(A_n)).$ For this λ we get: (i) $\lambda \in \sigma_{\alpha}(A; A_n)$, for every $n \in \mathbb{N}$;

- (ii) $\lambda \notin \liminf \sigma(A_n)$ and so $\lambda \notin \sigma(A)$ by (1);
- By (i) and (ii) it follows $\lambda \in \text{prom}_{\alpha}(A; A_n)$, i.e.

$$||(A - \lambda)^{-1}||^{-1} \le ||A - A_n||$$
, for every $n \in \mathbb{N}$.

If $n \to \infty$, then $||(A - \lambda)^{-1}||^{-1} = 0$. Hence it is a contradiction.

(2) \Rightarrow (3) Let the condition (2) holds and suppose that (3) does not hold. Then there exists a $\lambda \in \left(\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A_n; A)\right) \setminus (\liminf \sigma(A_n))$. For this λ we get:

(i) $\lambda \in \sigma_{\alpha}(A_n; A)$, for every $n \in \mathbb{N}$;

(ii) there exists a $n_0 \in \mathbb{N}$ such that $\lambda \notin \sigma(A_n)$ for every $n > n_0$.

¿From (i) and (ii) it follows that $\lambda \in \operatorname{prom}_{\alpha}(A_n, A)$, i.e.

(*)
$$||(A_n - \lambda)^{-1}||^{-1} \le ||A_n - A|| \to 0, \quad n \to \infty$$

Suppose that $\lambda \in \sigma(A)$. Then $\lambda \in \sigma_{\alpha}(A; A_n)$, for every $n \in \mathbb{N}$, i.e. $\lambda \in \bigcap_{n=1}^{\infty} \sigma_{\alpha}(A; A_n) \subset \lim \inf \sigma(A_n)$ and this is a contradiction. Hence $\lambda \notin \sigma(A)$.

Since $A_n - \lambda \to A - \lambda$ and $\lambda \notin \sigma(A)$ it follows that $(A_n - \lambda)^{-1} \to (A - \lambda)^{-1}$ (by the continuity of the function $T \mapsto T^{-1}$ [1, Theorem 50.7]). But, by (*), we get that $||(A_n - \lambda)^{-1}|| \to \infty, n \to \infty$, i.e. $(A_n - \lambda)^{-1}$ converges to a noninvertible operator. Hence it is a contradiction.

(3) \Rightarrow (1) Suppose that $\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A_n; A) \subset \liminf \sigma(A_n)$. Let $\lambda \in \sigma(A)$. Then $\lambda \in \sigma_{\alpha}(A_n, A)$ for every $n \in \mathbb{N}$ [3], i.e.

$$\lambda \in \bigcap_{n=1}^{\infty} \sigma_{\alpha}(A_n; A) \subset \liminf \sigma(A_n)$$

Hence we have $\sigma(A) \subset \liminf \sigma(A_n)$.

Now, since σ is always upper semi-continuous [5, Theorem 1], it follows $\lim \sigma(A_n) = \sigma(A)$. \Box

Next necessary and sufficient conditions for the continuity of spectrum by means of α -paraspectrum is an easy consequence of the previous theorem.

Corollary 2. Let $A \in B(X)$. Then the spectrum is continuous at A if and only if for every sequence $\{A_n\}$ such that $A_n \to A$ one of the following equivalent conditions is satisfied:

(1)
$$\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A; A_n) \subset \liminf \sigma(A_n);$$

(2) $\bigcap_{n=1}^{\infty} \sigma_{\alpha}(A_n; A) \subset \liminf \sigma(A_n).$

Theorem 3. If for $A, B \in B(X)$ is $\sigma_{\gamma}(A; B) = \sigma_{\alpha}(A; B)$, then the spectral variation inequality (1.1) holds for A and B.

Proof. Let $\sigma_{\gamma}(A; B) = \sigma_{\alpha}(A; B)$. Since

$$d_1(\sigma(A), \sigma(B)) = \sup_{\lambda \in \sigma(B)} \inf_{\mu \in \sigma(B)} |\lambda - \mu|$$

and $\sigma(B) \subset \sigma_{\alpha}(A; B) = \sigma_{\gamma}(A; B)$ we have that

$$d_1(\sigma(A), \sigma(B)) \le ||A - B||$$
, for every $\lambda \in \sigma(B)$,

we have that the spectral variation inequality (1.1) holds for A and B.

235

Corollary 4. If for $A \in B(X)$ $\sigma_{\gamma}(B; A) = \sigma_{\alpha}(B; A)$ holds that for every $B \in B(X)$, then the spectrum is continuous at A.

Proof. Let $\{A_n\}$ be a sequence in B(X) such that $A_n \to A$. Since $d_1(\sigma(A_n), \sigma(A)) = d_2(\sigma(A), \sigma(A_n))$, Theorem 3 implies

$$d_2(\sigma(A), \sigma(A_n)) \le ||A - A_n|| \to 0,$$

i.e. the spectrum is lower semi-continuous at A. Then it follows from [5, Theorem 1] that the spectrum is continuous at A. \Box

Remark. Recall that $\sigma_{\gamma}(A; B) = \sigma_{\alpha}(A; B)$ for every $A \in B(X)$ is not a necessary condition for the continuity of the spectrum at B. An example can be constructed by using [3, Example 4 (1)].

Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ be the matrix acting on a two-dimensional Hilbert space and $B = 2A + A^*$. Then by [3, Example 4] it follows $\sigma_{\gamma}(A; B) \neq \sigma_{\alpha}(A; B)$. Since $\sigma(B)$ is totally disconnected, the spectrum is continuous at B by [5, Theorem 3]. \Box

It is well-known that the spectrum is a continuous function on the set of G_1 -operators [3,4]. Now we can get it as an easy consequence of Theorem 3 and Corollary 4.

Corollary 5. If $A_n \in B(X)$ are G_1 -operators and $A_n \to A$, then $\lim \sigma(A_n) = \sigma(A)$.

Proof. By [3, Theorem 3] we have $\sigma_{\gamma}(A_n; A) = \sigma_{\alpha}(A_n; A)$ for every $n \in \mathbb{N}$ and by Corollary 4 we have $\lim \sigma(A_n) = \sigma(A)$. \Box

Acknowledgement. The author is grateful to the referee for helpful suggestions concerning the original version of the paper.

References

- S.K.Berberian, Lectures in Functional analysis and operator theory, Springer-Verlag, Berlin-Heideberg-New York, 1974.
- [2] S.Izumino, Inequalities on G_1 -operators, Math. Japon. 24 (1980), 521-526.
- [3] M.Fujii and R.Nakamoto, An enlarging of spectra for Hilbert space operators, Math. Japon. 38 (1993), 1081-1083.
- [4] G.Luecke, Topological properties of paranormal operators, Trans. Amer. Math. Soc. 172 (1972), 35-43.
- [5] J.D.Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176.
- [6] J.G.Stampfli, Hyponormal operator and spectral density, Trans. Amer. Math. Soc. 117 (1965), 496-476.

University of Niš, Faculty of Science, Department of Mathematics Ćirila i Metodija 2, 18000 Niš, Yugoslavia E-mail : slavdj@ptt.yu slavdj@pmf.pmf.ni.ac.yu