ON L- AND D-SPACES

TAKEMI MIZOKAMI AND FUMIO SUWADA

Received August 20, 2001; revised December 5, 2001

ABSTRACT. We show that L-spaces in the sense of Nagami are hereditary, answering his question positively. As the application, we give the metrizability of a space in terms of its hyperspaces. We also show that both L-spaces and D-spaces coincide with each other under the condition of their large inductive dimension 0.

1. INTRODUCTION.

All spaces are assumed to be regular T_1 . The letter N denotes all positive numbers. For a space X, $\tau(X)$ denotes the topology of X. For brevity, let the letters CP and IP stand for the terms "closure-preserving" and "interior-preserving", respectively.

In 1980, Nagami defined two classes of L-spaces and D-spaces between Lašnev spaces and M_1 -spaces from the point of view of dimension theory. L-spaces are preserved by closed mappings, but not closed under finite products. As for the subspaces, he asked when L-spaces are hereditary, [4, p.241], while the open and closed subspaces are L-spaces, [4, Theorem 1.8].

In this paper, first we show that L-spaces are hereditary, answering his question positively. Also, we apply the result to the metrizability of a space in terms of its hyperspaces. Second, we show that if a space X is an L-space with IndX=0, then X is a D-space. This is a partial answer to his question whether L-spaces are D-spaces, [4, Problem 4.8]. This has been already answered negatively by Okuyama [5], where he actually constructed an L-space, but not a D-space X with IndX=1.

2. L-SPACES.

A space X is said to be an *L*-space if X is a paracomapt σ -space such that each closed subset F of X has a CP closed neighborhood base and at the same time has an IP (in $X \setminus F$) open neighborhood base in X, [4, Definition 1.2]. Equivalently, a space X is an L-space if and only if X is a paracompact σ -space such that each closed subset has an approaching anti-cover, [4, Theorem 1.3]. Any L-space is an M₁-space, [4, Theorem 1.7], and hence stratifiable in the sense of Borges [1]. So, any L-space X has the stratification S :{closed subsets of X} × N $\longrightarrow \tau(X)$ satisfying the following:

(i) For each closed set F of X,

$$\bigcap_n S(F,n) = \bigcap_n \overline{S(F,n)} = F;$$

(ii) if F and G are closed sets of X such that $F \subset G$, then $S(F,n) \subset S(G,n)$ for each n.

Theorem 2.1. L-spaces are hereditary.

 $^{2000\} Mathematics\ Sabject\ Classification.\ 54E20,\ 54B20.$

Key words and phrases. L-space, D-space, hyperspace.

Proof. Since L-spaces are hereditary with respect to closed subspaces, [4, Theorem 1.8], it suffices to show that any dense subspace X of an L-space Y is an L-space. Let M be a closed subset of X. Since \overline{M} is a σ -space, there exists a σ -discrete closed network \mathcal{F} for \overline{M} . Let $\mathcal{F} = \bigcup \{\mathcal{F}_n \mid n \in \mathbb{N}\}$, where each \mathcal{F}_n is discrete in Y. Let $\{O(F) \mid F \in \mathcal{F}_n\}$ be a discrete open expansion of \mathcal{F}_n in Y such that

(1)
$$F \subset O(F) \subset S(F, n).$$

Since Y is an L-space, F has an IP (in $Y \setminus F$) base $\mathcal{U}(F)$ such that $\bigcup \mathcal{U}(F) \subset O(F)$. Let τ_0 be the totality of open subsets of Y containing M. For each $O \in \tau_0$, let

$$\mathcal{F}(O) = \{ F \in \mathcal{F} \, | \, F \subset O \}.$$

For each $F \in \mathcal{F}(O)$, take $U_F \in \mathcal{U}(F)$ such that $U_F \subset O$. Then it is easy to see that

$$W(O) = \bigcup \{ U_F \cap X \mid F \in \mathcal{F}(O) \}$$

is an open neighborhood of M in X. By (1) it is easily checked that

$$\mathcal{W} = \{ W(O) \, | \, O \in \tau_0 \}$$

is an open neighborhood base of M in X which is IP in $X \setminus M$. Since L-spaces are stratifiable, M has a CP closed neighborhood base in X. This proves that X is an L-space.

In order to give an application of the result above, we recall the definition of finite topology to the hyperspace of a space X. Let $\mathcal{K}(X)$ and $\mathcal{F}(X)$ be the set of all non-empty compact subsets and non-empty finite subsets of X, respectively. The hyperspace $\mathcal{K}(X)$ is topologized by a base consisting of subsets of the form:

$$\langle U_1, \cdots, U_k \rangle = \{ K \in \mathcal{K}(X) \mid K \subset \bigcup_{i=1}^k U_i, \ K \cap U_i \neq \emptyset, \ i = 1, \cdots, k \},\$$

where $\{U_1, \dots, U_k\}$ is a finite family of open subsets of X. Note that the notation $\langle \dots \rangle$ is used later in the same sense as above for any finite family of subsets (not necessarily open) of X. $\mathcal{F}(X)$ is considered the subspace of $\mathcal{K}(X)$. In $\mathcal{F}(X)$, we write again $\langle U_1, \dots, U_k \rangle$ in place of $\langle U_1, \dots, U_k \rangle \cap \mathcal{F}(X)$.

Theorem 2.2. For a countable space X, the following are equivalent:

- (i) $\mathcal{K}(X)$ is an L-space.
- (ii) $\mathcal{F}(X)$ is an L-space.
- (iii) X is metrizable.

Proof. (i) \rightarrow (ii) is obvious from the theorem above. (iii) \rightarrow (i) is obvious, because the metrizability of X implies the metrizability of $\mathcal{K}(X)$, [2, Theorem 4.9.13]. We show (ii) \rightarrow (iii): Without loss of generality we can assume that X is not discrete. Then there exists a sequence (p_n) of points which has an accumulation point p, where $p \neq p_n \neq p_m$ for each pair (n,m) with $n \neq m$. Since $\mathcal{F}(X)$ is an L-space, $\hat{A}(x) = \{\{p,x\}\}$ has an approaching anti-cover $\hat{\mathcal{U}}(x)$ in $\mathcal{F}(X)$. For each pair (n,m) with $n \neq m$ and each point $y \in X$, there exists $\hat{U}(n,m,y) \in \hat{\mathcal{U}}(x)$ with $\{p_n, p_m, y\} \in \hat{U}(n,m,y)$, because $\{p_n, p_m, y\} \notin \hat{A}(x)$. This implies that

 $\langle \{p_n\}, \{p_m\}, U(n, m, y) \rangle \subset \hat{U}(n, m, y)$

for some open neighborhood U(n, m, y) of y in X. If we let

$$\mathcal{U}(n,m,x) = \{ U(n,m,y) \mid y \in X \},\$$

then

$$\mathcal{U} = \{\mathcal{U}(n,m,x) \, | \, n,m \in \mathbb{N}, \ x \in X\}$$

is a sequence of open covers of X. To show the metrizability of X, it suffices to show that \mathcal{U} satisfies the criteria of the Moore metrization theorem. Suppose that O is an open neighborhood of x in X. First, we consider the case $p \neq x$. Take disjoint open neighborhoods O_1, O_2 of p, x in X, respectively, in X such that $O_2 \subset O$. Since $\hat{\mathcal{U}}(x)$ is approaching to $\hat{A}(x)$ in $\mathcal{F}(X)$, there exists an open neighborhood $\hat{U} = \langle U_1, U_2 \rangle$ of $\{p, x\}$ in $\mathcal{F}(X)$ such that

(2)
$$St(\mathcal{F}(X) \setminus \langle O_1, O_2 \rangle, \hat{\mathcal{U}}(x)) \cap \hat{U} = \emptyset,$$
$$U_1 \subset O_1, \ U_2 \subset O_2.$$

There exist p_n , $p_m \in U_1$ with $n \neq m$. For these n and m, we show that $St(U_2, \mathcal{U}(n, m, x)) \subset O$. Suppose

 $U(n,m,z) \cap U_2 \neq \emptyset, \ U(n,m,z) \cap (X \setminus O) \neq \emptyset$

for some member $U(n,m,z) \in \mathcal{U}(n,m,x)$. But this is a contradiction to (2). Next, we consider the case x = p. Since $\hat{\mathcal{U}}(p)$ is approaching to $\{p\}$ in $\mathcal{F}(X)$, there exists an open neighborhood U of p in X such that

(3)
$$St(\mathcal{F}(X) \setminus \langle O \rangle, \hat{\mathcal{U}}(p)) \cap \langle U \rangle = \emptyset.$$

Take $p_n, p_m \in U$ with $n \neq m$. By (3), we easily have $St(U, \mathcal{U}(n, m, p)) \subset O$. Hence by the criteria above, X is metrizable.

A space X has a countable tightness, denoted by $t(X) = \aleph_0$, if $p \in \overline{A} \setminus A$, $A \subset X$ implies that there exists a countable subset $A_0 \subset A$ such that $p \in \overline{A_0}$. According to his Definition, [4, Definition 4.4], an anti-cover \mathcal{U} of a closed subset F of a space X is said to be uniformly approaching (to F) in X if for each open set V of X

$$\overline{St(X \setminus V, \mathcal{U})} \cap V \cap F = \emptyset.$$

A space X is said to be a *D*-space if X is a paracompact σ -space such that each closed set of X has a uniformly approaching anti-cover. D-spaces are between Lašnev spaces and L-spaces.

Theorem 2.3. Let X be a space with $t(X) = \aleph_0$. Then the following are equivalent:

- (i) $\mathcal{K}(X)$ is a D-space.
- (ii) $\mathcal{F}(X)$ is a D-space.
- (iii) X is metrizable.

Proof. By the discussion above, it suffices to show that if X is not discrete and $\mathcal{F}(X)$ is a D-space, then X has a sequence of open covers satisfying the criteria above. Since X has a countable tightness, there exists a sequence $\{p_n \mid n \in \mathbb{N}\}$ of points of X with its accumulation point p such that $p \neq p_n \neq p_m$ if $n \neq m$. Since

$$\hat{X} = \{\{p, x\} \mid x \in X\}$$

is a closed set of a D-space $\mathcal{F}(X)$, there exists a uniformly approaching anti-cover $\hat{\mathcal{U}}$ of \hat{X} in $\mathcal{F}(X)$. Let $z \in X$ be arbitrary, and let $n \neq m$. Take $\hat{U}(n,m,z) \in \hat{\mathcal{U}}$ such that $\{p_n, p_m, z\} \in \hat{\mathcal{U}}(n,m,z)$. Since $\hat{U}(n,m,z)$ is open in $\mathcal{F}(X)$, there exists an open neighborhood U(n,m,z) of z in X such that

$$\langle \{p_n\}, \{p_m\}, U(n, m, z) \rangle \subset \hat{U}(n, m, z).$$

Set

$$\mathcal{U}(n,m) = \{ U(n,m,z) \, | \, z \in X \}.$$

Then $\mathcal{U}(n,m)$ is an open cover of X. By the same way as above proof, we can show that the sequence $\{\mathcal{U}(n,m) \mid n, m \in \mathbb{N}, n \neq m\}$ satisfies the same criteria. This completes the proof.

3. The coincidence of L-spaces and D-spaces.

To show the coincidence theorem under the additional condition, we recall the following fact:

Fact 3.1. ([3, Fact 4]) Let \mathcal{B} be a CP family of closed subsets of a stratifiable space X. Then there exists a pair $\langle \mathcal{F}, \mathcal{V} \rangle$ of a σ -discrete closed cover \mathcal{F} and a point-finite, σ -discrete open cover $\mathcal{V} = \{V(F) \mid F \in \mathcal{F}\}$ of X satisfying the following:

- (i) If $F \in \mathcal{F}$ and $B \in \mathcal{B}$, then $F \cap B \neq \emptyset$ if and only if $F \subset B$;
- (ii) for each $F \in \mathcal{F}$, $F \subset V(F)$ and if $F \cap B = \emptyset$, then $V(F) \cap B = \emptyset$.

(We call \mathcal{F} the mosaic on \mathcal{B} and \mathcal{V} the frill of \mathcal{F} in X.)

Fact 3.2. ([4, Theorem 1.3]) Let F be a closed subset of an L-space X with Ind X = 0. Then F has a neighborhood base \mathcal{U} in X, consisting of clopen subsets of X such that \mathcal{U} is CP in X and at the same time IP in $X \setminus F$.

Theorem 3.3. If X is an L-space and IndX = 0, then X is a D-space.

Proof. It suffices to show that each closed subset M of X has a uniformly approaching anti-cover. Since M is a σ -space as the subspace, there exists a closed network $\mathcal{F} = \bigcup \{\mathcal{F}_n \mid n \in \mathbb{N}\}$, where each \mathcal{F}_n is discrete in M. For each n, let $\mathcal{U}_n = \{U(F) \mid F \in \mathcal{F}_n\}$ be a discrete clopen expansion of \mathcal{F}_n in X such that $U(F) \subset S(F, n)$ for each $F \in \mathcal{F}_n$, where $S : \{\text{closed subsets of } X\} \times \mathbb{N} \longrightarrow \tau(X)$ denotes a stratification of X. By Fact 3.2, for each $F \in \mathcal{F}$ there exists a neighborhood base $\mathcal{V}(F)$ of F in X consisting of clopen subsets of X which is both CP in X and IP in $X \setminus F$. Without loss of generality, we can assume $\bigcup \mathcal{V}(F) \subset U(F)$. For each $O \in \tau(X)$, let

$$\mathcal{F}(O) = \{ F \in \mathcal{F} \, | \, F \subset O \}$$

For each $F \in \mathcal{F}(O)$, take $V_F \in \mathcal{V}(F)$ such that $V_F \subset O$. Then

$$W(O) = \bigcup \{ V_F \mid F \in \mathcal{F}(O) \}$$

is an open neighborhood of $O \cap M$ in X. Since $\{U(F) \mid F \in \mathcal{F}_n\}$, $n \in \mathbb{N}$, are stratified with n, it is easily checked that

$$\mathcal{W} = \{ W(O) \, | \, O \in \tau(X) \}$$

is a family of open subsets of X which is both CP and IP in $X \setminus M$. Note that for each $W(O) \in \mathcal{W}, W(O) \cup M$ is closed in X. By Fact 3.1, there exists a pair $\langle \mathcal{H}, \mathcal{G} \rangle$ of the mosaic \mathcal{H} and the frill $\mathcal{G} = \{G(H) \mid H \in \mathcal{H}\}$ on the CP family

$$\{W \cup M \mid W \in \mathcal{W}\} \cup \{(X \setminus W) \cup M \mid W \in \mathcal{W}\} \cup \{M\}$$

of closed subsets of X. Then

$$\mathcal{G}^* = \{ G \in \mathcal{G} \mid G \cap M = \emptyset \}$$

is an anti-cover of M in X. Since \mathcal{G} is the frill of \mathcal{H} , it is easy to see that \mathcal{G}^* is a uniformly approaching anti-cover of M in X. This completes the proof.

References

- [1] C.J.R. Borges, On stratifiable spaces, Pacific J. Math. 17(1966), 1-16.
- [2] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71(1951),152-182.
- [3] T. Mizokami and N. Shimane, On the M₃ versus M₁ problem, Top. Appl. 105(2000), 1-13.
- [4] K. Nagami, The equality of dimensions, Fund. Math. 106(1980),239-246.
- [5] A. Okuyama, An example of an L-, non-D-space, Math. Japonica 28(1983), 139-142.

(T. Mizokami) Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943-8512, Japan

(F. Suwada) Department of Mathematics, Joetsu University of Education, Joetsu, Niigata 943-8512, Japan