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Abstract. We introduce compactness theorems for generalized colorings and derive

several particular compactness theorems from them. It is proved that the theorems

and many of their consequences are equivalent in ZF set theory to BPI, the Prime

Ideal Theorem for Boolean algebras.
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1 Introduction In 1951, de Bruijn and Erd�os [3], proved that a graph is k-colorable if

every �nite subgraph is k-colorable. J. Mycielski seems to have been the �rst to raise the

question as to the strength of the de Bruijn and Erd�os result as a set theory axiom in a

lecture delivered in 1959, pointing out, in particular, that it follows from the Prime Ideal

Theorem for Boolean algebras (BPI) (see [25],[27]), and this was further explored by A. Levy

[23]. BPI is weaker than the Axiom of Choice (AC), a result proved by Halpern [18][19], but

has many useful equivalent forms which can often be substituted for AC in mathematical

proofs (see [26], [20]). Twenty years after the appearance of the de Bruijn and Erd�os paper,

L�auchli [22] showed that their theorem is in fact one of the equivalent forms of BPI, even

for �xed k, k � 3. A simpli�ed proof of L�auchli's result, due to Mycielski, can be found in

[14].

Notions of generalized colorings have been introduced by di�erent authors (see, e.g.,

the Surveys [1, 2] and [24]) and it is natural to ask if a compactness theorem can be

formulated for these colorings. We show that this is indeed the case for both generalized

vertex colorings and generalized edge colorings. In addition we show that these general

compactness theorems, along with several of their consequences are equivalent to BPI.

2 Generalized Colorings Let I� be the class of all simple graphs (�nite or in�nite).

A property P of simple graphs is any isomorphism-closed nonempty subclass of I�. Let

P1;P2; : : : ;Pn be properties of simple graphs; then a vertex (P1;P2; : : : ;Pn)-coloring of a

graph G =< V;E > is a mapping f : V ! f1; 2; : : : ; ng of the vertex set V of G into the

set of colors f1; 2; : : : ; ng such that the induced subgraph, G[f�1(i)], has property Pi for

all i 2 Ran(f), the range of f . Thus a vertex (P1;P2; : : : ;Pn)-coloring of G is a partition

(V1; :::; Vn) of V such that each partition class, Vi, induces a subgraphG[Vi] having property

Pi. We explictly allow empty partition classes in the partition sequence and these induce

the null graph K0 =< ;; ; >. If each of the Pi, i = 1; 2; : : : ; n; is the property of being

edgeless, the ordinary regular n-coloring is obtained; while if the Pi is the property of having

maximum degree at most k, the defective (n; k)-colorings of [9] are de�ned. Many other

examples, references and results on generalized colorings of �nite graphs may be found e.g.

in [1, 2], [24] and in the book [21] by Jensen and Toft.

Generalized edge colorings can be de�ned analagously. An edge (P1;P2; : : : ;Pn)-coloring

of a graph G =< V;E > is a mapping f : E ! f1; 2; : : : ; ng of the edge set E of G into the

set of colors f1; 2; : : : ; ng such that the subgraph induced by the edges f�1(i) has property

Pi for all i 2 Ran(f). Thus an edge (P1;P2; : : : ;Pn)-coloring of G is a partition (E1; :::; En)

of E such that each partition class, Ei, induces a subgraph having property Pi.
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3 Compactness Theorems for Generalized Colorings Our intention is to formu-

late a compactness theorem for both vertex and edge (P1;P2; : : : ;Pn)-colorings. The key

concept is that of a property being of �nite character. (Connections between compactness

theorems, the prime ideal theorem, and properties of �nite character have also been made

in [12],[13], [16] and [29].) We will �rst prove an abstract compactness result regarding set

partitions and properties of �nite character. Let S be a set and P a property of subsets

of S. Then P is a property of S of �nite set character or, simply, of �nite character if a

set belongs to P if and only if every �nite subset of the set belongs to P . Surely, if P is of

�nite character, any subset of a set having property P , also has property P . A (P1; :::; Pn)-

partition of S is a partition of S as (S1; : : : ; Sn), where Si belongs to Pi, i = 1; : : : ; n. The

following theorem generalizes a result from [12].

Theorem 3.1 (Set Partition Theorem) Let S be a set and suppose P1; :::Pn are prop-

erties of S of �nite character. Then S has a (P1; :::; Pn)-partition if every �nite subset of

S has a (P1; :::; Pn)-partition.

We will give a proof of the Set Partition Theorem from the following lemma which is

known as Rado's Selection Lemma [28](see also [11],[29]).

Lemma 3.2 (Selection Lemma) Let fAvjv 2 Ig be a set of �nite sets. Suppose for every

�nite W � I there exists a function fW , with domain W , such that fW (v) 2 Av; v 2 W:

Then there exists a function f , with domain I, such that for every �nite W � I, there exists

a �nite W 0;W �W 0 � I with f(v) = fW 0 (v); v 2W:

Proof of the Set Partition Theorem. Assume that every �nite subset of S has a

(P1; : : : ; Pn) partition. Then for each �nite W � S there exists a (P1; : : : ; Pn) partition of

W{that is, there exists a partition function, fW : W ! f1; : : : ; ng, such that f�1
W

(i) has

property Pi; i = 1; : : : ; n:

Rado's lemma, now gives a function f : S ! f1; : : : ; ng such that for any �nite W � S,

there exists �nite W 0 with W � W 0 and f(s) = fW 0 (s); s 2 W . We claim that f is a

(P1; : : : ; Pn) partition of S. It must be shown that f�1(i) has property Pi, i = 1; : : : ; n.

Since Pi is of �nite character it suÆces to show that every �nite subset of f�1(i) has

property Pi.

Let W be a �nite subset of f�1(i); then there exists W 0 with W � W 0 and f(s) =

fW 0 (s); s 2 W: But f(s) = i; for s 2 W � f�1(i); hence fW 0 (s) = i; s 2 W , as well. Thus

W � f�1
W 0 (i). HoweverW 0 is (P1; : : : ; Pn) partitioned by fW 0 Thus, f�1

W 0 (i) has property Pi;

but W is a subset of f�1
W 0 (i) and hence has property Pi, as well.

Since every �nite subset of f�1(i) has property Pi and Pi is of �nite character, f
�1(i)

has property Pi as desired.

Let P be a property of graphs; P is of �nite character with respect to vertices or, simply,

�nite vertex character if a graph in I� has property P if and only if every �nite vertex

induced subgraph has property P. It is easy to see that if P is of �nite vertex character and

a graph has P then so does every induced subgraph. A property P is said to be induced-

hereditary if G 2 P and H < G implies H 2 P, that is P is closed under taking induced

subgraphs. Thus properties of �nite vertex character are induced hereditary. However

not all induced hereditary properties are of �nite vertex character; for example the graph

property P of not containing a vertex of in�nite degree is induced-hereditary but not of

�nite vertex character. Let us also remark that every property which is hereditary with

respect to every subgraph is induced-hereditary as well; however the converse is false{for

example, the property of being a complete subgraph or clique is induced-hereditary but not

hereditary.

The properties of being edgeless, of maximum degree at most k, Kn-free, acyclic, per-

fect, claw-free, etc. are properties of �nite vertex character. We next state and prove

a compactness theorem for (P1;P2; : : : ;Pn)-colorings, where the Pi are of �nite vertex

character.



Theorem 3.3 (Vertex Coloring Compactness Theorem) Let G be a graph in I� and

suppose P1; :::Pn are properties of graphs of �nite vertex character. Then G is (P1;P2; : : : ;Pn)-

colorable if every �nite induced subgraph of G is (P1;P2; : : : ;Pn)-colorable.

Proof. Let S be the set of vertices of G and let Pi hold for a subset of S if and only if

the graph induced by the subset has property Pi, 1 � i � n. Then the Pi are set properties

of �nite character. Since every �nite induced subgraph of G is (P1;P2; : : : ;Pn)-colorable,

every �nite subset of S has a (P1; :::; Pn)-partition. Thus, by the Set Partition Theorem, S

has a (P1; :::; Pn)-partition, that is, G is (P1;P2; : : : ;Pn)-colorable.

If G is a graph and S is a set of graphs, then G will be said to be S-free if no induced-

subgraph of G is (isomorphic to) a member of S. If the graphs in S are all �nite graphs, then

being S-free is a property of �nite vertex character. If, on the other hand, P is a property

of �nite vertex character and S is the set of all �nite graphs which do not have property P ,

then a graph will have property P if and only if it is S- free. This characterization leads

directly to an equivalent formulation of the preceding theorem in terms of S-free properties.

Let G =< V;E > be a simple graph and let � = fSi : i = 1; :::; ng, where Si is a set of

graphs, i = 1; :::; n. Then a �-free partition of G is a partition (V1; :::; Vn) of the vertex set

V (G), where G[Vi] is Si-free, i = 1; :::; n.

Theorem 3.4 (Vertex Coloring Compactness Theorem) Let G be a simple graph and

let � = fSi : i = 1; :::; ng, where Si is a set of �nite graphs, i = 1; :::; n. Then if every �nite

induced subgraph of G has a �-free partition, then G has a �-free partition.

It is natural to replace `�nite induced subgraph' by `�nite subgraph' in the above the-

orems, if the properties are hereditary as well as induced hereditary. Thus the theorem of

de Bruijn and Erd�os [3] as stated requires all �nite subgraphs to be k-colorable rather than

all �nite induced subgraphs, since being `edgeless' is a hereditary property. We shall, for

the most part, adhere to this convention.

We next present a few corollaries as examples of applications of our result. As already

mentioned, the property of having maximum degree at most k is of �nite vertex character.

A graph G =< V;E > will be called (n; k1; :::; kn)-colorable if the vertex set V can be

partitioned as (V1; :::; Vn) and the induced graphs, G[Vi] have maximum degree at most ki,

i = 1; :::; n. Thus we have the following corollary, which, if all ki = 0, is the theorem of

deBruijn and Erd�os [3].

Corollary 3.5 Let G be a simple graph and suppose that every �nite subgraph of G is

(n; k1; :::; kn)-colorable. Then G is (n; k1; :::; kn)-colorable.

If all of the ki are equal to k, the graph is said to be (n; k)-colorable [9]. It is a theorem

of [9] that any �nite simple planar graph is (3; 2)- colorable; the corollary implies that this

is true for in�nite planar graphs as well.

The property of being acyclic is of �nite vertex character. If the vertex set of a graph

can be partitioned into at most k sets, each of which induces an acyclic graph, we say the

graph is partitionable into k forests or, simply, k-forestable. Thus we have the following

corollary.

Corollary 3.6 (Forest Compactness Theorem - FCT) Let G be a simple graph and

suppose that every �nite subgraph of G is k-forestable. Then G is k-forestable.

The point-aboricity, %(G), of a graph G is the minimum number of sets the vertices can

be partitioned into such that each set of the partition induces an acyclic graph. Chartrand

and Kronk [8] proved that if G is a �nite simple planar graph %(G) � 3; the corollary implies

that the same is true for in�nite planar graphs.

A graph will be said to have a k-clique coloring if its vertex set can be partitioned into

k sets, each of which induces a clique. Being a clique is a property of �nite vertex character



and hence, induced hereditary, although it is not hereditary. Thus we have the following

corollary.

Corollary 3.7 Let G be a simple graph and suppose that every �nite induced subgraph of

G has a k-clique coloring. Then G has a k-clique coloring.

We next turn to edge colorings. Let P be a property of graphs; P is of �nite character

with respect to edges or �nite edge character if a graph in I� has property P if and only if

every �nite edge induced subgraph has property P. It is easy to see that if P is of �nite

edge character and a graph has P then so does every induced subgraph. Also, the property

of an edge set inducing a subgraph which has a property which is of �nite edge character

is a property of �nite character. Hence the following theorem is an immediate consequence

of the Set Partition Theorem.

Theorem 3.8 (Edge Coloring Compactness Theorem) Let G be a graph in I
� and

suppose P1; :::Pn are properties of graphs of �nite edge character. Then G is (P1;P2; : : : ;Pn)-

colorable if every �nite edge-induced subgraph of G is (P1;P2; : : : ;Pn)-colorable.

We can, as in the case of vertex colorings, state the preceding theorem in an equivalent

form where now S-free means no edge induced subgraph of G is (isomorphic to) a member

of S and a �-free edge partition entails a partition of the edges.

Theorem 3.9 (Edge Coloring Compactness Theorem) Let G be a simple graph and

let � = fSi : i = 1; :::; ng, where Si is a set of �nite graphs, i = 1; :::; n. If every �nite

edge-induced subgraph of G has a �-free edge partition, then G has a �-free edge partition.

Let F;G;H be graphs. An edge coloring of F with colors red and blue is a (G;H)-good

coloring if F contains neither a red copy of G nor a blue copy of H. If G and H are

�nite graphs then (G;H)-goodness is a property of �nite edge character. Thus we have the

following corollary.

Corollary 3.10 (Ramsey Compactness Theorem - RCT) Let G;H be �nite graphs.

Then a graph F has a (G;H)-good coloring if every �nite subgraph of F has a (G;H)-good

coloring.

In order to prove most of the above theorems in Zermelo-Fraenkel set theory (ZF) some

form of AC, the Axiom of Choice, is required; however the full strength of AC is not needed;

BPI suÆces. This follows since the Set Partition Theorem was proved from Rado's lemma

along with ACF, the axiom of choice for families of �nite sets (which was used to select

one coloring, fW from the �nite set of colorings f : W ! f1; : : : ; ng, with f�1(i) 2 Pi,

i 2 Ran(f)), and Rado's Lemma + ACF is known to be equivalent to BPI. (See the

excellent book of P. Howard and J. Rubin [20] for current information on AC, BPI and

related principles.) In fact all of the Colloraries proved above are equivalent to BPI; this

follows since all, except Corollary 3.6 (FCT) and Corollary 3.10 (RCT), easily imply the

original theorem of deBruijn and Erd�os (Corollary 3.7 is the deBruijn- Erd�os theorem for

the complementary graph), which, in turn, implies BPI (see [20]). The proof that FCT

implies BPI is given in section 5. In the next section, we prove that RCT implies BPI, for

each pair of graphs, G, H{ if they satisfy certain conditions.

4 Ramsey compactness and BPI Let F;G;H be graphs. Recall that an edge coloring

of F with colors red and blue is (G;H)-good if F contains neither a red copy of G nor a blue

copy of H. Let �3 be the class of �nite graphs that are 3-connected or are triangles. Burr

[6] proved that (G;H)-goodness is NP-Complete if G;H belong to �3. We will prove that

the corresponding compactness theorem is equivalent to BPI. Since, as mentioned above,

RCT has been proved from theorems which follow from BPI, it suÆces to prove BPI from

RCT when G;H 2 �3. We shall need some machinery from [7]. A (G;H; e)-determiner

with determined edge e is a �nite graph F which has (G;H)-good colorings, but in any

(G;H)-good coloring, e is red. Note that if G = H, determiners do not exist. Also note



that if F is an (H;G) determiner with determined edge e, then in any (G;H)-good coloring

of F , e is blue. A positive (G;H) sender with signal edges e; f is an F which has (G;H)-good

colorings, but in any (G;H)-good coloring e and f receive the same color; also F is not a

determiner for the signal edges. A negative (G;H) is de�ned similarly, but with "opposite

colors" replacing "the same color." The following results are proved in [7].

Lemma 4.1 If G;H 2 �3, then there exits both positive and negative (G;H) senders whose

signal edges are arbitrarily distant from each other.

Instead of proving BPI directly we prove an equivalent form concerning the compactness

for 2-colorings of a hypergraph. A hypergraph, H =< V;E >, is an ordered pair consisting

of a set V , called the vertices and a set E of �nite subsets of V, called the edges. A 2-coloring

of a hypergraph is an assignment of one of the colors, fred, blueg, to each element in V ,

such that no edge is monochromatic. Then the following theorem was proved equivalent to

BPI in [14].

Theorem 4.2 Let fEigi2I, be the edges of a hypergraph, H where each Ei has at most

three elements. If for every �nite I0 � I, fEigi2I0 has a hypergraph 2-coloring, then H has

a hypergraph 2-coloring.

Theorem 4.2 remains equivalent to BPI even if each Ei is an ordered set having exactly

three elements; this follows from noticing that Theorem 4.2 is used in [14] to prove another

equivalent form of BPI, the compactness of propositional logic when each propositional

formula is a disjunction of 3 literals, which entails an ordered triple. For each pair of �nite

graphs, G,H, let RCT[G,H] stand for the statement of the Ramsey Compactness Theorem

with these particular graphs.

Theorem 4.3 For each G;H 2 �3, RCT[G,H] , BPI, in ZF.

Proof. We prove Theorem 4.2 is implied by RCT[G,H]. Let H be the given hypergraph.

As mentioned above we can assume that each edge is an ordered triple, Ei =< xi1; xi2; xi3 >.

Suppose that in H, for every �nite I0 � I, fEigi2I0 has a hypergraph 2-coloring.

We wish to show that the entire hypergraph H has a hypergraph 2-coloring. Suppose

then that G;H and all copies of them that we shall construct have three of their edges

labeled < g1; g2; g3 >;< h1; h2; h3 >, respectively. We shall construct a new graph which

corresponds to, but is separate from, the given hypergraph H. First, for each edge, Ei =<

xi1; xi2; xi3 >, of the hypergraph, associate copies, Gi of G with the labeled edges denoted

by < gi1; gi2; gi3 >, and Hi of H with the labeled edges denoted by < hi1; hi2; hi3 >.

Next, join gik to hik, k = 1; 2; 3, by a positive sender with these two edges as signal edges.

Join the other edges of Gi, if any, to gi1 by positive (G;H) senders with gi1 and the other

edge as signal edges. Join the other edges of Hi, if any, to hi1 by positive (G;H) senders

with hi1 and the other edge as signal edges. Finally, if xik = xjl, join edge gik to edge gjl
by a positive sender, with these two as signal edges. We can assume that the length of all

these senders is greater than the maximum of length of G;H. Call the resulting graphK. It

should be noted that no additional copies of G or H are formed in this construction, which

are not entirely contained in a sender. This is clearly the case for triangles; if, however, the

new copy of G or H were 3-connected but not entirely contained in a sender, the removal

of the signal edge it must contain would disconnect it!

Every �nite subgraph K 0 of K has a (G;H)-good coloring, since if E0 is the �nite set of

edges of the hypergraph used in the construction of K 0, E0 is hypergraph 2-colorable and we

can color each labeled gik, hik in K 0 the same color as xik, xik 2 Ei 2 E
0. Color the other

edges of Gi and the other edges of Hi, the same as gi1. Then, Gi, Hi have both red and

blue edges and the edges of the senders can be colored appropriately to yield a (G;H)-good

coloring of K 0.

By Ramsey Compactness,K has a (G;H)-good coloring. This induces a 2-coloring of the

hypergraph: color xik 2 Ei, the color received by gik. Since the edges of Gi can't all be red,



< gi1; gi2; gi3 > can't all be red and since the edges of Hi can't all be blue, < hi1; hi2; hi3 >

can't all be blue. Also if < gi1; gi2; gi3 > were all blue, < hi1; hi2; hi3 > would be all blue as

well, since gik and hik are connected by a positive sender. Thus < gi1; gi2; gi3 > and hence

< xi1; xi2; xi3 > have red and blue elements. Also, if xik = xjl, we joined edge gik to edge

gjl by a positive sender and this insures that the same element receives the same color in

each hyperedge in which it occurs. Thus the hypergraph is 2-colored.

If G and H are stars (graphs of the form K1;n), Burr [6] shows that a determination

whether a graph F is (G;H) good can be made in polynomial time; we conjecture that the

Ramsey Compactness Theorem, restricted to stars, is weaker than BPI.

5 Partition into Forests and BPI The next problem to be considered is partitioning

a graph into forests. We prove that BPI , FCT (n), for each n � 2, where FCT (n) is

the Forest Compactness Theorem in the case k = n. We accomplish this by �rst proving

FCT (n + 1) ) FCT (n), for all n > 1 and then we prove FCT (2) ) BPI. This suÆces

since we already know that FCT follows from BPI.

The proof that FCT (n+ 1) ) FCT (n) will be broken up into a few pieces. For each

n > 2, we now consider a graph which we will call Hn. To construct Hn, we begin with

n disjoint paths, each of length 4, which we call P1; : : : ; Pn. We complete Hn by adding

edges between every pair of vertices not in the same Pn.

Lemma 5.1 The only decomposition of Hn into n or fewer subforests is the decomposition

of Hn into the n paths from which it is constructed.

Proof. Note that if P is any path of length 4, and we delete one vertex and its associated

edges, there will be at least one edge remaining.

Next, if u,v and w are vertices in Hn, and each is in a di�erent Pk, these vertices induce

a triangle. Also, if u; v;w and x are vertices of Hn, and u; v belong to one Pk while w; x

belong to another, then u;w; v; x; u is a 4-cycle. Thus subgraphs of Hn which are forests

contain vertices from at most two paths, and contain more than one vertex from at most

one path. In particular, if such a subforest contains at least three vertices, then all but one,

at most, will come from the same path, say Pk.

It now follows that if a subforest of Hn has 4 vertices, then the subforest must be one of

the Pk, because, by the above, it must have at least three of the vertices in Pk. But if the

fourth vertex were not in this Pk, it plus the two connected vertices would form a triangle.

In particular, this implies that no subforest of Hn can have more than four vertices.

Finally, suppose we decompose Hn into n or fewer subforests. Each has at most four

vertices. Therefore each must have exactly four vertices and, by the above, each must be

one of the Pk.

Theorem 5.2 For all n > 1, FCT (n+ 1)) FCT (n), in ZF.

Proof. Asume FCT (n+ 1), and let G be a graph with the property that each of its �nite

subgraphs can be decomposed into at most n subforests. We must show that G can be

decomposed into at most n subforests.

Let T be the graph consisting of two vertices, u; v and an edge connecting these vertices.

We construct a graph G� as follows. The set of vertices of G� is the union of the sets of

vertices of G, Hn+1, and T . The edges of G
� are all the edges of the following three types:

1) the edges in G, Hn+1, and T , 2) edges connecting each vertex of T to each vertex of G,

and 3) edges connecting each vertex of T to each vertex in Hn+1 � Pn+1.

We �rst show that every �nite subgraph of G� can be decomposed into at most n + 1

subforests. Let K be any �nite subgraph of G�. By hypothesis K \G can be decomposed

into at most n subforests: KG

1 ; : : : ;K
G

n
. Now decompose K, itself, into the following n+ 1

subforests: KG

1 [ (P1 \ K); : : : ;KG

n
[ (Pn \ K); (Pn+1 \ K) [ (T \ K). Therefore, by

FCT (n+ 1), G� can be decomposed into n+ 1 subforests: G�

1; : : : ; G
�

n+1. This, of course,

induces a similar decomposition of Hn+1 into n + 1 forests, and, as we have shown above,



these must be the paths, Pi. Thus, by renumbering, we may assume that for each k,

Pk � G�

k
.

Since both vertices of T are connected to all vertices of Pk, except Pn+1, we must have

T � G�

n+1. But, since both vertices of T are also connected to all vertices of G, we must

have G \G�

n+1 = ;. However, this implies that G \G�

1; : : : ; G \ G�

n
is a decomposition of

G into n forests.

Theorem 5.3 In ZF, FCT (2), BPI.

Proof. It suÆces to prove Theorem 4.2 from FCT (2). Again, as mentioned above,

we can assume that each edge of hypergraph H, with edges fEigi2I , is an ordered triple,

Ei =< xi1; xi2; xi3 >. Suppose that for every �nite I0 � I, fEigi2I0 has a hypergraph

2-coloring and suppose the colors are red and blue.

We wish to show that the entire hypergraph has a red-blue coloring.

We associate a graph G with the hypergraph as follows. For each edge < xi1; xi2; xi3 >,

take a triangle with vertices labeled, xi1; xi2; xi3 as shown on the left in the �gure below. If

xik = xjl connect the two vertices, labeled, xik; xjl as shown in the �gure, on the right. Note

that this "connector" has the property that if the labeled vertices are colored the same, the

red-blue coloring can be completed with no monochrome cycles and no monocrome path

between the labeled vertices. However, if the labeled vertices are oppositely colored, any

2-coloring must contain a monochrome cycle.
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We claim next that any �nite subgraph of G is 2-forestable. A �nite subgraph contains

triangles built from a �nite number of edges of the hypergraph; these �nite edges can be

properly 2-colored. Transfer the colors to the labeled vertices of the �nite subgraph of

G. Since no hyperedge is monochromatic, the labeled triangles have both red and blue

vertices. Vertices that come from the same element in di�erent edges of the hypergraph

will naturally receive the same color and this allows us to properly color the connectors as

mentioned above. Note also that no "accidental" monochromatic cycles are formed, since

there can be no monochrome path connecting the labeled vertices under this coloring. Hence

every �nite subgraph of G is 2-forestable.

The forest compactness theorem now yields a red-blue coloring of the vertices of G which

has no red or blue cycles. Color the hypergraph edges using the coloring of the associated

labeled triangles, that is, each vertex, xij , of the hyperedge receives the color assigned to

the vertex labeled xij . Since no triangle can be monochromatic, each edge gets both colors;

also, the connectors insure that the same elements in di�erent edges receive the same color.

Thus the hypergraph has been properly 2-colored.

Finally, putting together the results above gives the following theorem.

Theorem 5.4 For each n > 1, FCT (n), BPI, in ZF.

We note that the same constructions can be utilized to establish that partition into

k-forests (GT 14 of [17]) is an NPC property, even for �xed k = 2; 3; :::.

6 Defective Colorings and BPI We return next to the (n; k)-colorings introduced in

[9]. These are also called \defective colorings" and the number of neighboring vertices

receiving the same color as a vertex in a coloring of the graph is referred to as the defect of

that vertex in that coloring. It is an easy consequence of our results in section 3 that the

following theorem is equivalent to BPI.



Theorem 6.1 (Defective Coloring Compactness Theorem-DCCT) Let G be a sim-

ple graph and suppose that every �nite subgraph of G is (n; k)-colorable. Then G is (n; k)-

colorable.

Let DC(n; k) be the statement of the DCCT for �xed n; k and we ask the question: for which

n; k is DC(n; k) equivalent to BPI? It has been proved in [15] that DC(2; 1) is equivalent

to BPI and L�auchli [22] has shown that DC(n; 0) is equivalent to BPI, for n � 3. It is also

well known that DC(2; 0) is much weaker than BPI in ZF, being equivalent to the Axiom

of Choice for unordered pairs (see [25],[27]). We will show that this is an exception, in that

DC(n; k) is equivalent to BPI if n = 2 and k � 1 or n = 3 and k � 0. The idea for our

proof comes from the proof of NP-Completeness of (3; 1)-colorings, Theorem 4.2b, of [10].

We use their reduction method.

Theorem 6.2 DC(n; k + 1)) DC(n; k), for n � 2, k � 0.

Proof. Assume DC(n; k + 1). Let G be a simple graph such that every �nite subgraph

is (n; k)-colorable. We wish to show G is (n; k)-colorable. For each vertex v of G as-

sociate a new graph Hv which is isomorphic to K(n�1)(k+2)+1, the complete graph on

(n � 1)(k + 2) + 1 vertices and designate one of its vertices, v�. Then the Hv have the

following two properties: 1)Hv is not (n� 1; k + 1)-colorable, 2) Hv is (n; k + 1) colorable,

and, for any color c, there is a (n; k + 1)-coloring of Hv with v� being the unique vertex

receiving the color c.

Let G0 be the graph obtained from G by taking the union of G, the Hv and edges to

connect the vertices of Hv to v, for all v in G. Then we claim that every �nite subgraph

H of G0 is (n; k + 1)-colorable. (We can, without loss of generality, assume H contains all

of Hv if it contains a vertex v from G and if it contains any part of some Hv, it contains v

as well.) Then the claim follows, since the part of H that comes from G is (n; k)-colorable

and then, by 2), any Hv from H can be (n; k + 1)-colored with v� being the only vertex to

receive the color of v. The defect in the vertices from G is increased by 1 in this coloring

and v� is the only vertex in Hv whose defect is increased{from 0 to 1.

It follows, by DC(n; k+1), that G0 is (n; k+1)-colorable. Since Hv is not (n� 1; k+1)

colorable, all n colors must occur in each Hv and then whatever color is assigned to v its

defect in G is at most (k + 1) � 1 = k. Thus G is (n; k)-colored.

Corollary 6.3 DC(n; k)) BPI, if n � 2 and n+ k � 3.

Proof. Follows from the theorem and the aforementioned results of Cowen [15] and L�auchli

[22].

This is an example of a case when a proof of NPCompleteness easily suggests a proof that

the corresponding compactness theorem is equivalent to BPI. For more on the connections

between BPI and NPC see [5],[14], [15].

7 Hypergraph Compactness The notion of generalized coloring has recently been ex-

tended in [4] to hypergraphs. We wish to point out here that a compactness theorem is

available in this context as well. Let P1; :::;Pn be properties of hypergraphs. A hypergraph

H is (P1; :::;Pn)-colorable if the vertex set X of H can be partitioned into sets X1; : : : ;Xn,

such that the induced subhypergraphs < Xi; E(Xi) > of H, where E(Xi) consists of all

hyperedges of H all of whose vertices belong to Xi, has property Pi; i = 1; 2; : : : ; n. We

shall denote by H[Xi] the induced subhypergraph < Xi; E(Xi) >. A property P of hy-

pergraphs is of �nite vertex character if a hypergraph has property P if and only if every

�nite induced subhypergraph has P. Then the following compactness theorem also follows

immediately from the Set Partition Theorem.

Theorem 7.1 Let H be a simple hypergraph and suppose P1; :::Pn are properties of hy-

pergraphs of �nite vertex character. Then H is (P1;P2; : : : ;Pn)-colorable if every �nite

induced subhypergraph of H is (P1;P2; : : : ;Pn)-colorable.
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