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ABSTRACT. Time series analysis under stationary assumption is well established. How-
ever it is not sufficient for stationary time series models to describe the real world. A
class of locally stationary processes was introduced by Dahlhaus. By using nonstation-
ary models with time varying spectra, we attempt to analyze some data from mining
explosions, natural earthquakes and financial time series. Although many researchers
used the ordinary autoregressive or autoregressive moving average models, we fit a
time varying autoregressive (TVAR) model of order p to the data whose coefficients
are polynomials with respect to time. Moreover we select a favorable model by use of
AIC, and compare the results with the others. Finally, some numerical problems of
discriminant and cluster analysis will be discussed.

1 Introduction. Although stationary time series analysis is well established, stationary
time series models are not plausible to describe the real world. Priestly introduced a class
of nonstationary processes based on the concept of ” evolutionary spectra”. The evolutional
spectral density functions are time dependent and generalize the usual definition of spectra
for stationary processes. Recently Dahlhaus introduced a class of locally stationary pro-
cesses. Then he elucidated some fundamental results of the statistical inference.

In many applications for the seismic records, modelling based on autoregressive moving
average (ARMA) processes has proven effective (Polhemus and Cakmak (1981); Chang et al.
(1982); Gersch and Kitagawa (1985); Cakmak et al. (1985); Dargahi-Noubary (1992)). In
the work by Chang et al. (1982), several ARMA models of different orders were identified,
parameters were estimated and statistical measures were evaluated to test the goodness of
fit between the models and actual data. Then it was found that ARMA(2,1) or ARMA(4,1)
models provided good fits to time segments of the earthquake acceleration time histories.

Polhemus and Cakmak (1981) also used ARMA(2,1) and ARMA(4,1) models for the earth-
quake data.

Time series modelling based on nonstationary processes is possible. Adak (1998) dis-
cussed applications of the locally stationary processes to speech signals and earthquake
data. Sakiyama and Taniguchi (2001) investigated the problems of classifying a multivari-
ate non-Gaussian locally stationary process {X¢ 7} into one of two categories described by
two hypotheses: 1 : f(u, ), 73 : g(u, \), where f(u, ) and g(u, \) are time varying spectral
density matrices. They used a Gaussian approximation of the likelihood ratio (GLR) for
this problem, and showed that GLR is consistent. Also the misclassification probabilities
were evaluated under contiguous hypotheses. In this paper we analyze some data from min-
ing explosions, natural earthquakes and financial time series. The theoretical results of our
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discriminant analysis are applied to them. In comparison with the literature in this field we
report some interesting features. This paper is organized as follows. In Section 2, we review
the discriminant analysis for locally stationary processes. In Section 3, we attempt to fit
time varying autoregressive models to some real data. Then, using AIC we compare our
results with the literature in this field. Section 4 discusses some data analysis of classifying
earthquakes and mining explosions. Moreover, we discuss the problem of clustering five
daily returns data.

2 Discriminant Analysis for Locally stationary Processes. Dahlhaus(1997) de-
veloped asymptotic theory for univariate locally stationary processes. We start with the
definition of a multivariate locally stationary process. Since we discuss the discriminant
analysis for multivariate locally stationary processes, we extend some of his results to the
case when the process concerned is multivariate.

Definition 1 A sequence of multivariate stochastic processes Xy 7 = (Xt(l%, .. Xt((iql) (t=
1,...,T) 1s called locally stationary with transfer function matriz Ay m(\) = { 4t T( Yap i a,b
=1,....d} and mean O if there exist a representation

(1) Xor = [ exp(i)Aur ()

where the following holds.

(1) E(A) = (&1 (N), ..., €a(N)) is a complex valued vector process on [—7, ] with m =
ga(f/\)i Egaj (/\) =0 a,nd

Cum{dfal(/\l)a s 7d£ak (/\k)}
=0 | DN ] a1 Akmn)dM

where cum{---} denotes the cumulant of k-th order, go(A\) = 0, gap(N) = d(a,b),
|9a1,...,gak(>\lv--- s e—1)|] < C(k) (C(E) is constant) for all ay,...,ar € {1,...,d}
and n(N) = Y12 8(N + 27l) is the period 27 extension of the Dirac delta function.

(it) There exists a constant IC and a 2r-periodic matriz valued function A(u, \) = {A(u, N
a,b=1,....d}:[0,1] x R— C"™" with A(u, \) = A(u,—\) and

t
A T »
for alla,be{l,... d} and T € N, where A(u,\) is assumed to be continuous in u.

We call f(u,)) = A(u,/\)A(u,/\)/ the time varying spectral density matrix of {Xy 7}.
Letting

(2) (u, \) Z X[UT] NJ2tst1, pexp(—iAs) ,

we introduce the periodogram matrix In(u, A) = {In(u,N)ap 1 a,b=1,...,d} over a seg-
ment of length N with midpoint [uT], where

(3) In (s Mo = ——d(u, )d D (t, =)

TN
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The shift from segments to segment is denoted by N. In(uj, A) is calculated over segments
with midpoints u;T =t; = N(j —1/2),(j =1,... ,M) where T = NM.
In what follows we briefly review the results by Sakiyama and Taniguchi (2001) (Propo-

sitions 1-3). Consider the problems of classifying a multivariate locally stationary process
{X: 1} into one of two categories described by two hypotheses:

s flu, X)), me:g(u, N)

where f(u,\) and g(u, A) are d X d time varying spectral density matrices. For this discrim-

inant problem, we use
M
1 " lg(uj M)
= 1 2
ST ; /_ [ e { Flug M|

(4) +tr [In(ug, A) {97 (uj, A) — (u],/\)}}]d/\

D(f:g

as a classification statistic. That is, if D(f : g) > 0 we choose category m;. Otherwise
we choose category mq. this criterion is an approximation of Gaussian log-likelihood ratio
between 7 and 7, (Dahlhaus (1997)). We set down the following assumption.

Assumption 1 There ezists C > 0 such that the minimum eigenvalues of f(u,\) and
g(u, \) are grater than C for all u and \.

The following proposition describes the asymptotics of D(f : g) under m; and .
Proposition 1 Suppose that Assumption 1 holds. Then, as T — oo, under m
D .
(5) VT[D(f :9) - E{D(f : g)lm}] = N {0,0°(f,9)}
and under o
(6) VTID(f : g) ~ E{D(f : g)lm2}] %> N {0.0%(9. f)}

where
o*(f.9) U tr{ F(u, Ng™" (u, A) — I} dA

+81W H [ Ay {7 ) = £ ) Al

bl,bz,ba,m 1 bz,by

x [/_ﬁA u, ) {97 (w ) — f‘l(uvu)}A(uvu)du}

b3,by
X gb17b2vb3vb4(A1 _Aa _/l):| :| dua

and [M],  is the (a,b) element of matriz M.
If we use D(f : g) as a classification criterion, the misclassification probabilities are
P(2|1) = P{D(f :g9) <0m} , P(12) = P{D(f : g) > O|n2}.

The following proposition shows that the classification statistic is asymptotically con-
sistent.
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Proposition 2 Under Assumption 1,
lim P(2[1)=0 , lim P(1]2) =0.
T—0o0 - T—oo

To evaluate the goodness of D(f : g) we assume that g(u,\) is contiguous to f(u, ).
Now we set the spectral densities as

(") w1 A) = foli ) 72 gl N) = Fy ()
where # € © C R and h = (h1,... ,hy)".

Assumption 2 (i) We observe the realization X1 7,... , X1 1 of a d-dimensional locally
stationary process with mean O and transfer function matriz Ay 7(\). The time vary-

ing spectral density matriz is fo(u,\) = Ae(u,/\)Ae(u,/\)l, € © C R where O is
compact.

(i1) All the eigenvalues of fo(u,\) are bounded from below by some constant C' > 0 uni-
formly in 6, v and M.

(1) The components of fo(u,\), Vfa(u, ) and V? fo(u, \) are continuous on © x [0,1] x
[—7, 7] (V denotes the gradient with respect to 8).

(iv) N and T fulfill the relations T*/* < N < T'/?/InT.

Proposition 3 Under (7), we suppose Assumption 2. If we use D(f : g) as a classification
criterion, then

(8) lim P(2[1) = lim P(1]2) = ~1F(9) }

[{F(G) +D(6)}>

where ®(-) is the cumulative distribution function of the standard normal distribution, and

4,//_ﬁ {Zhvfeu/\fg( /\)} dud)
=g

0 bl,bQ,bs,m 1

[th[/ Ag(u, \)* {fel(u,x)vife(u,x)fel(ﬁu,x)}Ae(ﬁu,A)dA}

ba,b1

X Zf% { / Ag(u, p)* {fe1(u7#)ije(u-/#)fe1(11',#)}449(%#)61#]

bs,ba
(9) X gb17b27b37b4(A7Aﬂ/"l'):|:|du'

In Section 4 we discuss the discriminant problem in the following parametric form:

U fe(U’A) s T2 :gg(u,/\),
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where fg(u, ) and gg(u, \) are time varying spectral density functions. Consider the prob-
lem of classifying a locally stationary process {X;r} into one of two categories described
by two hypotheses:

mit folu, Ay ma it ga(u, \)

where fg(u, \) and ga(u, \) are parametric time varying spectral densities. We can construct
the estimated spectral density hz(u, A) from {X; 7}. Let

M ax
D(he : gs) = 471MZ/ [1 {%E )\;}-I-he(uj.//\)gg(uj.//\)q—l d.

Then the inequality
(10) D(hg : g9) > D(hg : f)

implies that hg(u, \) is nearer to fy(u,A) than ge(u,\) in the sense of spectral divergence
measure D : ) Write

(11) D(hgz) = D(hg:gz) — D(hg: f3)
1 v B ) gA(ujv /\)
= 2 /_,, llog{ ;(up%)}

bl N) { o7 sy N) = £57 () >}]dx.

We propose a rule to classify {X; 7} into 71 or 7y according as D(hg) > 0 or D(h;) <0,
respectively.
It should be recognized that D(fs, gs) is a functional of the product fy(u;, A)

xgg(uj, A)™! and can be extended to a more general divergence measure;

o 1 M T
(12) Difo:g0) = 3= > [ Fildulus Ngolu; )7 Jan
=177

where F;{ - } is a suitable function, which is specified below. To ensure that general mesures
of the form D(fs : go) in (12) have the divergence property, we shall require D(fs : gg) > 0
with equality if and only if fy = g4 a.e. Therefore the function Fj(x) must have a unique
minimum at = 1. Generally D(fy : gg) is not symmetric with respect to fs and gs but
can easily be made so by defining

Fj(x) = Fj(x) + Fj(z™"),

and we obtain the symmetric spectral divergence measure

D(fo:99) = 47TMZ/

(13) + Fi{go(uj. \) fo(uj, \) ™'} dA

Fi{fo(uj, Nge(u;, ) ™"}
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(see Taniguchi (1991) and Kakizawa (1996)).

The measures of disparity between spectral densities can be used for clustering locally

stationary processes. For example, let fz and gz be estimated spectral densities for two
different processes. We define the symmetric spectral distance between fz and g5 by E(fg :

95)-
For example, by using Fj(z) = # + 2~ ', we obtain the symmetric spectral distance

(14D (f;:95) = 5Dz 95)
M

(15) = 471'%12/,, [{f@ (s Ngo(ui, )71+ {go(rj, N Folruj, \) 71 AN

In Section 4 we will use this procedure.

3 Fitting Locally Stationary Models to Data. We consider the following time vary-
ing AR model

a0 St (L) 5o (L)

7=0
where ap(u) = 1 and the {e;} is a sequence of i.i.d. random variables with mean zero
and variance 1. Suppose that ag(u) = (af(u),... 7aﬁ(u))’ depend on a finite dimensional

parameter. We further suppose that a?(u)’s are parameterized as

K
(17) af(u) =Y Out?
k=1

Let 0 = (B4, ... 01k, 5 0p1,... ,0,k) and fr(u) = u*~1 Write F(u) = { fi(u)f;(uw)}ij=1,..
and f(u) = (fi(u),... . fx(w)). We denotes by A® B the right direct product of the matrix
A and B. Let

K

Ly 4MIZ/ [log{ f(u, \)} + In(u,\)f~" (u, \)] d\.

It is easily seen that the quasi-maximum likelihood estimator 8 of 6 defined by LT(a) =
maxgeo L7(0) is given by

8{o(ur)?,... ,o(un)?}
1 M =1 1 M
(18) = _(MZU(%)_ZEN(UJ‘) ® F(ua‘)> (MZU(UJ‘)_ZCN(W)@ f(w))

j=1
where
en(nd) = [ In ) exp(irjix
1 N
(19) = W Z X[Tu]—N/2+s+1,TX[TU]—N/2+t+1,T7
B 0,s—t=j
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Figure 1: Natural Earthquake (EQ1)

CN(u) = (cN(u, 1),... 7cN(u,p))’ and EN(u) = {CN(u,i — j)}i’jzl_’_”_’p. In the definition
od 6 we have to know the innovation variances o(u;)?. Because on each time segment with

midpoint u;T, we may suppose the process X, is stationary, it is possible to estimate

o(u;)* by

\?

1 T
(20) o(u;)? = [g/ log aln(uj, A)dA

_T
where a = exp~y (v ~ 0.57721, Euler’s constant) (see Taniguchi (1980)). Then we can
estimate 6 by b = 5{3 (u1)?,...,5(upr)*}. On each time segment, we can calculate the
residual variance a ( uj, p, ]x) of the time varying AR model by means of the relation (16)
with coeflicients a; (%)
Let us discuss seismic data with length 2048. Figures 1-4 show records of seismic data from

natural earthquakes (EQ1, EQ3, EQ4, EQ5). Figures 5-7 show records of seismic data from
mining explosions. (EX3, EX4, EX8). Suppose N =2* =16 and M = 27 = 128.

From these Figures we may suppose that these seismic data have a structural change of
innovation variance. Hence we divide the time interval [1,2'"] into [1,2'°] and [2'0 4-1,21].
Then using (20) we estimate the variances. For these seismic data we fit the time varying
AR model (16) which minimizes the AIC criterion

M
1 N . .
(21) AIC(p, k) = 7 > logd*(uj,p. K) +2(p + p(K — 1))/T.
J=1
where

2
1 . .
52 (uj,p, K) & ¥ Z (XtT+ Z (uj) X, kT) , (te[2(5 —1) + 1, 24]).

Tables 1-4 show the values of AIC(p, K) for EQ1 and EQ3-5.
Dargahi-Noubary (1995) claimed that many seismic source function models can be re-
garded as having been generated by the one-parameter third-order autoregressive model

(22) (1= exp(=ko)B)’s;(t) = w;(1),
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Figure 2: Natural Earthquake (EQ3)
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Figure 3: Natural Earthquake (EQ4)
EQb
6000

4000

2000

- 2000

- 4000

- 6000

500 1000 1500 2000

Figure 4: Natural Earthquake (EQ5)
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Figure 5: Mining Explosion (EX3)
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Figure 6: Mining Explosion (EX4)
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Figure 7: Mining Explosion (EX8)
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Table 1: AIC values for EQ1

Poly\TVAR 3 4 5 6 7
3 241.988 | 169.937 | 193.745 | 178.96 | *155.307
4 288.046 | 260.35 | 159.966 | 206.146 | 183.848
5 318.18 | 303.784 | 273,105 | 163.471 | 211.676
6 345.561 | 345.513 | 308.187 | 279.117 | 173.62
Table 2: AIC values for EQ3
Poly\TVAR 3 4 5 6 7
3 273.284 | 182.639 | 225.03 | 207.508 | 187.236
4 317.616 | 297.716 | 182.864 | 234.907 | 208.65
S 330.8 | 330.736 | 307.846 | *170.304 | 236.491
6 390.072 | 379.595 | 337.997 | 314.333 | 189.522
Table 3: AIC values for EQ4
Poly.\TVAR 3 4 5 6 7
3 226.662 | 131.898 | 197.224 | 173.893 | 161.212
4 273.413 | 261.414 | *129.283 | 216.172 | 187.55
5 288.146 | 295.972 | 280.505 | 171.2553 | 222.217
6 346.551 | 342.194 | 302.916 | 289.672 | 179.694
Table 4: AIC values for EQ)
Poly.\TVAR 3 4 5 6 7
3 229.313 | 147.462 | 188.155 | 176.621 | 167.685
4 268.331 | 257.616 | *142.118 | 200.008 | 189.754
5 279.879 | 293.038 | 276.006 | 147.251 | 209.835
6 340.536 | 333.888 | 309.381 | 282.786 | 147.03
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Table 5: AIC values for EX3

Poly\TVAR 3 4 5 6 7
3 287.158 | 206.429 | 232.634 | 214.451 | *191.373
4 340.751 | 318.489 | 230.325 | 248.651 | 217.249
5 353.192 | 352.109 | 321.352 | 215.89 245.88
6 405.621 | 394.062 | 350.934 | 322.261 | 226.381

Table 6: AIC values for EX4

Poly.\TVAR 3 4 5 6 7
3 274.403 | 209.979 | 219.539 | 201.264 | *174.026
4 319.257 | 289.905 | 196.622 | 232.871 | 202.562
5 346.861 | 328.034 | 296.605 | 198.32 232.76
6 308.26 | 373.516 | 331.105 | 305.312 200.14

where B is the usual backshift operator, {w;(t)} is a sequence of white noise, and kg is an
unknown parameter. By combining (22) and

yi(t) = sj(t) + Y Ous(t — kd),
k=1

Shumway et.al. (1998) discussed detecting of the delay d which corresponds to the spacing
of the charges in the ripple-fired event.
Let us return to our results. From Tables 3 and 4, it is seen that the TVAR(5) model is

preferred. However, TVAR(7) and TVAR(6) are selected in Tables 1 and 2, respectively. For
mining explosions (EX3, EX4 and EXS8), Tables 5 and 6 show that TVAR(7) is preferred.
On the other hand, in Table 7, TVAR(5) is preferred. These results show an interesting
feature of locally stationary modelling.

4 Numerical Analysis of Discriminant and Clustering Problem.

4.1 Example of Classification Problem in Seismic Data Here discriminant pro-
cedures in Section 2 are applied to the problem of discriminating seismic records from
earthquakes and mining explosions. Suppose that we know EQ1 is recorded from the group
of earthquakes while EX4 is from the group of explosions. Assuming that we do not know
EX3 is from mining explosions, we are classify it into one of the two groups (the group of

Table 7: AIC values for EXS8

Poly \TVAR | 3 1 5 6 7
3 248.423 | 162.696 | 211.047 | 105.06 | 182.264
4 285.955 | 276.518 | *160.633 | 218.764 | 199.003
5 208.775 | 311.795 | 291.504 | 162.479 | 221.832
6 353.558 | 350.328 | 321.3 | 296.253 | 175.508
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earthquakes and the group of explosions). Rules for classification are based on the distance
between the estimated time varying spectral densities of the data EQ1, EX4, and EX3. We
estimate these spectral densities by the method of Section 3. We fit the TVAR(7) model
for EQ1, EX4 and EX3. Let jEQ1 fEX47 and fEX3 be the estimated time varying spectral
densities of EQ1, EX4, and EX3, respectively. Then the value of the criterion

D(fAExs) = D(]?EXS : fEQl) - D(fEXs : J?EX4)

is positive, which means that EX3 is classified into the group of mining explosions. Next,
let frgs be the spectral density of EQ5. We use TVAR(5) for EQ5. Suppose that we do
not know EQS5 is from natural earthquakes. Similarly, we classify it into one of two groups

(EQ1 and EX4). Then we observe

D(fAEQ5) = D(fAEQs : ]?EQl) - D(]?EQ5 : ]?EX4)

is negative. From the result, EQ5 is classified into the group of natural earthquakes. There-
fore the classification rule based on D( - ) works well.

4.2 Example of Cluster Analysis for Some Daily Returns We discuss a clustering
problem for New York stock exchange data. The data are daily returns of AMOCO, FORD,
HP, IBM, and MERCK companies. The individual time series are the last 1024 data points
from the data representing the daily returns for the five companies from February 2, 1984,
to December 31, 1991. Figures 8-12 show the graphs of the data.

AMOCO Dai | y Returns

0. 04

0. 02

Hl \‘II‘I\N&‘\HM“\\I|\|\‘l| i
““ll‘” i |“ |

o

-0.02

0 200 400 600 800 1000

Figure 8: AMOCO Daily Returns

In the figures we can see the change of variance (volatility) with time. For such data
GARCH (generalized autoregressive conditionally heteroscedastic) models are often used.
Engle (1982) introduced the ARCH (autoregressive conditionally heteroscedastic) (p) model
defined as

(23) Xt = €t
where {e;} is a sequence of i.i.d.(0, 1) random variables, e; is independent of X, s < t, and

U, evolves according to

r
(24) LTt = Qp + Zai‘/‘ftzfi'

=1
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FORD Daily Returns
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Figure 9: FORD Daily Returns
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Figure 10: Hewlett-Packard Daily Returns

I BM Daily Returns
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Figure 11: IBM Daily Returns
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Figure 12: MERCK Daily Returns
The model in (23) can be rewritten in the form

14
(25) Yi=U+n, Ui=ao+ Y oY

=1

where YV; = X7 and 1 = Uy(e? — 1). Henceforth, denote by F; the o-field generated by
{V1,Yi—1,...,}. We note that the disturbance term, n, in (25) is a martingale difference
since E[n|Fi—1] = UE[(e7 — 1)|Fi—1] = 0.

Bollerslev (1986) introduced the GARCH model:

(26) Xt = €t/ U-t./

P q
(27) Ue = a0ty aiXii+) iU,

=1 =1
where ag > 0,a; >0, j=1,... ,p,and §; >0, j=1,...,q. Similarly as in (25), it is well

known that any GARCH(p,q) process can be represented as an ARMA[max{p, ¢}, ¢] in the
squared processes. In the case

q

P
Yi=ao+ Y (a;+ 0V + 00— Y Bimi—js
i=1

J=1

where Y; = X7, and {n:} is a martingale difference sequence (see Gouriéroux (1997)).
In Figure 13, we plot the sample autocorrelation of Hewlett- Packard. From this figure we

may suppose that the time series is uncorrelated. Figure 14 shows the sample autocorrela-
tion of the square transformed data. Here the square transformed process of {X;} implies

the process {X7 — 23:1 X?2/2191, From Figure 13, we may suppose that these five time
series are correlated. By using AIC we attempt to fit a stationary AR(p) model to the
square transformed data. The results are shown in Table 8.

Next we try to use TVAR models for the square transformed data. Let T = 2'0 = 1024,
M =25 = 64, and N = 2% = 16. Assuming that innovation variances of the data are
constant over time, we choose the orders of models by minimizing the AIC criterion.
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Figure 13: sample ACF (Hewlett-Packard)
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Figure 14: sample ACF of squared data (Hewlett-Packard)



148

K. SAKIYAMA

Table 8: Suitable stationary AR model

AMOCO | FORD | Hewlett-Packard | IBM | MERCK
order p 2 1 23 0 8
Table 9: AIC values for AMOCO
Poly.\TVAR 1 2 3 4 5 6
2 -288.450 | -288.335 | -266.884 | -242.727 | -222.136 | -197.963
3 -310.044 -282.16 | -234.657 | -242.176 | -203.554 | -182.695
4 *.310.086 | -262.427 | -203.016 | -188.624 | -174.03 | -152.357
5 -310.044 | -204.142 | -181.211 | -135.385 | -127.096 | -112.651
6 -310.044 | -201.677 | -134.992 | -107.834 | -119.275 | -79.2127

Tables 9-13 show these values of selected orders of TVAR model. From the results
TVAR(1) model is preferred. Tables 9, 12, and 13 show that polynomial of order 4 is good.
On the other hand, from Tables 10 and 11 it is seen that polynomials of order 6 and 2
are preferred, respectively. For a locally stationary, it seems that TVAR(1) model with
parametric polynomial function of time shows good fitting, which makes a sharp contrast
with the usual AR fitting (see Table 8).

Now we discuss hierarchical clustering techniques for locally stationary processes as
follows. First, find the two elements which are closest in the sense of the distance (14).
Next the distance between nonclustered items
and a current cluster is calculated as the average of the distances to elements in the cluster
(note that many different ideas of defining the ”distance between two clusters” are possible).
Again, we combine the objects that are closest together, and then compute the new distance
between two different clusters. Repeat the above step until all the items are merged into
one cluster. This is a hierarchical clustering method.

We estimate the group (cluster :{fél), .

1~ 0

{
D
1=1

Namely, it is obtained by averaging the estimators.
Table 14 shows the results of hierarchical clustering based on (14) for the daily return data.

Then these two items become a cluster.

: ((7’“)} ) spectral density by

Table 10: AIC values for FORD

Poly.\TVAR 1 2 3 4 5 6
2 -278.103 | -275.368 | -258.455 | -229.051 | -211.99 | -196.746
3 -208.134 | -246.87 | -231.298 | -216.533 | -186.549 | -164.000
4 -298.351 | -217.577 | -193.108 | -163.54 | -146.726 | -130.351
5 -299.038 | -155.89 | -149.703 | -114.743 | -118.136 | -96.5533
6 *-299.115 | -156.354 | -100.024 | -80.1962 | -92.1226 | -57.349
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Table 11: AIC values for Hewlett-Packard

Poly.\TVAR 1 2 3 4 5 6
2 *.282.028 | -258.570 | -243.746 | -217.755 | -195.525 | -180.637
3 -281.689 | -245.256 | -209.535 | -194.079 | -178.416 | -155.544
4 -281.725 | -210.843 | -169.988 | -168.801 | -141.719 | -131.395
5 -281.379 | -178.851 | -149.765 | -123.515 | -107.899 | -110.007
6 -281.281 | -147.924 | -92.8831 | -79.5077 | -61.4551 | -52.8566

Table 12: AIC values for IBM

Poly.\TVAR 1 2 3 4 5 6
2 -291.820 | -290.825 | -268.559 | -247.353 | -224.004 | -201.401
3 -313.595 | -280.943 | -242.065 | -207.356 | -195.296 | -174.433
4 *.313.716 | -253.278 | -200.466 | -174.157 | -150.874 | -144.108
5 -313.448 | -198.912 | -175.485 | -136.009 | -125.312 | -109.32
6 -313.337 | -199.194 | -124.449 | -98.16 -90.831 | -78.8435

Table 13: AIC values for MERCK

Poly.\TVAR 1 2 3 4 5 6
2 -289.726 | -283.336 | -259.329 | -237.138 | -216.174 | -196.429
3 -310.536 | -253.777 | -211.043 | -192.543 | -175.745 | -163.341
4 *.310.79 | -199.811 | -183.383 | -173.809 | -128.886 | -109.336
5 -310.73 | -154.172 | -96.1708 | -101.388 | -69.8109 | -60.1667
6 -313.759 | -134.611 | -32.3654 | -29.7983 | -17.4483 | -23.0049
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Table 14: Results of hierarchical clustering based on 5( S

No. || Minimum Distance Hierarchical Clustering
4 (AMOCO,IBM,FORD.H-P,MERCK)
*3 9.15908 (AMOCO,IBM,FORD,H-P), (MERK)
2 8.01698 (AMOCO,IBM,FORD), (H-P), (MERCK)
1 5.7082 (AMOCO,IBM), (FORD), (H-P), (MERCK)
0 3.42466 (AMOCO), (FORD), (H-P), (IBM), (MERCK)

For the clustering problem for seismic data by use of stationary modelling, Kakizawa et
al.(1998) considered the following distance measures computed from the symmetric Chernoff
information divergence,

JB(,(f:g):;Tr /:r [IOg{W}_‘_bg{WHd/\’

where f = f()\), ¢ = ¢g(\) are spectral densities for two different stationary processes.
Similarly, for the locally stationary processes, we can introduce the distance measure

. 1 L g afs(uj, A) + (1 —a)gz(u;, A)
DJa(fz:95) = WZ_;/ﬁ 10%{ 9 )95(51,7': ))99( }
agz(u;, A) + (1 —a)fa(u;, A
(28) +10g{ 99( 7o )fg((uj’/\) )fe( Js )}] d)\.

For o = 0.1, 0.3, and 0.5, Tables 15-17 show the results of hierarchical clustering based
on (28) for the daily returns data. Then the following tables show that the results for
D( -: - ) are different from those for D.J,( - : - ). Namely, in No.3 of Table 14 we get the
cluster of AMOCO, IBM, FORD, and H-P. In No.3 of Tables 15-17, however, AMOCO,
IBM, FORD, and MERCK are clustered.

Table 15: Results of hierarchical clustering based on DJy( - :-) (o =0.1)

No. || Minimum Distance Hierarchical Clustering
4 (AMOCO,IBM,FORD ,MERCK, H-P)
*3 0.148727 (AMOCO,IBM,FORD ,MERCK), (H-P)
2 0.122676 (AMOCO,IBM,FORD), (H-P), (MERCK)
1 0.0232 (AMOCO,IBM), (FORD), (H-P), (MERCK)
0 0.0136 (AMOCO), (FORD), (H-P), (IBM), (MERCK)
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Table 16: Results of hierarchical clustering based on DJy( - :-) (o =0.3)

No. || Minimum Distance Hierarchical Clustering
4 (AMOCO,IBM,FORD ,MERCK, H-P)
*3 0.295102 (AMOCO,IBM,FORD ,MERCK), (H-P)
2 0.182384 (AMOCO,IBM,FORD), (H-P), (MERCK)
1 0.052211 (AMOCO,IBM), (FORD), (H-P), (MERCK)
0 0.0141 (AMOCO), (FORD), (H-P), (IBM), (MERCK)

Table 17: Results of hierarchical clustering based on DJ,( - :-) (e = 0.5)

No. || Minimum Distance Hierarchical Clustering

4 (AMOCO,IBM,FORD,MERCK H-P)

*3 0.335568 (AMOCO,IBM,FORD,MERCK), (H-P)

2 0.202399 (AMOCO,IBM,FORD), (H-P), (MERCK)

1 0.061422 (AMOCO,IBM), (FORD), (H-P), (MERCK)
0 0.020970 (AMOCO), (FORD), (H-P), (IBM), (MERCK)
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In financial engineering, there is an important problem which classifies several companies
into some class of credit from their financial data. Usually people in this field use the usual
multivariate method for ¢.5.d. data. Thus the above analysis will give a new approach in

this field.
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