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Abstract. Time series analysis under stationary assumption is well established. How-

ever it is not suÆcient for stationary time series models to describe the real world. A

class of locally stationary processes was introduced by Dahlhaus. By using nonstation-

ary models with time varying spectra, we attempt to analyze some data from mining

explosions, natural earthquakes and �nancial time series. Although many researchers

used the ordinary autoregressive or autoregressive moving average models, we �t a

time varying autoregressive (TVAR) model of order p to the data whose coeÆcients

are polynomials with respect to time. Moreover we select a favorable model by use of

AIC, and compare the results with the others. Finally, some numerical problems of

discriminant and cluster analysis will be discussed.

1 Introduction. Although stationary time series analysis is well established, stationary

time series models are not plausible to describe the real world. Priestly introduced a class

of nonstationary processes based on the concept of "evolutionary spectra". The evolutional

spectral density functions are time dependent and generalize the usual de�nition of spectra

for stationary processes. Recently Dahlhaus introduced a class of locally stationary pro-

cesses. Then he elucidated some fundamental results of the statistical inference.

In many applications for the seismic records, modelling based on autoregressive moving

average (ARMA) processes has proven e�ective (Polhemus and Cakmak (1981); Chang et al.

(1982); Gersch and Kitagawa (1985); Cakmak et al. (1985); Dargahi-Noubary (1992)). In

the work by Chang et al. (1982), several ARMA models of di�erent orders were identi�ed,

parameters were estimated and statistical measures were evaluated to test the goodness of

�t between the models and actual data. Then it was found that ARMA(2,1) or ARMA(4,1)

models provided good �ts to time segments of the earthquake acceleration time histories.

Polhemus and Cakmak (1981) also used ARMA(2,1) and ARMA(4,1) models for the earth-

quake data.

Time series modelling based on nonstationary processes is possible. Adak (1998) dis-

cussed applications of the locally stationary processes to speech signals and earthquake

data. Sakiyama and Taniguchi (2001) investigated the problems of classifying a multivari-

ate non-Gaussian locally stationary process fXt;Tg into one of two categories described by

two hypotheses: �1 : f(u; �), �2 : g(u; �), where f(u; �) and g(u; �) are time varying spectral

density matrices. They used a Gaussian approximation of the likelihood ratio (GLR) for

this problem, and showed that GLR is consistent. Also the misclassi�cation probabilities

were evaluated under contiguous hypotheses. In this paper we analyze some data from min-

ing explosions, natural earthquakes and �nancial time series. The theoretical results of our
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discriminant analysis are applied to them. In comparison with the literature in this �eld we

report some interesting features. This paper is organized as follows. In Section 2, we review

the discriminant analysis for locally stationary processes. In Section 3, we attempt to �t

time varying autoregressive models to some real data. Then, using AIC we compare our

results with the literature in this �eld. Section 4 discusses some data analysis of classifying

earthquakes and mining explosions. Moreover, we discuss the problem of clustering �ve

daily returns data.

2 Discriminant Analysis for Locally stationary Processes. Dahlhaus(1997) de-

veloped asymptotic theory for univariate locally stationary processes. We start with the

de�nition of a multivariate locally stationary process. Since we discuss the discriminant

analysis for multivariate locally stationary processes, we extend some of his results to the

case when the process concerned is multivariate.

De�nition 1 A sequence of multivariate stochastic processes Xt;T = (X
(1)

t;T ; : : : ;X
(d)

t;T )
0 (t =

1; : : : ; T ) is called locally stationary with transfer function matrix At;T (�) = fAt;T (�)a;b : a; b

= 1; : : : ; dg and mean 0 if there exist a representation

Xt;T =

Z �

��
exp(i�t)At;T (�)d�(�)(1)

where the following holds.

(i) �(�) = (�1(�); : : : ; �d(�))
0
is a complex valued vector process on [��; �] with �a(�) =

�a(��), E�aj (�) = 0 and

cumfd�a1(�1); : : : ; d�ak(�k)g

= �

0@ kX
j=1

�j

1A ga1;::: ;ak(�1; : : : ; �k�1)d�1; : : : ; d�k

where cumf� � � g denotes the cumulant of k-th order, ga(�) = 0, ga;b(�) = Æ(a; b),

jga1;::: ;gak (�1; : : : ; �k�1)j � C(k) (C(k) is constant) for all a1; : : : ; ak 2 f1; : : : ; dg
and �(�) =

P1
l=�1 Æ(�+ 2�l) is the period 2� extension of the Dirac delta function.

(ii) There exists a constant K and a 2�-periodic matrix valued function A(u; �) = fA(u; �)a;b
: a; b = 1; : : : ; dg : [0; 1]�R! C

d�d
with A(u; �) = A(u;��) and

sup
t;�

�����At;T (�)a;b �A

�
t

T
; �

�
a;b

����� � KT�1

for all a; b 2 f1; : : : ; dg and T 2N , where A(u; �) is assumed to be continuous in u.

We call f(u; �) � A(u; �)A(u; �)
0
the time varying spectral density matrix of fXt;Tg.

Letting

d
(a)

N (u; �) =

N�1X
s=0

X
(a)

[uT ]�N=2+s+1;T
exp(�i�s) ;(2)

we introduce the periodogram matrix IN(u; �) = fIN (u; �)a;b : a; b = 1; : : : ; dg over a seg-

ment of length N with midpoint [uT ], where

IN(u; �)a;b =
1

2�N
d
(a)

N (u; �)d
(b)

N (u;��) :(3)
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The shift from segments to segment is denoted by N . IN (uj; �) is calculated over segments

with midpoints ujT = tj = N(j � 1=2); (j = 1; : : : ;M) where T = NM .

In what follows we brie
y review the results by Sakiyama and Taniguchi (2001) (Propo-

sitions 1-3). Consider the problems of classifying a multivariate locally stationary process

fXt;T g into one of two categories described by two hypotheses:

�1 : f(u; �) ; �2 : g(u; �)

where f(u; �) and g(u; �) are d�d time varying spectral density matrices. For this discrim-

inant problem, we use

D(f : g) =
1

4�M

MX
j=1

Z �

��

"
log

� jg(uj; �)j
jf(uj ; �)j

�

+ tr
�
IN(uj ; �)

�
g�1(uj ; �) � f�1(uj ; �)

	�#
d�(4)

as a classi�cation statistic. That is, if D(f : g) > 0 we choose category �1. Otherwise

we choose category �2. this criterion is an approximation of Gaussian log-likelihood ratio

between �1 and �2 (Dahlhaus (1997)). We set down the following assumption.

Assumption 1 There exists C > 0 such that the minimum eigenvalues of f(u; �) and

g(u; �) are grater than C for all u and �.

The following proposition describes the asymptotics of D(f : g) under �1 and �2.

Proposition 1 Suppose that Assumption 1 holds. Then, as T !1, under �1
p
T [D(f : g)�E fD(f : g)j�1g] D�! N

�
0; �2(f; g)

	
(5)

and under �2
p
T [D(f : g)�E fD(f : g)j�2g] D�! N

�
0; �2(g; f)

	
(6)

where

�2(f; g) =
1

4�

Z 1

0

�Z �

��
tr
�
f(u; �)g�1(u; �)� Id

	2
d�

+
1

8�

dX
b1;b2;b3;b4=1

��Z �

��
A(u; �)�

�
g�1(u; �)� f�1(u; �)

	
A(u; �)d�

�
b2;b1

�
�Z �

��
A(u; �)�

�
g�1(u; �)� f�1(u; �)

	
A(u; �)d�

�
b3;b4

� gb1;b2;b3;b4(�;��;��)
��
du;

and [M ]a;b is the (a; b) element of matrix M .

If we use D(f : g) as a classi�cation criterion, the misclassi�cation probabilities are

P (2j1) = PfD(f : g) � 0j�1g ; P (1j2) = PfD(f : g) > 0j�2g:
The following proposition shows that the classi�cation statistic is asymptotically con-

sistent.
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Proposition 2 Under Assumption 1,

lim
T!1

P (2j1) = 0 ; lim
T!1

P (1j2) = 0:

To evaluate the goodness of D(f : g) we assume that g(u; �) is contiguous to f(u; �).

Now we set the spectral densities as

�1 : f(u; �) = f�(u; �) ; �2 : g(u; �) = f
�+h=

p
T
(u; �)(7)

where � 2 � � Rq and h = (h1; : : : ; hq)
0.

Assumption 2 (i) We observe the realization X1;T ; : : : ;XT;T of a d-dimensional locally

stationary process with mean 0 and transfer function matrix At;T (�). The time vary-

ing spectral density matrix is f�(u; �) = A�(u; �)A�(u; �)
0
, � 2 � � Rq

, where � is

compact.

(ii) All the eigenvalues of f�(u; �) are bounded from below by some constant C > 0 uni-

formly in �, u and �.

(iii) The components of f�(u; �), rf�(u; �) and r2f�(u; �) are continuous on �� [0; 1]�
[��; �] (r denotes the gradient with respect to �).

(iv) N and T ful�ll the relations T 1=4 � N � T 1=2= lnT .

Proposition 3 Under (7), we suppose Assumption 2. If we use D(f : g) as a classi�cation

criterion, then

lim
T!1

P (2j1) = lim
T!1

P (1j2) = �

� �1
2
F (�)

fF (�) +D(�)g 1

2

�
(8)

where �(�) is the cumulative distribution function of the standard normal distribution, and

F (�) =
1

4�

Z 1

0

Z �

��
tr

(
qX

i=1

hirif�(u; �)f
�1
� (u; �)

)2

dud�

D(�) =
1

8�

Z 1

0

dX
b1;b2;b3;b4=1� qX

i=1

hi

� Z �

��
A�(u; �)

�
�
f�1� (u; �)rif�(u; �)f

�1
� (u; �)

�
A�(u; �)d�

�
b2;b1

�
qX

j=1

hj

� Z �

��
A�(u; �)

�
�
f�1� (u; �)rjf�(u; �)f

�1
� (u; �)

�
A�(u; �)d�

�
b3;b4

� gb1;b2;b3;b4(�;��;��)
��
du:(9)

In Section 4 we discuss the discriminant problem in the following parametric form:

�1 : f�(u; �) ; �2 : g�(u; �);
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where f�(u; �) and g�(u; �) are time varying spectral density functions. Consider the prob-

lem of classifying a locally stationary process fXt;Tg into one of two categories described

by two hypotheses:

�1 : f�(u; �) ; �2 : g�(u; �)

where f�(u; �) and g�(u; �) are parametric time varying spectral densities. We can construct

the estimated spectral density h
b�
(u; �) from fXt;T g. Let

D(h� : g�) =
1

4�M

MX
j=1

Z �

��

"
log

(
g�(uj ; �)

f�(uj ; �)

)
+ h�(uj ; �)g�(uj ; �)

�1 � 1

#
d�:

Then the inequality

D(h
b�
: g�) > D(h

b�
: f�)(10)

implies that h
b�
(u; �) is nearer to f�(u; �) than g�(u; �) in the sense of spectral divergence

measure D( : ). Write

D(h
b�
) � D(h

b�
: g

b�
)�D(h

b�
: f

b�
)(11)

=
1

4�M

MX
j=1

Z �

��

"
log

�
g
b�
(uj ; �)

f
b�
(uj ; �)

�

+ h
b�
(uj ; �)

n
g�1
b�
(uj ; �) � f�1

b�
(uj ; �)

o#
d�:

We propose a rule to classify fXt;T g into �1 or �2 according as D(h
b�
) > 0 or D(h

b�
) � 0,

respectively.

It should be recognized that D(f� ; g�) is a functional of the product f�(uj ; �)

�g�(uj ; �)�1 and can be extended to a more general divergence measure;

D(f� : g�) =
1

4�

MX
j=1

Z �

��
Fjff�(uj ; �)g�(uj; �)�1gd�;(12)

where Fjf � g is a suitable function, which is speci�ed below. To ensure that general mesures
of the form D(f� : g�) in (12) have the divergence property, we shall require D(f� : g�) � 0

with equality if and only if f� = g� a.e. Therefore the function Fj(x) must have a unique

minimum at x = 1. Generally D(f� : g�) is not symmetric with respect to f� and g� but

can easily be made so by de�ning

F j(x) = Fj(x) + Fj(x
�1);

and we obtain the symmetric spectral divergence measure

D(f� : g�) =
1

4�M

MX
j=1

Z �

��

"
Fjff�(uj ; �)g�(uj ; �)�1g

+ Fjfg�(uj ; �)f�(uj ; �)�1g
#
d�(13)
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(see Taniguchi (1991) and Kakizawa (1996)).

The measures of disparity between spectral densities can be used for clustering locally

stationary processes. For example, let f
b�
and g

b�
be estimated spectral densities for two

di�erent processes. We de�ne the symmetric spectral distance between f
b�
and g

b�
by D(f

b�
:

g
b�
).

For example, by using Fj(x) = x+ x�1, we obtain the symmetric spectral distance

D(f
b�
: g

b�
) � 1

2
D(f

b�
: g

b�
)(14)

=
1

4�M

MX
j=1

Z �

��

"
ff�(uj ; �)g�(uj ; �)�1g+ fg�(uj ; �)f�(uj ; �)�1g

#
d�:(15)

In Section 4 we will use this procedure.

3 Fitting Locally Stationary Models to Data. We consider the following time vary-

ing AR model

pX
j=0

a�j

�
t

T

�
Xt�j;T = �

�
t

T

�
et(16)

where a0(u) � 1 and the fetg is a sequence of i.i.d. random variables with mean zero

and variance 1. Suppose that a�(u) = (a�1(u); : : : ; a
�
p(u))

0 depend on a �nite dimensional

parameter. We further suppose that a�j (u)'s are parameterized as

a�j (u) =

KX
k=1

�jku
k�1:(17)

Let � = (�11; : : : ; �1K ; � � � ; �p1; : : : ; �pK)0 and fk(u) = uk�1. Write F (u) = ffi(u)fj (u)gi;j=1;::: ;K

and f(u) = (f1(u); : : : ; fK (u))
0. We denotes by A
B the right direct product of the matrix

A and B. Let

LT (�) =
1

4�

1

M

MX
j=1

Z �

��

�
logff(u; �)g + IN (u; �)f

�1(u; �)
�
d�:

It is easily seen that the quasi-maximum likelihood estimator b� of � de�ned by LT (b�) =
max�2�LT (�) is given by

b�f�(u1)2; : : : ; �(uM )2g

= �
 

1

M

MX
j=1

�(uj)
�2�N(uj) 
 F (uj)

!�1 
1

M

MX
j=1

�(uj)
�2CN (uj)
 f(uj)

!
(18)

where

cN(u; j) =

Z �

��
IN (u; �) exp(i�j)d�

=
1

N

N�1X
s;t=0;s�t=j

X[Tu]�N=2+s+1;TX[Tu]�N=2+t+1;T ;(19)
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Figure 1: Natural Earthquake (EQ1)

CN (u) = (cN (u; 1); : : : ; cN (u; p))
0 and �N (u) = fcN(u; i � j)gi;j=1;::: ;p. In the de�nition

od b� we have to know the innovation variances �(uj)
2. Because on each time segment with

midpoint ujT , we may suppose the process Xt;T is stationary, it is possible to estimate

�(uj)
2 by

b�(uj)2 = 2� exp

�
1

2�

Z �

��
log�IN (uj ; �)d�

�
;(20)

where � = exp 
 (
 ' 0.57721, Euler's constant) (see Taniguchi (1980)). Then we can

estimate � by b� � b�fb�(u1)2; : : : ; b�(uM )2g. On each time segment, we can calculate the

residual variance b�2(uj ; p;K) of the time varying AR model by means of the relation (16)

with coeÆcients a
b�
j

�
t
T

�
.

Let us discuss seismic data with length 2048. Figures 1-4 show records of seismic data from

natural earthquakes (EQ1, EQ3, EQ4, EQ5). Figures 5-7 show records of seismic data from

mining explosions. (EX3, EX4, EX8). Suppose N = 24 = 16 and M = 27 = 128.

From these Figures we may suppose that these seismic data have a structural change of

innovation variance. Hence we divide the time interval [1; 211] into [1; 210] and [210+1; 211].

Then using (20) we estimate the variances. For these seismic data we �t the time varying

AR model (16) which minimizes the AIC criterion

AIC(p; k) =
1

M

MX
j=1

log b�2(uj ; p;K) + 2(p + p(K � 1))=T;(21)

where

b�2(uj ; p;K) � 1

N

X
t

 
Xt;T +

pX
k=1

a
b�
j (uj)Xt�k;T

!2

; (t 2 [24(j � 1) + 1; 24j]):

Tables 1-4 show the values of AIC(p;K) for EQ1 and EQ3-5.

Dargahi-Noubary (1995) claimed that many seismic source function models can be re-

garded as having been generated by the one-parameter third-order autoregressive model

(1� exp(�k0)B)3sj(t) = wj(t);(22)
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Figure 2: Natural Earthquake (EQ3)
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Figure 3: Natural Earthquake (EQ4)
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Figure 4: Natural Earthquake (EQ5)
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Figure 5: Mining Explosion (EX3)
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Figure 6: Mining Explosion (EX4)
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Figure 7: Mining Explosion (EX8)
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Table 1: AIC values for EQ1

Poly.nTVAR 3 4 5 6 7

3 241.988 169.937 193.745 178.96 *155.307

4 288.046 260.35 159.966 206.146 183.848

5 318.18 303.784 273,105 163.471 211.676

6 345.561 345.513 308.187 279.117 173.62

Table 2: AIC values for EQ3

Poly.nTVAR 3 4 5 6 7

3 273.284 182.639 225.03 207.508 187.236

4 317.616 297.716 182.864 234.907 208.65

5 330.8 330.736 307.846 *170.304 236.491

6 390.072 379.595 337.997 314.333 189.522

Table 3: AIC values for EQ4

Poly.nTVAR 3 4 5 6 7

3 226.662 131.898 197.224 173.893 161.212

4 273.413 261.414 *129.283 216.172 187.55

5 288.146 295.972 280.505 171.2553 222.217

6 346.551 342.194 302.916 289.672 179.694

Table 4: AIC values for EQ5

Poly.nTVAR 3 4 5 6 7

3 229.313 147.462 188.155 176.621 167.685

4 268.331 257.616 *142.118 200.008 189.754

5 279.879 293.038 276.006 147.251 209.835

6 340.536 333.888 309.381 282.786 147.03
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Table 5: AIC values for EX3

Poly.nTVAR 3 4 5 6 7

3 287.158 206.429 232.634 214.451 *191.373

4 340.751 318.489 230.325 248.651 217.249

5 353.192 352.109 321.352 215.89 245.88

6 405.621 394.062 350.934 322.261 226.381

Table 6: AIC values for EX4

Poly.nTVAR 3 4 5 6 7

3 274.403 209.979 219.539 201.264 *174.026

4 319.257 289.905 196.622 232.871 202.562

5 346.861 328.034 296.605 198.32 232.76

6 308.26 373.516 331.105 305.312 200.14

where B is the usual backshift operator, fwj(t)g is a sequence of white noise, and k0 is an

unknown parameter. By combining (22) and

yj (t) = sj(t) +

nX
k=1

�ksj(t� kd);

Shumway et.al. (1998) discussed detecting of the delay d which corresponds to the spacing

of the charges in the ripple-�red event.

Let us return to our results. From Tables 3 and 4, it is seen that the TVAR(5) model is

preferred. However, TVAR(7) and TVAR(6) are selected in Tables 1 and 2, respectively. For

mining explosions (EX3, EX4 and EX8), Tables 5 and 6 show that TVAR(7) is preferred.

On the other hand, in Table 7, TVAR(5) is preferred. These results show an interesting

feature of locally stationary modelling.

4 Numerical Analysis of Discriminant and Clustering Problem.

4.1 Example of Classi�cation Problem in Seismic Data Here discriminant pro-

cedures in Section 2 are applied to the problem of discriminating seismic records from

earthquakes and mining explosions. Suppose that we know EQ1 is recorded from the group

of earthquakes while EX4 is from the group of explosions. Assuming that we do not know

EX3 is from mining explosions, we are classify it into one of the two groups (the group of

Table 7: AIC values for EX8

Poly.nTVAR 3 4 5 6 7

3 248.423 162.696 211.047 195.06 182.264

4 285.955 276.518 *160.633 218.764 199.003

5 298.775 311.795 291.594 162.479 221.832

6 353.558 350.328 321.3 296.253 175.508
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earthquakes and the group of explosions). Rules for classi�cation are based on the distance

between the estimated time varying spectral densities of the data EQ1, EX4, and EX3. We

estimate these spectral densities by the method of Section 3. We �t the TVAR(7) model

for EQ1, EX4 and EX3. Let bfEQ1, bfEX4, and bfEX3 be the estimated time varying spectral

densities of EQ1, EX4, and EX3, respectively. Then the value of the criterion

D( bfEX3) = D( bfEX3 : bfEQ1) �D( bfEX3 : bfEX4)

is positive, which means that EX3 is classi�ed into the group of mining explosions. Next,

let bfEQ5 be the spectral density of EQ5. We use TVAR(5) for EQ5. Suppose that we do

not know EQ5 is from natural earthquakes. Similarly, we classify it into one of two groups

(EQ1 and EX4). Then we observe

D( bfEQ5) = D( bfEQ5 : bfEQ1) �D( bfEQ5 : bfEX4)

is negative. From the result, EQ5 is classi�ed into the group of natural earthquakes. There-

fore the classi�cation rule based on D( � ) works well.

4.2 Example of Cluster Analysis for Some Daily Returns We discuss a clustering

problem for New York stock exchange data. The data are daily returns of AMOCO, FORD,

HP, IBM, and MERCK companies. The individual time series are the last 1024 data points

from the data representing the daily returns for the �ve companies from February 2, 1984,

to December 31, 1991. Figures 8-12 show the graphs of the data.
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Figure 8: AMOCO Daily Returns

In the �gures we can see the change of variance (volatility) with time. For such data

GARCH (generalized autoregressive conditionally heteroscedastic) models are often used.

Engle (1982) introduced the ARCH (autoregressive conditionally heteroscedastic) (p) model

de�ned as

Xt = et
p
Ut;(23)

where fetg is a sequence of i:i:d:(0; 1) random variables, et is independent of Xs; s < t, and

Ut evolves according to

Ut = �0 +

pX
i=1

�iX
2
t�i:(24)



APPLICATIONS FOR LOCALLY STATIONARY PROCESSES 145

0 200 400 600 800 1000

-0.06

-0.04

-0.02

0

0.02

0.04

FORD Daily Returns

Figure 9: FORD Daily Returns
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Figure 10: Hewlett-Packard Daily Returns
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Figure 11: IBM Daily Returns
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Figure 12: MERCK Daily Returns

The model in (23) can be rewritten in the form

Yt = Ut + �t; Ut = �0 +

pX
i=1

�iYt�i(25)

where Yt = X2
t and �t = Ut(e

2
t � 1). Henceforth, denote by Ft the �-�eld generated by

fYt; Yt�1; : : : ; g. We note that the disturbance term, �t, in (25) is a martingale di�erence

since E[�tjFt�1] = UtE[(e
2
t � 1)jFt�1] = 0.

Bollerslev (1986) introduced the GARCH model:

Xt = et
p
Ut;(26)

Ut = �0 +

pX
j=1

�iX
2
t�i +

qX
j=1

�jUt�j ;(27)

where �0 > 0; �j � 0; j = 1; : : : ; p, and �j � 0; j = 1; : : : ; q. Similarly as in (25), it is well

known that any GARCH(p,q) process can be represented as an ARMA[maxfp; qg; q] in the

squared processes. In the case

Yt = �0 +

pX
j=1

(�j + �j)Yt�j + �t �
qX

j=1

�j�t�j ;

where Yt = X2
t , and f�tg is a martingale di�erence sequence (see Gouri�eroux (1997)).

In Figure 13, we plot the sample autocorrelation of Hewlett- Packard. From this �gure we

may suppose that the time series is uncorrelated. Figure 14 shows the sample autocorrela-

tion of the square transformed data. Here the square transformed process of fXtg implies
the process fX2

t �
P210

t=1X
2
t =2

10g. From Figure 13, we may suppose that these �ve time

series are correlated. By using AIC we attempt to �t a stationary AR(p) model to the

square transformed data. The results are shown in Table 8.

Next we try to use TVAR models for the square transformed data. Let T = 210 = 1024,

M = 26 = 64, and N = 24 = 16. Assuming that innovation variances of the data are

constant over time, we choose the orders of models by minimizing the AIC criterion.
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Figure 13: sample ACF (Hewlett-Packard)
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Figure 14: sample ACF of squared data (Hewlett-Packard)
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Table 8: Suitable stationary AR model

AMOCO FORD Hewlett-Packard IBM MERCK

order p 2 1 23 0 8

Table 9: AIC values for AMOCO

Poly.nTVAR 1 2 3 4 5 6

2 -288.450 -288.335 -266.884 -242.727 -222.136 -197.963

3 -310.044 -282.16 -234.657 -242.176 -203.554 -182.695

4 *-310.086 -262.427 -203.016 -188.624 -174.03 -152.357

5 -310.044 -204.142 -181.211 -135.385 -127.096 -112.651

6 -310.044 -201.677 -134.992 -107.834 -119.275 -79.2127

Tables 9-13 show these values of selected orders of TVAR model. From the results

TVAR(1) model is preferred. Tables 9, 12, and 13 show that polynomial of order 4 is good.

On the other hand, from Tables 10 and 11 it is seen that polynomials of order 6 and 2

are preferred, respectively. For a locally stationary, it seems that TVAR(1) model with

parametric polynomial function of time shows good �tting, which makes a sharp contrast

with the usual AR �tting (see Table 8).

Now we discuss hierarchical clustering techniques for locally stationary processes as

follows. First, �nd the two elements which are closest in the sense of the distance (14).

Then these two items become a cluster. Next the distance between nonclustered items

and a current cluster is calculated as the average of the distances to elements in the cluster

(note that many di�erent ideas of de�ning the "distance between two clusters" are possible).

Again, we combine the objects that are closest together, and then compute the new distance

between two di�erent clusters. Repeat the above step until all the items are merged into

one cluster. This is a hierarchical clustering method.

We estimate the group (cluster :ff (1)
b�

; : : : ; f
(k)

b�
g ) spectral density by

1

k

kX
l=1

f
(l)

b�
:

Namely, it is obtained by averaging the estimators.

Table 14 shows the results of hierarchical clustering based on (14) for the daily return data.

Table 10: AIC values for FORD

Poly.nTVAR 1 2 3 4 5 6

2 -278.103 -275.368 -258.455 -229.051 -211.99 -196.746

3 -298.134 -246.87 -231.298 -216.533 -186.549 -164.000

4 -298.351 -217.577 -193.108 -163.54 -146.726 -130.351

5 -299.038 -155.89 -149.703 -114.743 -118.136 -96.5533

6 *-299.115 -156.354 -100.024 -80.1962 -92.1226 -57.349
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Table 11: AIC values for Hewlett-Packard

Poly.nTVAR 1 2 3 4 5 6

2 *-282.028 -258.570 -243.746 -217.755 -195.525 -180.637

3 -281.689 -245.256 -209.535 -194.079 -178.416 -155.544

4 -281.725 -210.843 -169.988 -168.801 -141.719 -131.395

5 -281.379 -178.851 -149.765 -123.515 -107.899 -110.007

6 -281.281 -147.924 -92.8831 -79.5077 -61.4551 -52.8566

Table 12: AIC values for IBM

Poly.nTVAR 1 2 3 4 5 6

2 -291.820 -290.825 -268.559 -247.353 -224.004 -201.401

3 -313.595 -280.943 -242.065 -207.356 -195.296 -174.433

4 *-313.716 -253.278 -200.466 -174.157 -150.874 -144.108

5 -313.448 -198.912 -175.485 -136.009 -125.312 -109.32

6 -313.337 -199.194 -124.449 -98.16 -90.831 -78.8435

Table 13: AIC values for MERCK

Poly.nTVAR 1 2 3 4 5 6

2 -289.726 -283.336 -259.329 -237.138 -216.174 -196.429

3 -310.536 -253.777 -211.043 -192.543 -175.745 -163.341

4 *-310.79 -199.811 -183.383 -173.809 -128.886 -109.336

5 -310.73 -154.172 -96.1708 -101.388 -69.8109 -60.1667

6 -313.759 -134.611 -32.3654 -29.7983 -17.4483 -23.0049
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Table 14: Results of hierarchical clustering based on D( � : � )

No. Minimum Distance Hierarchical Clustering

4 (AMOCO,IBM,FORD,H-P,MERCK)

*3 9.15908 (AMOCO,IBM,FORD,H-P), (MERK)

2 8.01698 (AMOCO,IBM,FORD), (H-P), (MERCK)

1 5.7082 (AMOCO,IBM), (FORD), (H-P), (MERCK)

0 3.42466 (AMOCO), (FORD), (H-P), (IBM), (MERCK)

For the clustering problem for seismic data by use of stationary modelling, Kakizawa et

al.(1998) considered the following distance measures computed from the symmetric Cherno�

information divergence,

JB�(f : g) =
1

4�

Z �

��

"
log

(
�f + (1� �)g

g

)
+ log

(
�g + (1� �)f

f

)#
d�;

where f � f(�), g � g(�) are spectral densities for two di�erent stationary processes.

Similarly, for the locally stationary processes, we can introduce the distance measure

DJ�(fb� : gb�) =
1

4�M

MX
j=1

Z �

��

"
log

(
�f

b�
(uj ; �) + (1� �)g

b�
(uj; �)

g
b�
(uj ; �)

)

+ log

(
�g

b�
(uj ; �) + (1� �)f

b�
(uj; �)

f
b�
(uj ; �)

)#
d�:(28)

For � = 0:1, 0:3, and 0:5, Tables 15-17 show the results of hierarchical clustering based

on (28) for the daily returns data. Then the following tables show that the results for

D( � : � ) are di�erent from those for DJ�( � : � ). Namely, in No.3 of Table 14 we get the

cluster of AMOCO, IBM, FORD, and H-P. In No.3 of Tables 15-17, however, AMOCO,

IBM, FORD, and MERCK are clustered.

Table 15: Results of hierarchical clustering based on DJ�( � : � ) (� = 0:1)

No. Minimum Distance Hierarchical Clustering

4 (AMOCO,IBM,FORD,MERCK,H-P)

*3 0.148727 (AMOCO,IBM,FORD,MERCK), (H-P)

2 0.122676 (AMOCO,IBM,FORD), (H-P), (MERCK)

1 0.0232 (AMOCO,IBM), (FORD), (H-P), (MERCK)

0 0.0136 (AMOCO), (FORD), (H-P), (IBM), (MERCK)
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Table 16: Results of hierarchical clustering based on DJ�( � : � ) (� = 0:3)

No. Minimum Distance Hierarchical Clustering

4 (AMOCO,IBM,FORD,MERCK,H-P)

*3 0.295102 (AMOCO,IBM,FORD,MERCK), (H-P)

2 0.182384 (AMOCO,IBM,FORD), (H-P), (MERCK)

1 0.052211 (AMOCO,IBM), (FORD), (H-P), (MERCK)

0 0.0141 (AMOCO), (FORD), (H-P), (IBM), (MERCK)

Table 17: Results of hierarchical clustering based on DJ�( � : � ) (� = 0:5)

No. Minimum Distance Hierarchical Clustering

4 (AMOCO,IBM,FORD,MERCK,H-P)

*3 0.335568 (AMOCO,IBM,FORD,MERCK), (H-P)

2 0.202399 (AMOCO,IBM,FORD), (H-P), (MERCK)

1 0.061422 (AMOCO,IBM), (FORD), (H-P), (MERCK)

0 0.020970 (AMOCO), (FORD), (H-P), (IBM), (MERCK)

In �nancial engineering, there is an important problemwhich classi�es several companies

into some class of credit from their �nancial data. Usually people in this �eld use the usual

multivariate method for i.i.d. data. Thus the above analysis will give a new approach in

this �eld.
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