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Abstract. We study Yosida{Hewitt decompositions of measures on orthomodular

posets and lattices. We discuss the existence and uniqueness of decompositions into

a convex combination of a completely additive measure and a measure which is ei-

ther weakly purely �nitely additive or �ltering. Then we are interested in the case of

c-positive orthomodular lattices which have \enough" completely additive measures.

For this class of lattices we �nd several conditions equivalent to the requirement that

the Yosida{Hewitt decomposition coincides with the R�uttimann decomposition. We

present an example which shows that the uniqueness of the Yosida{Hewitt decompo-

sition does not imply the equality of the decompositions. As an application of the

construction technique used therein, we answer a problem posed by G. R�uttimann:

Can any completely additive Jordan measure be expressed as a di�erence of com-

pletely additive positive measures? We prove that the completely additive Jordan

measures on the c-positive orthomodular lattices allow for such an expression whereas

for general orthomodular lattices such a decomposition is generally not available.

1 Introduction Orthomodular lattices (OMLs) or, more generally, orthomodular posets

(OMPs), are common generalizations of Boolean algebras and lattices of projections in

Hilbert spaces. They are often interpreted as \quantum logics" i.e., as underlying structures

in the logico-algebraic approach to quantum mechanics [14, 26, 33]. In this interpretation

the states of a quantum mechanical experiment correspond to \states on quantum logics",

the latter being probability measures. The study of potential \physical states" and their

behavior have initiated an intense investigation of measures on OMLs and OMPs (see e.g. [5,

8, 10, 12, 13, 19, 22, 28] etc.). Several results of the Boolean or operator (noncommutative)

measure theory have successfully been generalized to OMLs and OMPs, several have been

found diÆcult or impossible to generalize, and several are still open for generalization.

In this paper we are interested in the decompositions of states into convex combinations

of two states, one of them being completely additive and the other being \far" from com-

pletely additive. In accordance with the choice of the properties of the second state, we

obtain several types of decompositions. Thus, we obtain the Yosida{Hewitt decomposition,

when the second state is assumed to be weakly purely �nitely additive (wpfa), and the

R�uttimann decomposition when the second state is assumed to be a �ltering state [7, 8, 29].

In [8] it is noticed that, as proved in a previous paper, the Yosida{Hewitt decomposition

always exists but it need not be unique. The R�uttimann decomposition need not exist, but

when it does exist, it is unique. Moreover, when the R�uttimann decomposition exists, it has

to coincide with the Yosida{Hewitt decomposition. In this paper we pursue the measure
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decomposition problem for c-positive OMPs, i.e., for those OMPs in which every nonzero

element can be nonzero evaluated in some completely additive state. The class of c-positive

OMPs seems important within the mathematical foundations of quantum mechanics as

can be seen in [2, 11, 17, 26]. We show that in the c-positive OMPs the existence of the

R�uttimann decomposition is found to be equivalent with other conditions, e.g., with the

wpfa-heredity and the #-heredity of the space of completely additive states. On the other

hand, the uniqueness of the Yosida{Hewitt decomposition is found to be a strictly weaker

condition|this fact we show by a fairly nontrivial example of Section 6.

The results concerning states may be alternatively formulated in terms of Jordan mea-

sures. In connection with this, G. R�uttimann formulated a question of whether there is

a completely additive Jordan measure which cannot be expressed as a di�erence of two

completely additive positive measures. In Section 7 we answer this question in the posi-

tive. Nevertherless, we show that such an example does not exist among OMPs which are

c-positive and wpfa-hereditary.

2 Basic de�nitions Let us �rst introduce basic notions (see [26] and [14]).

An orthomodular poset (OMP) is a pentuple (L;�; 0; 1; 0), where L is a set with at least

two elements, � is a partial order on L with respect to which 0 is a least and 1 is a greatest

element, 0 is an order reversing unary operation in L called orthocomplementation, and

where the following additional conditions are satis�ed:

(i) p00 = p, and p ^ p0 = 0 for all p 2 L,

(ii) if p; q 2 L with p; q orthogonal (i.e., p � q0), then p _ q exists in L,

(iii) if p; q 2 L with p � q, then q = p _ (p0 ^ q) (the orthomodular law).

Since there is no danger of misunderstanding, we will only use L to denote the OMP

(L;�; 0; 1; 0). If, in addition, (L;�) is a lattice, then L is called an orthomodular lattice

(OML). As known, a distributive orthomodular lattice is a Boolean algebra, and an example

of a prominent nondistributive orthomodular lattice is the lattice of projections in a Hilbert

space or, more generally, in a von Neumann algebra. Further examples of (�nite or in�nite)

OMPs can be found, e.g., in [17, 22].

Unless stated otherwise, we assume in this paper that L is an OMP. Let p be an element

of L. Then the interval Lp = fx 2 L : x � pg inherits in a natural way the structure of L

in the sense that if �p is the restriction of � to Lp and
0p is de�ned by putting x0

p
= x0 ^ p,

the relation �p is an order and 0p is an orthocomplementation which makes (Lp;�p; 0; p;
0p)

an OMP [26]. Thus, Lp is an OMP. Moreover, an interval in an OML is an OML.

Let us introduce some more de�nitions and notations that came into existence in the

development of noncommutative measure theory. A subsetM of L is called orthogonal if its

elements are pairwise orthogonal. A function � : L! R is called additive (resp., completely

additive) if the equality
P

x2M
�(x) = �(

W
M) holds for all orthogonal subsets M � L

which are �nite (resp., which have a supremum in L; in this case, the absolute convergence

of the series is required). An additive function � : L! [0;1) is called a positive measure.

A di�erence of two positive measures is called a Jordan measure. We denote by J+(L)

the set of all positive measures on L and by J(L) = J+(L) � J+(L) the set of all Jordan

measures on L. The set of all positive (resp. Jordan) measures on L which are completely

additive is denoted by J+
c
(L) (resp. Jc(L)). The positive measures on L which send 1 2 L

into 1 2 R are called states. The set of all states (resp. completely additive states) on L is

denoted by 
(L) (resp., 
c(L)).

The following notion will play a crucial role in the sequel [29].
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De�nition 2.1 A subset I of an OMP L is called �ltering if for any p 2 L n f0g there is

q 2 I n f0g such that q � p.

Note that the �ltering subsets of L are exactly those subsets that cover from below all

nonzero elements of L. For many examples of �ltering sets we refer to [8]. Let us only recall

an interesting property of �ltering sets which will be used later.

Lemma 2.2 Let F be a �ltering set in L. If M is a maximal orthogonal subset of F , thenW
M = 1.

proof: If p 2 L is an upper bound of M di�erent from 1, then the relation p0 6= 0 implies

that F contains a nonzero element q � p0. The system M [fqg is orthogonal and is strictly

larger than M . This contradicts the maximality of M . Therefore the element 1 2 L is the

only upper bound of M . 2

An element a in an OMP L is called an atom if a covers 0, i.e., if La = f0; ag. We say

that L is atomic if the set of all atoms is �ltering. From the de�nition of �ltering sets it

easily follows that a set which contains a �ltering subset is itself a �ltering set. Further, a

�ltering set contains all atoms of L. Moreover, for atomic OMPs we have the equivalence|

a subset of an atomic OMP is �ltering if and only if it contains all atoms.

De�nition 2.3 A Jordan measure � on L is called �ltering if ker� := fq 2 L : �jLq = 0g

is a �ltering set.

In particular, a �ltering Jordan measure vanishes at all atoms. If an OMP L contains

a �nite maximal Boolean subalgebra, then the zero measure is the only �ltering positive

measure and L does not admit any �ltering state. Let us denote by Jf (L) the set of all

�ltering Jordan measures on L, and let us extend this notation to positive measures and

states: J+
f
(L) = Jf (L) \ J

+(L), 
f (L) = Jf (L) \ 
(L).

A state � is called weakly �ltering if the set

ker� [
\

�2
c(L)

ker�

is �ltering. Let us denote by 
wf(L) the set of all weakly �ltering states on L.

The study of the decomposition of measures into sums of two measures with given

properties can be easily translated into decompositions of states. It is obvious that in

this case we have to consider convex combinations instead of sums. Convex combinations

of states are suÆcient to describe all properties we deal with (all the notions we use are

preserved by multiplying a state by a positive constant), only the zero measure cannot be

taken into consideration any more. Moreover, the use of states allows us to look at the

problem from the geometrical point of view, since, due to a result by Shultz [31], the state

spaces of OMPs as well as the state spaces of OMLs are exactly all compact convex subsets

of locally convex topological vector spaces.

We will often deal with faces of subsets in the state spaces. The reason is that some

special classes of states on a OMP L constitute a face of 
(L) and we want to consider the

decomposition with respect to these faces.

De�nition 2.4 Let C be a compact convex subset of a locally convex Hausdor� topological

linear space. A subset F of C is a face of C if all �; �;  2 C, where  is a convex combination

of �; � with nonzero coeÆcients, satisfy the equivalence

 2 F () �; � 2 F :
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Proposition 2.5 Let L be an OMP. The set Jf (L) of all �ltering Jordan measures on L

is a linear subspace of J(L). The set 
f (L) of all �ltering states is a (possibly empty) face

of 
(L).

In some special cases upon representing any state by a point we can \visualize" the

result obtained: A state is a convex combination of two states � and � i� it belongs to the

line segment that has these two states for extreme points. We denote this set by conv f�; �g.

De�nition 2.6 A state � 2 
(L) n 
c(L) is weakly purely �nitely additive (wpfa state) if

the condition � 2 conv f�; �g for some � 2 
c(L), � 2 
(L) implies � = �. We denote by


wpfa(L) the set of all wpfa states on L.

This de�nition describes the situation when a wpfa state cannot be written as a convex

combination of a completely additive state and an arbitrary state with nonzero coeÆcients.

An alternative de�nition of wpfa states would make use of the partial order �S on 
(L)

de�ned by

��S �() (� = � or 9� 2 
(L) n f�g : � 2 conv f�; �g) :

A state � 2 
(L) is wpfa i�

8� 2 
c(L) : � 6�S
� :

From the geometrical point of view, a state on L is wpfa i� it generates a face disjoint from


c(L). Equivalently, the wpfa states are exactly the elements of the union of all faces of


(L) disjoint from 
c(L). For further equivalent conditions, see [8].

3 Heredity and decompositions of states Starting from a state � de�ned on L, we

can obtain a state �p on any subinterval Lp, assuming that � does not vanish on p. It

is suÆcient to normalize its restriction. More explicitly, let us de�ne, for � 2 
(L) and

p 2 L n ker�, the state �p by letting �p(x) =
�(x)

�(p)
for all x 2 Lp. The fact that several

properties of the original state are preserved by this (normalized) restriction is generically

called \heredity". For instance, the normalized restriction of a �ltering state is always

�ltering and the normalized restriction of a completely additive state is completely additive

[8, Prop. 8.3]. A similar statement need not hold for the wpfa states. When all normalized

restrictions of the wpfa states are wpfa, we refer to it as the wpfa-heredity.

De�nition 3.1 [29] An OMP L is called wpfa-hereditary if

8� 2 
wpfa(L) 8p 2 L n ker� : �p 2 
wpfa(Lp) :

The latter condition can be equivalently written in the following form:

8� 2 
wpfa(L) 8p 2 L n ker� 8� 2 
c(Lp) : � 6�
S
�p :

Proposition 3.2 [8, Prop. 8.8] If 
f (L) = 
wpfa(L), then L is wpfa-hereditary.

The Yosida{Hewitt decomposition of a state is a decomposition to a convex combination

of a completely additive state with a wpfa state. The Yosida{Hewitt decomposition always

exists but it need not be unique (see [6, 7, 8, 29] for more details).

G. R�uttimann introduced �ltering states in [29] with the aim to study the uniqueness of

the Yosida{Hewitt decomposition of measures. Filtering states are particular wpfa states,

so that the decomposition of a state into a convex combination of a completely additive

state with a �ltering state is a special kind of the Yosida{Hewitt decomposition. We call it
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the R�uttimann decomposition [8]. Alike the Yosida{Hewitt decomposition, the R�uttimann

decomposition need not exist in general, but when it exists, it is unique [8, Cor. 7.4].

Another notion of heredity can be introduced as follows. It should be noted that it has

been de�ned more generally for a face of 
c(L) in [8], here we need it only for the whole of


c(L).

De�nition 3.3 Let L be an OMP. We say that 
c(L) is #-hereditary if

8� 2 
wpfa(L) 8� 2 
c(L) 8p 2 L n (ker� [ ker �) 8� 2 
(Lp) : � 6�
S
�p or � 6�

S
�p :

In the paper [8], various kinds of decomposition of states de�ned on OMPs have been

studied. One of the main results in this direction is the following proposition.

Proposition 3.4 Let L be an OMP. Then the following conditions are equivalent:

1. 
c(L) is #-hereditary.

2. each state on L is a convex combination of a completely additive state and a weakly

�ltering state,

3. 
wf(L) = 
wpfa(L),

Any of these conditions implies the uniqueness of the Yosida{Hewitt decomposition.

The proof follows from the results of [8] which are indicated in Fig. 1. Its principal part

is a lemma proved by R�uttimann in [29] which we enclose below in a more general version

taken from [8].

the uniqueness of the Yosida{Hewitt decomposition


(L) = conv (
wf(L) [ 
c(L))
wf(L) = 
wpfa(L) #-heredity of 
c(L)

the wpfa-heredity of L


(L) = conv (
f (L) [ 
c(L))
f (L) = 
wpfa(L)

?

?

?

� -

� - � -

Figure 1: Implications between conditions related to completely additive states

Lemma 3.5 [29] Let L be an OMP. If p 2 L, � 2 J+(L) and � 2 J+
c
(L) such that

�(p) < �(p), then there exists q 2 Lp n f0g such that �(x) < �(x) for all x 2 Lq n f0g.
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4 The class of c-positive OMPs In this section we extend Prop. 3.4 in the case when

the OMP in question has \enough" completely additive states. The reason is that in this

case various decompositions will be found to coincide.

De�nition 4.1 [29] An OMP L is called c-positive if

8p 2 L n f0g 9� 2 
c(L) : �(p) > 0:

If L is a c-positive OMP, then
T
�2
c(L)

ker� = f0g. Thus, the weakly �ltering states

coincide with �ltering states and the decomposition dealt with in Prop. 3.4 coincides with

the R�uttimann decomposition. Many conditions studied in [8, Sections 8 and 9] become

equivalent in the class of c-positive OMPs. Among other results, we obtain the reverse

implication to that established in Prop. 3.2:

Proposition 4.2 [8] If L is an OMP that is c-positive and wpfa-hereditary, then 
f (L) =


wpfa(L).

Let us show by example that the latter proposition would not remain valid without

c-positivity.

Example 4.3 Let B be the Borel �-algebra on the real line. We take the �-ideal � of all

meager sets in B. The quotient Boolean algebra A = B=� does not admit any completely

additive state, so 
c(A) = ;, 
wpfa(A) = 
(A), and the same holds for any nontrivial

interval in A. Thus, A is wpfa-hereditary. On the other hand, there is a state � on A

which is strictly positive, i.e., �(x) > 0 for all x 2 A n f0g (see [24]). As � is not �ltering,


wpfa(A) 6= 
f (A).

To present generalizations of [7, 29], and to prepare the stage for the next section, let us

formulate some equivalent conditions for positive measures, too. To denote special sets of

positive measures, we use the same indices we have used for the sets of states. In particular,

we write J+
wpfa

(L) to denote the set of all wpfa positive measures on L.

Theorem 4.4 Let L be a c-positive OMP. The following conditions are equivalent:

1. L is wpfa-hereditary.

2. 
c(L) is #-hereditary.

3. (The existence of the R�uttimann decomposition of states) Each state on L is a convex

combination of a completely additive state and a �ltering state.

4. (The existence of the R�uttimann decomposition of positive measures) Each positive

measure on L is a sum of a completely additive positive measure and a �ltering positive

measure.

5. Each state on L is a convex combination of a completely additive state and a weakly

�ltering state.

6. Each positive measure on L is a sum of a completely additive positive measure with a

weakly �ltering positive measure.

7. 
wpfa(L) = 
f (L).

8. J+
wpfa

(L) = J+
f
(L).
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The proof follows from the equality 
f (L) = 
wf(L) (valid for c-positive OMPs) and

from the relations implied by Fig. 1.

The Hilbert lattices form an important class of c-positive OMLs (to show it, one uses

the celebrated Gleason Theorem [12]). The following theorem due to Aarnes proves the

conditions of Th. 4.4 for Hilbert lattices.

Theorem 4.5 [1] Let L be the lattice of projections in a real or complex Hilbert space

H. Each state on L can be uniquely expressed as a convex combination of a completely

additive state with a �ltering state (i.e., with a state which vanishes at all �nite-dimensional

projections of H).

The latter theorem can be generalized to Jordan measures, resp. �-additive Jordan mea-

sures, see [10, Ths. 3.2.28, 3.2.29]. As an alternative approach, a similar result is obtained

in [4] using Th. 2.14 and 3.8 from Takesaki's monograph [32]. A further generalization to

the OMP of splitting subspaces of an inner product space is done in [9] and [10, Th. 4.3.4],

see also [27]. Since the splitting subspace OMP does not have any completely additive state

if the inner product space is not Hilbert, regular Jordan measures have to be used instead

of completely additive states. We refer to [15] and [27] for related results on completeness

of inner product spaces and its relations to posets of subspaces.

The conditions of Th. 4.4 imply the uniqueness of the Yosida{Hewitt decomposition.

Also, in this case of c-positive OMPs, the reverse implication does not hold as we show in

Section 6. First we need to introduce some techniques.

5 Constructions with orthomodular lattices In this sections we summarize con-

struction techniques that will be used in the sequel. Let us refer to [3, 17, 22, 23, 26] for

details.

Proposition 5.1 Let F be a family of OMLs. Let us consider the cartesian product L =Q
K2F

K and let us endow it with the ordering �L and orthocomplementation 0L de�ned

pointwise, i.e., for all a; b 2 L, a = (aK )K2F , b = (bK )K2F , let us de�ne

a �L b() 8K 2 F : aK �K bK ;

a = b0
L
() 8K 2 F : aK = bK

0K :

Let us de�ne 0L, resp. 1L, to be the element of
Q
K2F

K which has the K-th coordinate

equal to 0K , resp. 1K , for all K 2 F . Then (L;�L; 0L; 1L;
0L) is an OML called the product

of the family F .

If F is �nite, then a function � : L ! [0; 1] is a state i� it is a convex combination of

functions of the form �Q : (aK )K2F 7! �Q(aQ), where Q 2 F , �Q 2 
(Q).

De�nition 5.2 [23] Let F be a collection of orthomodular lattices such that for eachK;L 2

F the intersection K \L is a subalgebra of both K and L and, moreover, the operations of

K and of L coincide on K \L. (In particular, all OMLs in F have the same least element,

0, and the same greatest element, 1.) Put P =
S
K2F

K and de�ne the binary relation �P

and the unary operation 0P as follows:

a �P b() 9K 2 F : (a; b 2 K; a �K b) ;

a = b0
P

() 9K 2 F : (a; b 2 K; a = b0
K

) :

Then (P;�P ; 0; 1;
0P ) is called the pasting of the collection F .
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SuÆcient conditions for a pasting to be an orthomodular lattice are given in [23]. Here

we shall apply only two very special cases.

Proposition 5.3 Let F be a family of OMLs. Let us take the family G consisting of copies

of all OMLs in F arranged in such a way that they are disjoint except they have the same

least element, 0, and the same greatest element, 1. Thus, for each K;M 2 G, K 6= M ,

we have K \M = f0; 1g. Then the pasting, P , of G is an OML called the horizontal sum

(0-1-pasting) of the family F .

A function � : P ! [0; 1] is a state i� its restriction to each element of G is a state.

The following technical tool was introduced in [23, Th. 6.1] and dealt in detail in [18].

Here we add to it a characterization of Jordan measures.

Proposition 5.4 Let K;L be OMLs. Suppose that some element a 2 K is an atom in K.

Write b = a0
K

and put M = Kb�L. For all c 2 Kb, let us identify c 2 K with (c; 0L) 2M

and c _K a 2 K with (c; 1L) 2M . Then the pasting P of fK;Mg is an OML. We say that

P originated by the substitution of the atom a in K with the OML L.

Let � 2 J(K) and � 2 J(L) such that �(1L) = �(a). Then there is a � 2 J(P ) such that

�jK = � and �((c; d)) = �(c) + �(d) for all c 2 Kb, d 2 L. Moreover, each Jordan measure

on P can be expressed in this form.

After performing the above substitution, the interval Pa becomes isomorphic to L, and

the ordering inherited from K is preserved and extended canonically to P .

De�nition 5.5 Let K be an OML. By a block inK we mean a maximal Boolean subalgebra

of K. (Each OML is the union of its blocks, see [3, 17, 26].) Let a; b be elements of K.

Let us de�ne their distance, dK(a; b), in K as the minimal n for which there exists a

sequence (B1; : : : ; Bn) of blocks in K such that a 2 B1, b 2 Bn and Bi \ Bi+1 % f0; 1g

for i = 1; : : : ; n � 1. Let us de�ne dK(a; b) = 1 if no such sequence exists, and we put

dK (a; a) = 0 for all a 2 K.

Proposition 5.6 Let K be an OML. Let M be a set of atoms of K. Let dK(a; b) � 5 for

each a; b 2M . Let us de�ne an equivalence relation, �, on K such that a � b i�

� a = b or

� a; b 2M or

� a0
K
; b0

K
2M .

For each a 2 K, let us write [a] = fb 2 K : b � ag. Let us take the set L = f[a] : a 2 Kg,

and endow it with the unary operation 0L and a relation �L de�ned by

[a]0
L
= [a0

K
] ;

[a] �L [b]() 9a1 2 [a] 9b1 2 [b] : a1 �K b1 :

Then (L;�L; 0; 1;
0L) is an OML. Moreover, the atoms (resp., the blocks) of L are images

of the atoms (resp., the isomorphic blocks) of K under the quotient mapping. In this case,

we say that L originated by identi�cation of atoms of M in K.

States on L correspond to states on K which attain equal values on M .

Remark 5.7 Prop. 5.6 can be applied subsequently to more sets of atoms M1;M2, etc.

The only problem is that the distance of the atoms of M2 in K=M1 may be smaller than in

K. Thus, it is necessary to choose these sets in such a way that the assumption on minimal

distance is not violated in the procedure.
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6 Uniqueness of the Yosida{Hewitt decomposition This section brings an example

of a c-positive OML with a unique Yosida{Hewitt decomposition but with the condition


f (L) = 
wpfa(L) being violated. Some steps of the construction we formulate as lemmas.

These lemmas will be used in Section 7, too. Let us denote by A(L) the set of all atoms of

L. A state � is called strictly positive i� ker� = f0g.

Lemma 6.1 ([21], see also [22, 34]) There is a �nite OML, J , which admits exactly one

state, �, and which satis�es the following condition:

8a 2 A(J) : �(a) = 1=3 :

Moreover, J contains atoms a; b with dJ(a; b) � 2.

proof: Let us take the OML J with 44 atoms, a0; : : : ; a43 and 44 blocks corresponding to

the following maximal orthogonal sets of atoms:

fa2i; a2i+1; a2i+2g; fa2i�7; a2i; a2i+13g; i = 0; : : : ; 21;

where the indices are evaluated modulo 44. Obviously, there is a state on J attaining 1/3

at each atom. A computer proof [16] or the arguments in [21] show that this is the only

state on J . The distance of the atoms a0; a4 is 2. 2

Lemma 6.2 There is a �nite OML, K, such that K admits exactly one state, �, and such

that � is strictly positive. Moreover, there are atoms b; c 2 A(K) satisfying �(b) = 1=3,

�(c) = 1=9, and dK(b; c) � 2.

proof: Let us take two disjoint copies, J1 and J2, of the OML J constructed in Lemma 6.1

and atoms a; b 2 A(J1) with dJ1(a; b) � 2. In the OML J1, let us substitute a with J2
(Prop. 5.4), which yields an OML, K. The only state on J1 attains 1/3 at a, so, after

the substitution of a, each state on K attains 1/9 at all atoms of the interval Ka. This

determines the unique state on K. We may take for c any atom of Ka. 2

Lemma 6.3 There is a �nite OML, H, and atoms b; c 2 A(H) with the following proper-

ties:

dH(b; c) = 4 ;

8� 2 
(H) : �(b) = �(c) � 1=3 ;

8r 2 [0; 1=3] 9!� 2 
(H) : �(b) = r :

Moreover, for r 2 (0; 1=3) the state � in the latter formula is strictly positive.

proof: Let us take the OML J with atoms bJ ; cJ 2 A(J) from Lemma 6.1. Let us form

the product H0 = 2 � J (Prop. 5.1) and let us choose its atoms b0 = (0; bJ ), c0 = (0; cJ ).

Then H0 satis�es all the conditions except for the �rst one, dH0
(b0; c0) = 2. Let us take

a disjoint copy, H1, of H0, with atoms b1; c1 2 A(H1) corresponding to b0; c0 2 A(H0). In

the horizontal sum of H0;H1 (Prop. 5.3), let us identify c0 with b1 (Prop. 5.6). We obtain

an OML, H. Choosing b = b0, c = c1, we see that dH(b; c) = 4 and the conditions of the

lemma are satis�ed. 2
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Lemma 6.4 There is a �nite OML, M , and atoms b; c 2 A(M) with the following proper-

ties:

dM (a; b) = 4 ;

8� 2 
(M) : �(b) = 3�(c) � 1=3 ;

8r 2 [0; 1=3] 9!� 2 
(M) : �(b) = r :

Moreover, for r 2 (0; 1=3) the state � in the latter condition is strictly positive.

proof: The construction is almost the same as in the proof of Lemma 6.3. The only

di�erence is that for H1 we take 2 � K instead of 2 � J , where K is the OML from

Lemma 6.2. Thus, we obtain �(c) = �(b)=3. 2

We are now ready to construct the desired example. Let us use the symbol Z for the

set of all integers and, for n 2Z, let us set Nn =Z\ [n;1).

Example 6.5 There is a c-positive OML, L, with a unique Yosida{Hewitt decomposition

and with 
f (L) 6= 
wpfa(L).

For n 2 N2, let us take copies Mn of the OML M from Lemma 6.4, with atoms

bn; cn 2 A(Mn) corresponding to b; c 2 A(M). For n 2 f0; 1g, let us take copies Mn

of the OML H from Lemma 6.3, with atoms bn; cn 2 A(Mn) corresponding to b; c 2 A(H).

In the horizontal sum (Prop. 5.3) of fMngn2N0 , let us identify cn�1 with bn for all n 2 N1
(Prop. 5.6). We obtain an OML P and atoms bn 2 A(P ), n 2 N0, with the following

properties:

dP (bk ; bn) � 4 whenever k 6= n ;

8� 2 
(P ) : �(b0) = �(b1) = �(b2) = 3�(b3) = : : : = 3n�2�(bn) = : : : ;

8r 2 [0; 1=3] 9!� 2 
(P ) : �(b0) = r :

Moreover, for r 2 (0; 1=3) the state � from the latter condition is strictly positive. (These

properties are direct consequences of Lemmas 6.3, 6.4.)

Let us take a Boolean algebra B with atoms qn, n 2 N0, such that B contains exactly all

suprema of �nitely many atoms and their complements. In the horizontal sum (Prop. 5.3)

of P and B, let us identify (Prop. 5.6) bn with qn for all n 2 N0. The result of this

construction is the desired OML L. As all atoms of L are atoms of P , each state on L is

uniquely determined by the value �(b0) 2 [0; 1=3]. The block of L corresponding to B is

the only in�nite block and, also, the only block of L which is not a block of P . This gives

rise to the restriction condition X

n2N0

�(bn) � 1 :

Moreover, � is completely additive i� the equality holds. All summands in the latter formula

can be expressed in terms of �(b0). We then obtain

3�(b0) + �(b0) �

1X

k=1

3�k � 1

which is equivalent to

�(b0) �
2

7
:
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Hence �(b0) can be an arbitrary number from the interval [0; 2=7]. The state space of L

is a line segment with extreme points �; � satisfying �(b0) = 0, �(b0) = 2=7. The state

� is the only completely additive state on L. Thus 
c(L) = f�g but 
wpfa(L) = f�g.

The Yosida{Hewitt decomposition is unique. As L contains �nite blocks, it does not admit

any �ltering state. Moreover, � is strictly positive and 
f (L) = ; 6= 
wpfa(L). Thus the

conditions of Th. 4.4 are not satis�ed. 2

7 Jordan decomposition of completely additive measures In this section we give

a positive answer to a question posed by G. R�uttimann (presented, e.g., at the conference

Quantum Strucutures '94, Prague, 1994):

Is there a completely additive Jordan measure on an OML which does not allow

for a Jordan decomposition into completely additive positive measures?

The latter question appeared to be related to the type of decomposition studied in the

previous sections, although Jordan decomposition is not of the same type. The above results

enabled to obtain a negative answer for wpfa-hereditary OMPs which are c-positive. The

following theorem was proved by R�uttimann in [29, Ths. 6.4, 6.5] for OMLs and orthocom-

plete OMPs. Besides a generalization to OMPs, we give here quite a new and considerably

simpli�ed proof based on Th. 4.4.

Proposition 7.1 If L is a c-positive wpfa-hereditary OMP, then

Jc(L) = J+
c
(L) � J+

c
(L) :

proof: Let � 2 Jc(L). As Jc(L) � J(L) = J+(L) � J+(L), there are positive measures

�; � 2 J+(L) such that � = �� �. According to our assumption and Th. 4.4, each positive

measure on L has a unique R�uttimann decomposition. In particular, � = �+ �, � =  + Æ

for uniquely determined positive measures �;  2 J+
c
(L) and �; Æ 2 J+

f
(L). From � =

(� + �)� ( + Æ), we obtain the equality

�� � +  = � � Æ :

The left-hand side is completely additive, the right-hand side is known to be �ltering

(Prop. 2.5). According to [8, Prop. 7.3], the only completely additive �ltering Jordan

measure is the zero measure, so � � � +  = 0. We obtain � = � �  2 J+
c
(L) � J+

c
(L)

which is the desired Jordan decomposition into a di�erence of positive completely additive

measures. 2

The above theorem used two additional assumptions|wpfa heredity and c-positivity. It

remains an open problem whether one of these conditions can be dropped.

In the rest of this section, we shall present a positive answer to the original R�uttimann's

question, i.e., we shall exhibit a completely additive Jordan measure on an OML which does

not allow for a Jordan decomposition into completely additive positive measures. We shall

use Lemma 6.3 and the following lemma:

Lemma 7.2 There is a �nite OML, Y , with an atom y such that each Jordan measure

� 2 J(Y ) is uniquely determined by �(1) and satis�es �(y) = 0.

proof: According to [21] (an alternative example is given in [34]), there is a �nite OML X

which does not admit a nonzero measure with values in any group. In particular, 
(X) = ;,

J(X) = f0g. Following the method of [25], we can easily show that it is suÆcient to take

for Y the product 2�X and for y any atom of the factor corresponding to X. 2
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Example 7.3 There is an OML L and a completely additive Jordan measure � on L such

that � cannot be expressed as a di�erence of two completely additive positive measures.

Let us take three disjoint copies, Y1; Y2; Y3, of the OML H of Lemma 6.3. Let us denote

by bn; cn 2 A(Yn), n = 1; 2; 3, the atoms corresponding to the atoms b; c 2 A(H). Further,

let us take countably many disjoint copies, Yn, n 2 N4, of the OML Y of Lemma 7.2. Let

us denote by bn 2 A(Yn), n 2 N4, the atoms corresponding to b 2 A(Y ).

Let us take a Boolean algebra B with atoms qn, n 2 N1, such that B contains exactly all

suprema of �nitely many atoms and their complements. In the horizontal sum (Prop. 5.3)

of B and fYngn2N1 we identify (Prop. 5.6) bn with qn for all n 2 N1. The result is the

desired OML L.

To carry on the argument, let us derive conditions equivalent to the complete additivity

of a Jordan measure � 2 J(L). As B is the only in�nite block of L, � is completely additive

i� its restriction to B is completely additive, i.e., i�

(E1)
X

n2N1

�(bn) = �(1) :

For each n 2 N4, the restriction �jYn is a Jordan measure on Yn. Hence �(bn) = 0 and (E1)

may be simpli�ed to the form

(E2) �(b1) + �(b2) + �(b3) = �(1) :

If, moreover, � is positive, then the restrictions �jHi, i = 1; 2; 3, are multiples of states

on Hi. According to Lemma 6.3,

(E3) �(bi) �
�(1)

3
; i = 1; 2; 3 :

Thus, the complete additivity of a positive measure � is equivalent to the condition

(E4) �(b1) = �(b2) = �(b3) =
�(1)

3
:

As a consequence, any linear combination of completely additive positive measures on L

satis�es (E4). In particular, all Jordan measures from J+
c
(L) � J+

c
(L) satisfy (E4).

According to Lemma 6.3, for each r1; r2; r3 2 [0; 1=3], there is exactly one state � 2 
(L)

such that �(b1) = r1, �(b2) = r2, �(b3) = r3. We uniquely determine two states, �; � 2 
(L),

by the conditions

�(b1) = 1=3; �(b2) = 0; �(b3) = 0 ;

�(b1) = 0; �(b2) = 1=3; �(b3) = 0 :

They are not completely additive because

�(b1) + �(b2) + �(b3) = �(b1) + �(b2) + �(b3) = 1=3 6= 1 = �(1) = �(1) :

Their di�erence, � = �� �, satis�es

�(b1) = 1=3; �(b2) = �1=3; �(b3) = 0; �(1) = 0:

According to (E2), � is completely additive, � 2 Jc(L). Since it does not satisfy (E4), it

cannot be expressed as a di�erence of two positive measures. Hence � 62 J+
c
(L)�J+

c
(L), and

� is a completely additive Jordan measure which does not allow for a Jordan decomposition

into a di�erence of completely additive positive measures. 2
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