
Scientiae Mathematicae Japonicae Online, Vol. 5, (2001), 421{434 421

A LIMITING FIRST ORDER REALIZABILITY INTERPRETATION

Masahiro Nakata
�
and Susumu Hayashi

��

Received January 1, 2001; revised June 3, 2001

Abstract.

Constructive Mathematics might be regarded as a fragment of classical mathemat-

ics in which any proof of an existence theorem is equipped with a computable function

giving the solution of the theorem. Limit Computable Mathematics (LCM) considered

in this note is a fragment of classical mathematics in which any proof of an existence

theorem is equipped with a function computing the solution of the theorem in the

limit.

Computation in the limit, or more formally, limiting recursion, is a central notion

of learning theory by Gold and Putnam [9, 21, 18]. We will show that a realizability

interpretation via limiting recursive functions is a natural modeling of LCM for �rst

order arithmetic.

We will point out that this will enable automatic extraction of limit-algorithms

from some classical proofs of well-known trans�nite theorems, e.g., Hilbert's original

proof of his famous �nite basis theorem, once blamed as \theology" by P. Gordan.

1 Introduction. Formal proofs are used for veri�cation of computer systems. Proof

checkers decide if formalized proofs are correct or not. But formal methods via proof

checkers do not detect errors in formalizations themselves. However, most serious errors

often reside in formalization itself, e.g., formal de�nitions, assumptions, and conclusions

(goals).

The second author proposed a method called proof animation to solve this problem [13].

It is well-known that Curry-Howard isomorphism can be used to extract correct programs

from checked formal proofs. In proof animation, we use Curry-Howard isomorphism in a

reverse way. A program is extracted from an incomplete proof under development. We test

it just as in conventional programming. If the program has a bug or unexpected output,

something is wrong with the proof. Note that such a bug may be found even if a proof

is correctly checked, since formalized de�nitions and propositions in the proof may not

properly represent intuitions that ought to be formalized.

The realization of proof animation needs methods of extracting a program from a given

formal proof. To �nd mistakes in the proof, it is indispensable that we can analyze the

extracted program easily, and that the extracted program re
ects the structure of the

original proof, since we �nd mistakes in the proof through bugs in the program.

We call a method extracting algorithmic contents accountable, if it meets the following

two criteria:

1. computational contents (programs) associated with proofs are easy to comprehend,

2. association between proofs and programs is easy to comprehend.

2000 Mathematics Subject Classi�cation. 03B70, 03B80, 68Q32, 68Q60, 68T05.

Key words and phrases. realizability interpretation, semi classical logic, limiting recursive functions,

learning theory.

422 NAKATA AND HAYASHI

It is known that realizability interpretations can be accountable for constructive proofs,

e.g., [11]. Thanks to simpli�cations (optimizations) of programs and an elaborated realiz-

ability interpretation, the programs associated by PX system with proofs are so natural as

if they were written by humans, and it was possible to think which subprogram is generated

from which part of a proof. Thus, we actually could do proof animation of constructive

proofs with PX system.

However, among many methods extracting algorithmic contents from classical proofs,

none is accountable. It is diÆcult to imagine that we can intuitively grasp a computational

contents of all classical proofs, for example, it is very plausible that so-called Banach-Tarski

paradox contains no computational content.

This makes proof animation of classical proofs diÆcult. However, many proofs for prac-

tical or concrete mathematics do not seem to use full classical logic and seem to have some

computational contents. Thus, we consider not all of classical principles but its fragment

with weak classical principles for which accountable algorithm extraction is possible.

Surprisingly, the computational learning theory gives such a fragment. Gold [9, 10]

modelized the learning processes of machines by the notion of limit recursive functions.

Suppose a computable agent g is guessing a right solution of a problem on the discrete

time line t = 1; 2; 3; � � � . Its guess at the time t is g(t). Learning a solution s means that
eventually, it reaches a right answer g(t0) at a time t0, and it will never change its mind

afterwards. In this way, it can learn even consistency problem of ZFC. It guesses ZFC is

consistent at t = 0. It continues to check all of proofs of ZFC, and if it �nds a proof of a

contradiction at time t0, it learns ZFC is inconsistent. If ZFC is consistent, it means that

the agent had learned the consistency at the time t = 0.

In the standard interpretation of constructive mathematics, \existence" means \con-

struction" or \computation". We replace this by \learning" in the sense above or \compu-

tation in the limit". Then a new fragment of classical logic is born. It corresponds to �0
2

in the hierarchy of the recursion theory, where the constructive or recursive mathematics

corresponds to �0
1.

We call such a fragment Limit Computable Mathematics (LCM). We will introduce some

weak classical principles corresponding to learning processes and a formal theory of �rst

order arithmetic with such principles. We will give a generalized realizability interpretation

for the system. It shows that not only �0
2-mathematics but also �

0
n
-mathematics for any n

is possible. However, we do not know any signi�cance for such mathematics beyond n = 2

yet. So we will restrict ourselves here to the case of n = 2. (Some researchers are now

trying to give semantics of concurrent processes by such mathematics.)

It seems that many mathematical proofs known to be trans�nite belong to the realm

of LCM. As an example, we will point out that a formulation of Hilbert's basis theorem is

formalizable in our �rst order arithmetic of LCM.

2 BRFT (Basic Recursive Function Theory). In this section, we de�ne the set of

functions BRFT. This notion was introduced as a generalization of the system of partial

recursive functions by Wagner [25] and Strong [24]. We will use BRFT as a generalized

system of computation including both of the system of partial recursive functions and the

system of limiting partial recursive functions.

Akama's recent work [1] shows that our \limit idea" can be extended to PCA (partial

combinatory algebra). PCA may be better for actual practice of proof animation than

BRFT. However, BRFT is more suitable for �rst order arithmetic considered in this paper

(see 6). We conjecture that this kind of \limit extension" could be extended to various

computation systems such as typed � calculi. This extension corresponds to the notion of

jump in the recursion theory. See [14] for detailed discussions.

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 423

Let A be a set with at least two elements, and let F be a set of partial functions on A.
For every n � 0, Fn is a subset of F which consists of all n-ary functions in F . Then we

call F Basic Recursive Function Theory (BRFT) if F satis�es following axioms [24, 25].

1. F contains the constant function Cn

x
(y1; � � � ; yn) ' x, for every x 2 A, and the

projection function Um

n
(x1; � � � ; xm) ' xn, for every n, 1 � n �m.

2. 9	 2 F4: 8abcx 2 A: 	(a; b; c; x) '

�
b � � � x = a
c � � � x 6= a

.

3. F is closed under composition.

4. 8m> 0: 9�m 2 Fm+1: Fm = f�x1 � � � xm:�m(x; x1; � � � ; xm)jx 2 Ag.

5. For every m;n > 0 there is Sm

n
2 Fm+1 such that, for any x; x1; � � � ; xm, y1; � � � ; yn 2

A,

(a) Sm

n
(x; x1; � � � ; xm) is de�ned, and

(b) �n(S
m

n
(x; x1; � � � ; xm); y1; � � � ; yn) ' �m+n(x; x1; � � � ; xm; y1; � � � ; yn).

The equality ' is the same as the one of Logic of Partial Terms (LPT) in [5, 11].

The readers unfamiliar with LPT may understand it the abbreviation used in the ordinary

recursion theory.

By the axiom 4, any BRFT F has an m + 1-ary function �m enumerating all m-ary

functions in Fm. By the axiom 5, Sm

n
is S-m-n function for such enumeration function.

If the domain A of BRFT is the set of natural numbers denoted by N, F is called !-
BRFT. We de�ne PRF as a set of all partial recursive functions. Every !-BRFT F with

successor function contains PRF, since the following recursion theorem holds for !-BRFT.

Theorem 1 (Recursion theorem) For f 2 Fn+1, there is a natural number e such that

�n(e; x1; � � � ; xn) ' f(x1; � � � ; xn; e).

We will use !-BRFT with the successor function as the basic notion of our generalized

\computation" in this paper.

3 Realizability interpretation via BRFT. In this section, we will give realizability

interpretation for Heyting Arithmetic HA. It is essentially the same as the original realiz-

ability interpretation by Kleene [19] except that we use !-BRFT to interpret HA instead

of the partial recursive functions PRF.

In the following, we �x an !-BRFT with the successor function. We will denote it by

F . For the !-BRFT F , we use the notation fxg(y) instead of �1(x; y) which is a function

enumerating every elements of F2. If a natural number e is an index of a partial function

f(y1; � � � ; ym; x) in Fm+1, then �x:f(y1; � � � ; ym; x) is de�ned as Sm

1 (e; y1; � � � ; ym). Then

the following equations hold.

f�x:f(y1; � � � ; ym; x)g(z) ' �1(S
m

1 (e; y1; � � � ; ym); z)

' �m+1(e; y1; � � � ; ym; z)

' f(y1; � � � ; ym; z):

Moreover, we use two abbreviations as follows

feg(x1; x2; � � � ; xn) = f� � � ffeg(x1)g(x2) � � � g(xn)

424 NAKATA AND HAYASHI

�x1x2 � � � xn:f(x1; � � � ; xn) = �x1:(�x2:(� � ��xn:f(x1; � � � ; xn) � � �))

The notation of conditional if a = b then c else d is an abbreviation of f	(a;�z:c;�z:d; b)g(0),
where z is a variable not occurring in c or d. We need this abbreviation instead of 	, since

	 is a \call-by-value" function. (See, e.g., [5]).

We will use p0 and p1 as projection functions of the pairing function p. These p0;p1
and p can be de�ned in F .

For each arithmetical formula A and a fresh variable a which represents a natural num-
ber, we de�ne a new formula a r A of the �rst order language over F . The formula is read
as \a realizes A" or \a is a realizer of A". It is essentially the same as Kleene's original real-
izability interpretation except that the partial recursive functions are replaced by arbitrary

!-BRFT.
(1) a r s = t � s = t
(2) a r A ^B � (p0(a) r A) ^ (p1(a) r B)
(3) a r A _B � (p0(a) = 0! p1(a) r A) ^ (p0(a) 6= 0! p1(a) r B)
(4) a r A! B � 8b(b r A! fag(b) r B)
(5) a r 8xA(x) � 8x(fag(x) r A(x))
(6) a r 9xA(x) � p1(a) r A(p0(a))

For this interpretation, the soundness theorem holds.

Theorem 2 (Soundness for HA) Let F be an !-BRFT with a successor function. As-

sume that HA ` A and FV (A) = fu1; � � � ; ung. Then there is an n-ary partial function

f 2 Fn such that f(~u) 2 N and F j= f(~u) r A(~u) for any ~u = u1; � � � ; un 2 N
n

.

Proof. This is proved by induction on the construction of the proof of A just as for the

ordinary Kleene-realizability. To help readers unfamiliar with such a proof and also to show

some subtle points caused by the generalization, e.g. usage of the conditional form and

recursion theory, we will show some cases of proofs.

The realizers of axioms on ^ and _ are given as follows. Note that we use if-then-else

notation for the last case. The conditional function 	 is not good enough for it.

�ab:p(a; b) r A! B ! A ^B, �a:p0(a) r A ^ B ! A,
�a:p1(a) r A ^ B ! B, �a:p(0; a) r A! A _B, �a:p(1; a) r B ! A _B,

�abc: if p0(c) = 0 then fag(p1(c)) else fbg(p1(c)) r (A! C)! (B ! C)! (A_B ! C)

A realizer of induction scheme is given as follows. Let n r A(0)^8x(A(x) ! A(Sx)), then
p0(n) r A(0) and 8xa[a r A(x) ! fp1(n)g(x; a) r A(Sx)] hold. By the recursion theorem

there is a partial function � 2 F such that �(n; 0) ' p0(n), �(n; Sx) ' fp1(n)g(x; �(n; x)).

Hence �x:�(n; x) r 8xA(x) holds.
We consider a 8-introduction rule. Assume n r 8uy[C(u)! A(u; y)] holds. If m r C(u)

holds, then �y:fng(u; y;m) r 8xA(u; x) holds. Hence �umy:fng(u; y;m) r 8u[C(u) !
8xA(u; x)] holds.

Other cases are proved similarly. 2

4 Limit Computable Mathematics In this section, we give a foundation of realizabil-

ity interpretation of semi-classical system by introducing a \limit" operator on !-BRFT's.
The limit-operator of BRFT is obtained by considering partial functions de�ned by limit-

processes by functions of a given !-BRFT. The limit-realizability will derive a natural

fragment of classical logic in which only weak \trans�nite" principles are allowed. We

will de�ne a formal arithmetic of such a fragment. Every computable function of such

a restricted classical arithmetic is a limiting recursive function. Thus we can use it as a

foundation of proof animation as we will discuss below.

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 425

To begin with, we will show a typical example of such a limit-process. We will consider

the following non-constructive theorem.

Proposition 1 If f is a computable function on natural numbers, then f has a minimum

value, that is, 9x8y:f(x) � f(y) holds.

Proof. We construct a function F as follows.

F (0) = f(0);

F (t+ 1) =

�
F (t) if F (t) � f(t + 1);
f(t + 1) if F (t) > f(t + 1)

:

It de�nes a decreasing sequence

F (0) � F (1) � F (2) � � � � :

By well-foundedness of natural numbers, there exists a natural number k such that 8l �
k:F (l) = F (k). Hence 8y:f(k) � f(y) holds. 2

Note that the sequence F (0); F (1); F (2); � � � represents a history of an agent guessing

the minimum value of f . First, it guesses f(0) would be the minimum value. If it encounters

a smaller value f(i), it changes mind and guesses f(i) is the minimum value. It continues to

guess in the same way and never stops to guess. Since the numbers guessed are decreasing,

it eventually guesses the right answer. After then, it will never change its mind, since it

has already learned the right answer. However, it does not know when it learned the right

answer.

In the words of computational learning theory, the minimum value is learned by the

guessing function F . Since the right answer is obtained in �nite times, we may think

the sequence \computes" the answer in the limit. Practical computing in engineering and

experimental mathematics seems to tend to be done in this way (c.f. [14]).

At least for proof animation, this \computation" would be enough, since our objec-

tive is not computation of solutions that proofs guarantee, but �nding bugs in proofs. In

programming, some bugs cause an in�nite loop and no output. This situation resembles

computation in the limit. Situations are normally much worse than computation in the

limit, since such an in�nite computation caused by bugs are often just chaotic and do not

converge in the limit. Nevertheless, we can locate bugs by observing such \chaotic' in�nite

computation through debuggers. Since the aim of proof animation is debugging proofs and

our in�nite computations are converging, it is not unnatural to regard the computation in

the limit as a sort of \computation."

4.1 Limiting BRFT In this subsection, we will show that the notion of \computation

in the limit" gives a good notion of \computation" by showing that the system of partial

functions de�ned by \limiting" of the functions of a !-BRFT with the successor function,

is again an !-BRFT with the successor function. Let F = [nFn be an !-BRFT. For an
element f of Fn+1, we de�ne a partial function limt f(x1; � � � ; xn; t) as

lim
t

f(x1; � � � ; xn; t) ' y () 9a8b � a:f(x1; � � � ; xn; b) ' y:

The function f is called a guessing (partial) function of limt f(x1; � � � ; xn; t).
Next we construct a set Lim(F) from given BRFT F = [nFn using the limiting-

operation.

Lim(F)n = flim
t

f(x1; � � � ; xn; t)jf 2 Fn+1g

426 NAKATA AND HAYASHI

Lim(F) = [nLim(F)n

Then Lim(F) is a BRFT.

Theorem 3 If F is an !-BRFT, then so is Lim(F).

Proof. Indeed, constant functions C 0n

x
, projection functions U 0m

n
and case function 	0 of

Lim(F) are de�ned as follows.

C 0n

x
(y1; � � � ; yn) ' lim

t

U2

1 (C
n

x
(y1; � � � ; yn); t);

U 0m

n
(x1; � � � ; xm) ' lim

t

U2

1 (U
m

n
(x1; � � � ; xm); t);

	0(a; b; c; x) ' lim
t

U2

1 ((a; b; c; x); t):

Next we assume that

f(x) ' lim
t

F (x; t); g(x) ' lim
t

G(x; t):

Then the guessing function of f(g(x)) is given as

	(G(x; t); F (G(x; t); t); G(x; t); G(x; t + 1));

If we assume f(g(x)) ' y, then there exists a natural number s 2 N such that

G(x; t) ' G(x; t + 1) and F (G(x; t); t) ' y for all t � s, and hence we have the equa-

tion limt 	(G(x; t); F (G(x; t); t); G(x; t); G(x; t + 1)) ' y.
Conversely, we assume that limt 	(G(x; t); F (G(x; t); t); G(x; t); G(x; t + 1)) ' y. If it

holds that for any natural number s 2 N there exists t � s such that G(x; t) 6' G(x; t + 1),

then 	(G(x; t); F (G(x; t); t); G(x; t); G(x; t+1)) takes a value G(x; t) for such t and it does

not have a limit. Hence there exists an s 2 N such that G(x; t) ' G(x; t + 1) for all t � s,
and we see f(g(x)) ' y.

The enumeration function �0

n
2 Lim(F)n+1 can be de�ned by

�0

n
(e; x1; � � � ; xn) = lim

t

�n+1(e; x1; � � � ; xn; t);

because, for any f 2 Lim(F)n, there exist g 2 Fn+1 and e 2 N such that

f(x1; � � � ; xn) ' lim
t

g(x1; � � � ; xn; t) ' lim
t

�n+1(e; x1; � � � ; xn; t):

Furthermore we can de�ne the S-m-n function S0m

n
for Lim(F) as

S0m

n
(e; x1; � � � ; xm) = lim

t

U2

1
(Sm

n+1
(e; x1; � � � ; xm); t);

then we have

�0

n
(S0m

n
(e; x1; � � � ; xm); y1; � � � ; yn)

' lim
t

�n+1(lim
s

U2

1 (S
m

n+1(e; x1; � � � ; xm); s); y1; � � � ; yn; t)

' lim
t

�n+1(S
m

n+1(e; x1; � � � ; xm); y1; � � � ; yn; t)

' lim
t

�m+n+1(e; x1; � � � ; xm; y1; � � � ; yn; t)

' �0

m+n(e; x1; � � � ; xm; y1; � � � ; yn):

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 427

2

Lim(F) is called the limiting BRFT of F . BRFT Lim(F) contains F , because we have
an equation f(~x) ' limt U

2
1 (f(~x); t) for every element f of !-BRFT F . In the following, we

use the notations �n and Sm

n
for the enumeration function and S-m-n function of limiting

BRFT respectively.

Note that a guessing function f is a partial function in general, since BRFT is a system

of partial functions. Gold [9] has shown that if limt f(x1; � � � ; xn; t) is total and f is a partial
recursive function, then there is a total recursive function f 0 so that limt f(x1; � � � ; xn; t) =
limt f

0(x1; � � � ; xn; t).
However, if limt f(x1; � � � ; xn; t) is partial, this does not hold. Let Wn be the recursive

enumerable set with the index n (the domain of the partial recursive function fng(x)). Then,
it is known that the set Cof = fnjWn is co�niteg is a complete �0

3 set (see Proposition

X.9.11, [20]). De�ne a partial recursive function � by

�(t; n) '

�
1 t 2 Wn

unde�ned otherwise

Then, Cof conincides with the domain of limt �(t; n). However, the domain of any partial

function which is de�ned as limt f(t; n) for a total recursive f is �0
2 by the de�nition of the

limit.

This fact is a folklore in learning theory (the counterexample presented above is due to

T. Yamazaki). It will be noteworthy that there are some cases in which limits of partial

recursive functions are useful in learning theory [7].

On the other hand, we do not know if we can take a total function f 0 of F for every total

function de�ned as limt f(x1; � � � ; xn; t) for a partial function of any !-BRFT F . Gold's

proof is applicable only to the recursive functions. Although this does not cause any serious

problem for us, it must be an interesting theoretical problem.

Note that we need limits of partial recursive functions, since Kleene's realizability in-

terpretation is based on partial functions. However, there are other notions of realizability

with total higher order functions such as modi�ed realizability. We can build such a theory

over our work with partial functions, however, it has not been known yet if we can do

\limiting" of total higher order functions not through partial functions.

4.2 Weak classical principles and a formal system of LCM. In this subsection, we

will introduce some weak classical principles and show they are realized by limiting BRFT.

To give motivation for such weak classical principles, we will characterize limiting recursive

functions by recursion theoretic hierarchy.

Recall thatPRF is the system of all partial recursive functions. An element of Lim(PRF)

is called a limiting partial recursive function following Gold [9, 10].

Characterizations of the limiting (total) recursive functions by the arithmetical hierarchy

of recursion theory are given by the following theorems.

Theorem 4 (Limit lemma [20, 23]) A set of natural numbers is a �0
2-set if and only

if its characteristic function is a limiting recursive function. In general, a set of natu-

ral numbers is a �0
n+1-set if and only if its characteristic function is de�ned in the form

limt1
limt2

� � � limtn
f(t1; t2; � � � ; tn; x), where f is a recursive function.

Theorem 5 A total function f is limiting recursive if and only if its graph G(f) is a �0
2-set.

Proof. (=)) Using the guessing function g(x; t) of f(x), the characteristic function F (x; y)
of G(f) is de�ned as limt 	(g(x; t); 0; 1; y).

428 NAKATA AND HAYASHI

((=) By the limit lemma above, there is a limiting recursive function limt g(x; y; t) which
is the characteristic function of G(f). Note that f(x) = y if and only if limt g(x; y; t) = 0.

Since limiting recursive functions are closed under minimalization, f(x) is limiting recursive.
2

These characterizations suggest that limiting BRFT interprets the law of the excluded

middle restricted to �0
2
-formula. In the rest of this section, we will show this speculation is

correct.

First, we will introduce some weak classical principles for LCM. We consider the Law of

Excluded Middle restricted to some classes of functions. We will consider Double Negation

Elimination restricted to some classes of functions as well. In the following, LEM stands

Law of Excluded Middle and DNE stands for Double Negation Elimination.

A �0
n
-formula is a formula of the form 8x19x2 � � �Qxn:A, where A is a formula for a

recursive relation. Similarly �0
n
-formula is de�ned.

� �0
n
-LEM is A _ :A for �0

n
-formulas A. �0

n
-LEM is de�ned similarly.

� �0
n
-LEM is 8~x:(A $ B) ! A _ :A, where ~x is the sequence of all free variable

occurring in A and B, A is a �0
n
-formula and B is a �0

n
-formula

� �0
n
-DNE is ::A! A for �0

n
-formulas A.

�0
n
-DNE and �0

n
-DNE are de�ned similarly, but they are equivalent to �0

n�1-DNE in

constructive logic.

The logical relations of these weak classical principles in Hetying arithmetic are illus-

trated by the following theorem.

Theorem 6 In Figure 1, the arrows ! are provable in HA, and the dashed arrows j!

are unprovable in HA. Note that for each axiom in the diagram, f and g are recursive

functions.

�0
1-LEM :

8x:f(x) = 0 _ :8x:f(x) = 0
�0
1-DNE :

::9x:f(x) = 0! 9x:f(x) = 0

-*
�

6
? ��

��
��
��1 ����������)

�0
1-LEM :

9x:f(x) = 0 _ :9x:f(x) = 0

6
�0
2-LEM :

9x8y:f(x; y) = 0$ 8x9y:g(x; y) = 0
! 9x8y:f(x; y) = 0 _ 9x8y:g(x; y) 6= 0

6
?

HH
HH

HY
HHHHHHHj

�0
2
-LEM :

8x9y:f(x; y) = 0 _ :8x9y:f(x; y) = 0
�0
2
-DNE :

::9x8y:f(x; y) = 0! 9x8y:f(x; y) = 0
-*

�

Figure 1: the hierarchy

We conjecture that �0
2-LEM is not derivable from �0

1-LEM. However, this is still an

open problem. The details of the proof and generalization and re�nement of the theorem

will be published elsewhere with applications to \reverse mathematics of constructivity".

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 429

The hierarchy will be enriched by various variants of the restricted law of excluded middle.

The unprovability results of the arrows with � are proved by U. Kohlenbach by means of

his monotone modi�ed realizability interpretation.

The strongest among the principles of the diagram above are �0
2-LEM and �0

2-DNE.

Since the former is not realizable by our limit-realizability, the latter is the strongest in our

LCM weak classical principles.

On these considerations, we now introduce the semi-classical system HAL (HA with

Limits) by adding �0
2-DNE to HA. Any limiting !-BRFT Lim(F) with successor function

gives a realizability interpretation for HAL. Note that fag(b) and �x:f(x; ~y) in the de�-

nition of the realizability interpretation are de�ned by �n and Sm

n
of Lim(F) in the same

way as the case of HA.

Theorem 7 (Soundness for HAL) Let F be an !-BRFT with successor function. If

HAL ` A and FV (A) = fu1; � � � ; ung, then there is an n-ary limiting partial function f 2
Lim(F)n such that f(~u) 2 N and Lim(F) j= f(~u) r A(~u) hold for every ~u = u1; � � � ; un 2
N

n

.

Proof. Except for the new axiom �0
2-DNE, we can prove the theorem in the same way as

for HA.

(�0
2-DNE) If a r ::9x8y:f(x; y) = 0, then we can easily check that 9x8y:f(x; y) = 0

holds by the de�nition.

In order to �nd a value of x such that 8y:f(x; y) = 0, we check the value of f(0; y) in
the order of an integer y until we hit a value y such that f(0; y) = 1. If there is not such a

value y then we obtain a value 0 as x. Otherwise there is a value y such that f(0; y) = 1,

we check the value of f(1; y) until we have a value y such that f(1; y) = 1. If there is not

such a value y then we obtain a value 1 as x. By iterating this procedure, we will have a

value of x in the limit.

To give a realizer of �0
2-DNE, we de�ne the following functions.

�(0) = p(0; 0);

�(n + 1) =

�
p(p0(�(n));p1(�(n)) + 1) if f(p0(�(n));p1(�(n))) = 0

p(p0(�(n)) + 1; 0) if f(p0(�(n));p1(�(n))) 6= 0

Then �a:p(limt p0(�(t));�y:0) r �0
2-DNE. 2

Corollary 1 (Program extraction) Suppose HAL ` 9y:A, and let x1,� � � , xn be the free

variables of 9y:A. Then there is an n-ary limiting recursive function f such that

HAL ` A[f(x1; � � � ; xn)=y]

holds. Furthermore, if A is a recursive formula, then f can be recursive.

For simplicity, we consider the case that A has no free variables except x; y. To prove
the �rst part of this corollary, we need q-realizability, c.f. [5]. It will be obvious how limit-

q-realizability is de�ned and that the soundness theorem holds for HAL. The de�nition

of q-realizability is essentially the same as the one of Kleene, and only the computation

system is replaced by a limiting BRFT Lim(F). By the soundness theorem, we can prove

the existence of f 2 Lim(F) such that Lim(F) j= 8x:A[f(x)=y]. By the soundness theorem,
we may conclude that f is a limiting partial function, i.e., a function of the form f(x) =
limt g(x; t), where g is a partial function. Note that some �nite values of g(x; 1); g(x; 2); � � �
may be unde�ned even if f(x) is de�ned. However, for the BRFT PRF of the partial

430 NAKATA AND HAYASHI

recursive functions, it is known a total recursive guessing function g can be taken, when f
is total (c.f. [9]). Thus, we can take a limiting total recursive function f . Note that this

arguments are informal. By formalizing the entire proof above, the �rst half of the corollary

is proved.

For the second half, we assume A is recursive. Let f be the function which is obtained

by the �rst half of the corollary. Let f(x) = limt g(x; t), where g is recursive. Then we may

de�ne a new recursive f by

f(x) = g(min
t

A[g(x; t)=y]; x):

Again by formalizing this, we obtain the second half of the corollary.

4.3 A composition problem. The de�nition of composition of elements of Lim(F)
was not straightforward. In the de�nition of the composition, we cannot de�ne the function

F (G(x; t); t) as the guessing function of f(g(x)), since it is possible that f(g(x)) is unde�ned
but limt F (G(x; t); t) is de�ned for some x 2 N. For example, If we de�ne F (x; t) ' C2

1 (x; t)
and G(x; t) ' x�t, f(g(x)) is unde�ned since g(x) ' limt x�t is unde�ned. But the following
equations holds.

lim
t

F (G(x; t); t) ' lim
t

C2

1 (x � t; t) ' lim
t

1 ' 1:

Thus we had to de�ne the guessing function of composition of Lim(F) by means of the
conditional. However, this causes a problem for limit-program extraction. Compositions are

used everywhere in the soundness theorem of realizability. Thus, if we construct a realizer

after the procedure of the soundness proof, annoying number of conditionals will appear in

realizers. It is not known if composition of limit partial function can be de�ned in a simpler

way. However, there are practical solutions for this problem.

Let us de�ne a relation f � g by the condition that g(x) is de�ned and g(x) ' y,
whenever f(x) is de�ned and f(x) = y. By replacing axiom 3 of the BRFT with the

following axiom 30:

30: f; g 2 F =) 9h 2 F: f Æ g � h;

we obtain a new notion of computational system. We will call such a system semi-BRFT.

If F is a semi-!-BRFT, then so is Lim(F). In this case, the composition can be de�ned

straightforwardly by adopting F (G(x; t); t) as the guessing function of f(g(x)) . Further-

more, it is easy to see that the soundness theorem of the realizability holds for semi-BRFT

as well.

We may argue in another way. Suppose that we have a realizer r for a proposition

P . By replacing the composition for BRFT de�ned above by the simpler composition for

semi-BRFT, we have a simpli�ed realizer r0. It is obvious that r � r0 holds. Since r is a

realizer of a proposition, it is de�ned over expected input domains. For example, assume P
has the form 8x:9y:A(x; y). Then r is a function y = r(x) computing a value for y from x.
It is obvious that r(x) � r0(x) holds as well by the de�nition of r0. Thus r(x) = r0(x) holds
for all x. Thus, we may use simpler r0 instead of r.

In the rest of the paper, we will consider realizers in this semi-BRFT or in the simpli�ed

manner. Thus, the composition of limt f(y; t) and y = limt g(x; t) would be limt f(g(x; t); t).

4.4 An example of extraction. Here we consider the law of excluded middle restricted

to �0
1-formulas

�0

1
� LEM 9x:f(x) = 0 _ :9x:f(x) = 0

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 431

and extract a realizer from the following proof of �0
1-LEM in HAL.

Let �(x; a) be a characteristic function of f(x) = 0_f(a) 6= 0. Then ::9x8a:�(x; a) = 0

is provable in HA. Thus, by use of (�0
2
-DNE) we have p(limt p0(�(t));�x:0) as a realizer

of 9x:8a:f(x) = 0 _ f(a) 6= 0, where a function � is de�ned by

�(0) = p(0; 0);

�(n+ 1) =

�
p(p0(�(n));p1(�(n)) + 1) if �(p0(�(n));p1(�(n))) = 0

p(p0(�(n)) + 1; 0) if �(p0(�(n));p1(�(n))) 6= 0

Note that 8xa(�(x; a) = 0! f(x) = 0_f(a) 6= 0) and 8x(f(x) = 0_f(x) 6= 0) are provable

in HA. �0
1
-LEM follows from these two and 9x:8a:f(x) = 0 _ f(a) 6= 0 in HA.

Let h and e be realizers of 8xa(�(x; a) = 0 ! f(x) = 0 _ f(a) 6= 0) and 8x(f(x) =
0 _ f(x) 6= 0) respectively. Then using a notion of pseudo BRFT, a realizer of �0

1-LEM is

given by

lim
t

	(f(p0(�(t))); p(0; A(p0(�(t)))); p(1; B(p0(�(t)))); 0)

where

A(n) = p(n;p1(feg(n)));

B(n) = �d:fp1(fhg(n;p1(d); 0))g(p1(d)):

This realizer computes as follows. For t = 0; 1; 2; � � � we check whether f(p0(�(t))) = 0

holds or not. Until we �nd such t, we strengthen the belief that :9xf(x) = 0 holds at each

step t. If we have such t, then it convinces us that 9x:f(x) = 0 and f(p0(�(s))) = 0 holds

for s � t.

5 A case study - Hilbert's �nite basis theorem. Hilbert proved that any system

of invariants are \�nitely generated." The solution was called \theology" by P. Gordan

because of the trans�nite nature of Hilbert's proof. The problem of �nite full invariant

systems was originally posed by Cayley and proved for the two variables case by P. Gordan.

The problem was a long-standing open problem of the 19th century algebra. Gordan proved

it by giving an elaborated algorithm (see [22]). About twenty years later, Hilbert [15] used

his famous �nite basis theorem to solve the problem for the general case.

The �nite basis theorem reads \any idealH of n-ary homogeneous polynomials is �nitely
generated." The statement of Hilbert's original �nite basis theorem, which he called \gen-

eral �niteness theorem" in [17], was a little bit di�erent from the contemporary counterpart.

The following is a quotation from the English translation of Hilbert's 1890 paper [16].

Theorem 8 If an in�nite sequence of forms in the n variables x1, x2, : : : , xn is given, say

F1, F2, F3, : : : , then there is always a number m such that every form in the sequence can

be expressed as

F = A1F1 +A2F2 + � � � +AmFm;

where A1, A2, : : : , Am are appropriate forms in the same n variables.

If we restrict the coeÆcients of the forms (homogeneous polynomials) to rational numbers,

the theories of forms and of invariants are formalizable in HA. Note that we may assume

the forms of given n variables are coded by natural numbers, say hn(i) for the i-th form of

n variables. By adding a free function variable f to HAL, we de�ne its extension HAL(f).
We regard f a \recursive" function. For example, ::9x:8y:A ! 9x:8y:A is a �0

2-DNE, if

432 NAKATA AND HAYASHI

A is a recursive predicate in f . Since the system of partial recursive functions in a given f
is an !-BRFT with the successor function, we may interpret HAL(f) by Lim(PRF(f)).
By means of the coding h and the free variable f , we may formalize the theorem above as

in the form:

9m:8x:9a1; � � � ;9am:h(f(x)) = h(a1)h(f(a1)) + h(a2)h(f(a2)) + � � �+ h(am)h(f(am));

Hilbert proved this theorem by mathematical induction on n. For n = 1, he argued

almost the same as our proof of Proposition 1. We cite an English translation of the

original proof p.144, [16].

In the simplest case n = 1 every form in the given sequence consists r of only
a single term of the form cxr, where c denotes a constant. Let c1x

r1 be the �rst

form in the given sequence whose coeÆcient is 6= 0. We now look for the next

form in the sequence whose degree is < r1; let this form be c2x
r2 . We now look

for the next form in the sequence whose degree is < r2; let this form be c2x
r3 .

Continuing in this way, after at at most r1 steps, we come to a form Fm of the

given sequence which is followed by no form of lower order. Since every form

in the sequence is divisible by this form Fm, m is a number with the property

required by our theorem.

He gave a slightly di�erent proof in [17], which is even closer to our argument in Proposition

1. The arguments of these proofs can be formalized inHAL(f). Note that Hilbert uses �0
1-

LEM repeatedly, e.g, 8i:ci = 0_9i:ci 6= 0. By this LEM, we may assume that r1 exists. By
�0
1-LEM and mathematical induction on r1, we can prove that Fm exists. Although we do

not give the details, it is clear that this proof is formalizable inHAL(f). Hilbert proved the
induction step of the theorem by a similar argument. (He proved the case n = 2, separately.

It is also formalizable in HAL(f).) Thus, we can extract a function \computing" m which

is a limiting-recursive function in f .

Note that we can decide if a form F belongs to the ideal (A1; A2; � � � ; An) by means of

Gr�obner basis or some other methods. Thus, we may think that

9a1 � � � 9am:h(f(x)) = h(a1)h(f(a1)) + h(a2)h(f(a2)) + � � �+ h(am)h(f(am))

is a recursive predicate. Then Hilbert's theorem is a �0
2-formula (�

0
3-proposition). Thus, if

the theorem is proved classically, then, by �0
2-LEM, it is proved in HAL(f). However, our

concern is not provability, but how they are proved, since Proof Animation is a means to

understand proofs through algorithms associated with proofs. Furthermore, the standard

way to explain the Buchberger algorithm computing Gr�obner basis uses Hilbert �nite basis

theorem or the like. Thus, using Gr�obner basis in the proof of Hilbert's �nite basis theorem

is a sort of vicious circle or redundancy.

6 Related works. Berardi and Baratella gave an interpretation of full classical logic [2].

Their interpretation was not fully accountable but its analysis provided legible algorithms

for some cases. The typical one was the minimum value theorem of every number theoretic

function. This example was our \guiding example" through the investigation, and our proof

of Proposition 1 is a variant of Berardi's proof.

Berardi's interpretation was based on a game theoretic interpretation of classical proofs

by Coquand [8, 3]. Although our work was done independently, it should be noted that a

relationship of Coquand's game semantics to learning theory had been pointed out in [3].

There are some resemblances between Coquand's game theoretic interpretation and our

REALIZABILITY INTERPRETATION FOR LIMIT COMPUTABLE MATHEMATICS 433

limiting-realizability interpretation. It is desirable to �nd the exact relationship between

these two.

Berardi [4] has given an interesting new version of his approximation theory after the

idea of LCM. He considers generalized limits over directed sets rather than Gold's limit. It

will be noteworthy that his intepretation of the �rst order equalities are non-trivial unlike

to the existing functional interpretation or semantics, and so seems to carry much more

informations than the existing ones including the realizability in this paper.

There is no very strong reason to use BRFT as the basis of our work. Realizability

intepretations can be given by combinatory algebra or lambda calculus. Akama [1] has given

limit-construction of any PCA (Partial Combinatory Algebra). We may use his construction

instead of ours. However, theories based on PCA rather than the �rst order arithmetic would

be more natural for such an interpretation. See [14] for more discussions.

It would be noteworthy that there are some works on LPO \Limited Principles of Om-

niscience." Its formulation is the same as �0
1
-LEM. However, LPO is normally used with

countable axiom of choice. LPO was originally coined by Bishop and in his constructive

analysis countable choice was used freely. However, under the presence of countable choice,

�0
1-LEM derives �0

n
-LEM for every n. Since our point was to regard limit-recursive func-

tions as a kind of computable functions, LPO in this sense will not �t to our aim.

7 Future works. LCM will be not only useful for proof animation but is expected also to

give new insights relating logic to various �elds of mathematical sciences. For example, some

relations to computable analysis have been found. Having the hierarchy of weak classical

principles up to �0
2-LEM, it is natural to expect \reverse mathematics of computational

constructivity." Relations to mathematical aspects of learning theory and recursion theory

must be investigated. These and other possible directions of LCM are discussed in [14].

Here we will focus on some directions directly related to the materials in this paper.

The limit-algorithm extraction described in this paper is not really accountable. For

example, by the composition construction, the nested limits limt f(lims g(a; s); t) are turned
into a single limit limt f(g(a; t); t). In a sense, two \local times" represented by s and t are
merged into a single time t.

It is doubtful if we can understand the computation of the former nested limits by the

merged limit. It will be as if trying to understand behavior of processes on a multi-task

OS by observing single sequentialized time slices of many processes. Thus, we need some

calculus of functions or processes in which limits are not merged into a single limit, but

are executed concurrently. It would be a simple concurrent system with \change of mind"

signal. There are some other practical or software engineering issues to be solved.

Upon such a calculus and technique, we are planning to build a proof animator based

on limit-realizability interpretation. A target of such a system will be Hilbert's invariant

theory. We have already started to investigate how invariant theory is formalized in the

Coq system.

8 Acknowledgment. We thank Akihiro Yamamoto who pointed out the resemblance

between Berardi's example and learning theory. Discussions on the subjects with him were

quite helpful. We thank Christine Paulin for her suggestion. She suggested a formal system

with Berardi's example or LPO as an axiom might be useful for proof animation. These two

led Hayashi to the idea of LCM. We thank Yohji Akama, Stefano Berardi, Thierry Coquand,

Hajime Ishihara, Shun-ichi Kimura, Nobuki Takayama, Mariko Yasugi for useful discussions

on the subject. The second author is supported by No. 10480063, Monbusyo, Kaken-hi (the

aid of Scienti�c Research, The Ministry of Education). We thank the anonymous referees

and Mariko Yasugi for helpful comments to improve the paper.

434 NAKATA AND HAYASHI

References

[1] Y. Akama, Limiting Partial Combinatory Algebras Towards In�nitary Lambda-calculi and Clas-

sical Logic, In Proc. of Computer Science Logic, Lecture Notes in Computer Science 2142,

Springer, 2001.

[2] S. Baratella and S. Berardi, Constructivization via Approximations and Examples, Theories of

Types and Proofs, M. Takahashi, M. Okada and M. Dezani-Ciancaglini eds., MSJ Memories

Vol. 2, pp.177-205.

[3] S. Berardi, M. Bezem and T. Coquand, On the Computational Content of the Axiom of Choice,

the Journal of Symbolic Logic, 63 (1998), pp.600-622.

[4] S. Berardi, Classical logic as Limit Completion I, a constructive model for non-recursive maps,

Manuscript, Jan. 2001, available at

http://www.di.unito.it/~stefano/Berardi-ClassicalLogicAsLimit-I.rtf.

[5] M. Beeson, Foundations of Constructive Mathematics, Springer, 1985.

[6] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.

[7] G. Baliga, J. Case, S. Jain andM. Suraj,Machine learning of higher-order programs, the Journal

of Symbolic Logic, 59(1994), pp.486-499.

[8] T. Coquand, A Semantics of Evidence for Classical Arithmetic, the Journal of Symbolic Logic,

60(1995), pp.325-337.

[9] E. M. Gold, Limiting Recursion, the Journal of Symbolic Logic, 30 (1965), pp.28-48.

[10] E. M. Gold, Language Identi�cation in the Limit, Information and Control, 10 (1967), pp.447-

474.

[11] S. Hayashi, H. Nakano, PX: A Computational Logic, 1988, The MIT Press.

[12] S. Hayashi, R. Sumitomo; Testing Proofs by Examples, in Advances in Computing Science,

Asian '98 : 4th Asian Computing Science Conference, Manila, the Philippines, December 1998,

J. Xiang and Ohori, eds., Lecture notes in Computer Science No. 1538, pp.1-3, 1998.

[13] S. Hayashi, R. Sumitomo and K. Shii, Towards Animation of Proofs - testing proofs by examples

-, Theoretical Computer Science, in print.

[14] S. Hayashi and M. Nakata, Towards Limit Computable Mathematics, submitted manuscript,

March 2001, available at http://kurt.cla.kobe-u.ac.jp/~hayashi/

[15] D. Hilbert, �Uber die Theorie der algebraische Formen, Mathematische Annalen 36, 473-531.

[16] D. Hilbert, translated by M. Ackerman, Hilbert's Invariant Theory Papers, Math. Sci. Press,

1978.

[17] D. Hilbert, Theory of Algebraic Invariants, Cambridge Mathematical Library, 1993.

[18] S. Jain, D. Osherson, J. S. Royer, A. Sharma, Systems that learn -An introduction to learning

theory-, second edition, The MIT Press, Cambridge, Massachusetts, 1999.

[19] S. C. Kleene, On the Interpretation of Intuitionistic Number Theory, the Journal of Symbolic

Logic, 10 (1945), pp.109-124.

[20] P. G. Odifreddi, Classical Recursion Theory, Vol. I, II, North-Holland, 1989, 1999.

[21] H. Putnam, Trial and Error Predicates and the Solution to a Problem of Mostowski, the

Journal of Symbolic Logic, 30 (1965), pp.49-57.

[22] B. Sturmfels, Algorithms in Invariant theory, Springer-Verlag, Wien, 1993.

[23] J. R. Shoen�eld, On Degrees of Unsolvability, Annals of Mathematics, 69 (1959), pp.644-653.

[24] H. R. Strong, Algebraically Generalized Recursive Function Theory, IBM journal of Research

and Development, 12 (1968), pp.465-475.

[25] E. G. Wagner, Uniformly Re
exive Structures: On the Nature of G�odelizations and Relative

Computability, Transactions of the American Mathematical Society, 144 (1969), pp.1-41.

*Graduate School of Science and Technology, Kobe University, 1-1 Rokko-dai, Nada, Kobe, Japan

**Department of Computer and Systems Engineering, Faculty of Engineering, Kobe University,

1-1 Rokko-dai, Nada, Kobe, Japan

