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Abstract. We speculate on computational aspects of certain discontinuous functions

by taking the Gau�ian function [x] as a typical example. An algorithm how to compute

[x] for a single computable real number is �rst described, followed by a remark that

[x] does not necessarily preserve sequential computability. Second, [x] is studied in the

light of the notions of upper semi-computability and of limiting computation. Then two

Fr�echet spaces, RZand L
1

loc(R) , in which some discontinuous functions will become

computable, will be taken up.

1 Introduction The computability of real functions was originally de�ned for continu-

ous functions, which may be called Grzegorczyk computability (See Chapter 0 in[13], for

example). A real function f de�ned on the compact interval [0; 1] is called Grzegorczyk-

computable if, for any computable sequence of real numbers fxng, ff(xn)g is a computable

sequence of real numbers (f preserves the sequential computability) and if f has a recursive

modulus of (uniform) continuity. This is reasonable with continuous functions since one

can evaluate their values at some dense points, such as rational points, and then, with these

values, one can approximate the value at any point to an arbitrary precision.

If the values at these dense points are computable and the function is smooth enough,

then one can expect that the modulus of continuity can be taken to be recursive. In other

words, such a function is characterized by some representing values \e�ectively."

On the other hand, one often deals with a function which jumps at some points such as

at integer points and which is continuous on each open interval between two jump points.

One would compute the values of such a function at some points which supply information

for computation and then approximate values at other points.

It is thus a natural attitude to investigate ways of expressing such computations. There

can be various approaches to attain this purpose, some of which will be listed as references.

Our interest lies in mathematical treatment rather than foundational.

In [13], Pour-El and Richards proposed to call a function computable if it is nicely

approximated by a sequence of rational coeÆcient polynomials with respect to the norm of

a Banach space. Then a function which jumps at some points but is continuous on their

complement can be regarded as computable. This was made possible by employing a norm

of a function which is not necessarily the maximum norm. On the other hand, in such a

theory, a function is regarded computable only as a point in a function space, while we are

more interested in computing the values of a function.

As a sample of our concern, we will discuss some computability aspects of the Gau�ian

function [x] (the integer part function). It jumps up at integers, but is continuous in each

open interval between two consecutive integers. Although it is an innocent, anti-dramatic

function, it is a typical and a simplest function which �ts into the category of our concern,
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and so is expected to be appropriate to distill the essence of the problem. Due to its

simplicity, it does not obstruct us with irrelevant details.

The function [x] can be regarded as a computable point in two Fr�echet spaces (the space

of integer-indexed sequence of real numbers and the space of locally integrable functions). It

can also be characterized as having computational algorithms if some kind of non-recursive

principles are admitted. One such notion of algorithm is the upper semi-computability, that

is, the value of a function at any point can be approximated from above by a sequence of

values, computed from the information on x. Another is the notion of computation in the

limit, that is, the value of a function at a point can be computed in terms of some limiting

recursive functionals.

In Section 2, we will �rst demonstrate an attempt to compute [x] for a computable real

number x from the information of x as follows.

Let frlg be a computable sequence of rationals converging to x e�ectively. Then we

�nd an integer k such that k < x < k + 2. We will then de�ne a computable sequence of

rationals (in fact integers) fNpg which has the following property. Np = k + 1 as long as a

recursive condition R(p) does not hold: Np = k once R(q) is attained for a q � p. There

are two cases: (i) 8p:R(p), in which case Np = k + 1 for all p, and (ii) 9pR(p), in which

case Nq = k for all q � p, where p is the �rst step for which R(p) holds. If we write limpNp

for the number N such that 9p8q � p(Nq = Np = N), then it can be classically established

that limNp = [x] holds, and the convergence is e�ective. Only it cannot be decided which

of (i) or (ii) indeed holds.

We will view such a situation from two standpoints: upper semi-computability (Section

3) in the line of [20] and [6], and limiting computation (Section 4). The latter can be de�ned

in terms of the notion of limiting recursive functionals in [8].

The treatment in Section 4 suggests that upper or lower semi-computable functions

can be computed in terms of limiting recursive functionals. Furthermore, there are some

discontinuous functions which are neither upper nor lower semi-computable functions but

can be computed in terms of limiting recursive functionals. We will take up several examples

of such functions. Among them is the system of Rademacher functions, which is important

in Walsh analysis. It is shown to be computable with a limiting recursive functional as a

sequence of functions.

Formal treatments of the limiting computation and their interpretations are seen, for

example, in [1] and [12].

In [16], Washihara formulated the conditions for the computability structure on a Fr�echet

space (Axioms 1�3 in Introduction,[16]). The �rst example of a Fr�echet space with com-

putability structure there is R1 , the space of real sequences. ((1) in Section 3,[16]). We

can extend this space to RZ, the space of real sequences with integer indices.

Taking the advantage of the theory of RZ, we will embed some step functions into RZ,

and will show that they are computable in this space (Section 5). This characterizes the

computability of the Gau�ian function as a computable sequence of values.

On the other hand, computability structures on the Banach spaces Lp[a; b] and Lp(R)

are given in 3, Chapter 2 of [13]. Inspired by this, we de�ne a computability structure on

the Fr�echet space L1
loc
(R) (the space of locally integrable real functions) and show that

some examples in Section 4 are computable in this space too (Section 5). This means that

the Gau�ian function is well approximated by a computable sequence of some continuous

functions except at the integer points.

These two results indicate that the Fr�echet space is a useful framework for investigations

of the computability properties of discontinuous functions. For details, see, for example, [14]

for the classical theory of the Fr�echet space, and [16] for the de�nition of the computability

structure on a Fr�echet space.
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This work has been developed from a foregoing article [23]. Although we assume the

knowledge of basics of the computability structures developed in [13] as well as upper and

lower semi-computability in terms of Type 2 Turing machine in [19] and [20], this article is

more or less self-contained. [24] will serve as a quick reference to basics of computability

structures in analysis.

The computability problem of another famous object, the Æ-function, has been studied

in [17] by Washihara. A computability structure is de�ned for the space of tempered

distributions, and it is shown that the Æ-function is computable relative to that structure.

The relations between computability structures of Fr�echet spaces and those of the

metrizations of Fr�echet spaces have been discussed in [18] and [11]. We could thus re-

gard the Gau�ian function as a computable element in a metric space also, but we will not

elaborate upon it now.

There are many related works accomplished on computability problems in function

spaces and metric spaces. We will list only a few of them, say [4], [21] and [22], in which

one can �nd further important references.

In [2], the Gau�ian function is a simplest example of a computable function in their

theory. It is possible because they allow judgement of x � y, while in our theory this is not

decidable. The relation between our approach and that of [2] will be an interesting subject

to work on.

If one changes the topology of input data, then one can turn the Gau�ian function into

a continuous function, so that we can apply the traditional notion of computability to this

function. See, for example, [9], [10] and [15].

2 An attempt to compute [x] A sequence of rational numbers, frmg is said to be

recursive if there are recursive functions �; ; Æ satisfying

rm = (�1)�(m)(m)

Æ(m)

for all m. A real number x is computable if there is a recursive sequence of rationals frmg
and a recursive function � satisfying that for every p = 0; 1; 2; � � �

m � �(p) ) jx� rmj �
1

2p

Such an � is called a modulus of convergence (of frmg to x).

The notion of computable real numbers can be extended to a computable sequence of

real numbers. See [13] for details.

Program P We will �rst attempt to compute [x] for a computable x.

Let x be a computable real number represented by a computable sequence of rationals

frmg and a modulus of e�ective convergence �.

By Proposition 0 in Chapter 0 of [13], there is a program such that, for any computable

number x, if x > 0 indeed holds, then this is recognized by the program.

Using such a program, we will compose a program P such that, given a pair of infor-

mation on x, say hfrmg; �i, where frmg is a recursive sequence of rational numbers which

converges to x with a recursive modulus of convergence �, P outputs a recursive sequence

fspg which converges to [x].

1 There is a program P1 which acts as follows.

Input hfrmg; �; ki, P1 checks whether r�(p) < n � 1
2p

holds for some p � k and n � k.

If the result is Yes, then x < n has been determined. Similarly with the other direction,
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checking the inequality n+ 1
2p

< r�(p). By increasing k, P1 eventually hits a number n such

that n < x < n+ 2. Then stop the process.

2 There is a program P2 such that, input hfrmg; �; ni, where n has been computed by P1

so that n < x < n+ 2, P2 outputs a sequence of integers fNpg as follows.
Compute the inequality r�(p) < (n+1)� 1

2p
, for p = 1; 2; � � � . This relation is decidable.

As long as the answer is No, put Np = n + 1. If the answer is Yes at stage p, then put

Np = n. (Once the answer is Yes, then Nq = n for all q � p.)

3 There is a program P3 such that, with input fNpg, P3 outputs a recursive sequence of

rational numbers fspg. Namely, regarding Np as a rational number, we put sp = Np.

Now, the desired program P is a composition of P1,P2 and P3.

Note It may be confusing that a sequence fNpg is distinguished as a sequence of integers

and as a sequence of rational numbers. This is due to the particular nature of the Gau�ian

function. If we wished to evaluate, for example, the value of 1
2
[x], then the situation would

be clear. That is, sp =
1
2
Np. fNpg is used for case distinctions, while fspg represents a real

number.

Either Np = n+ 1 for all p (Case 1) or there is a p0 such that Np = n+ 1 for p < p0
and Np = n for all p � p0 (Case 2).

fspg is nonincreasing according to the de�nition and converges to either n+1 (Case 1)

or to n (Case 2). Call this limit �.

We can easily claim that, in either case, � = [x]. Notice that [x] is an integer by

de�nition, which is a computable number.

Case 1 Np = n+ 1 for all p. This means that it never happens that r�(p) < (n + 1)� 1
2p
.

This implies that x � n+ 1. Since x < n+ 2, x � n+ 1 then implies that [x] = n+ 1. So,

fspg converges to [x].

Case 2 Np = n for some p and hence for all larger q. This means that r�(p) < (n+1)� 1
2p
,

which implies that x < n+ 1. Since n < x, x < n+ 1 then implies [x] = n.

In either case, the monotone recursive sequence of rationals fspg converges to a com-

putable number, which is in fact [x].

Furthermore, since the limit number is computable, the convergence is e�ective by

Proposition 2 (Monotone Convergence) in Chapter 0 of [13].

How do we �nd an e�ective modulus of convergence? Given p, take the di�erence sq�[x],
q = 1; 2; 3; � � � , and wait until jsq � [x]j < 1

2p
holds. Take the �rst such q and put �(p) = q.

� will do.

If Case 1 holds, then �1(p) = 1 will suÆce. If Case 2 holds, then �2(p) = �q(r�(q) <

(n + 1) � 1
2p
) will do, where �q is the minimum number operator.

The program P can be easily extended to the domain R of all reals numbers.

We can analyze the logical structure of the computation above as follows.

Logical structure The logical structure of the preceding argument is the following. Put

R(p) � r�(p) < n � 1
2p
. R(p) is recursive (with respect to p and n). Then, Case 1 is

expressed as 8p:R(p), and Case 2 is expressed as 9pR(p). Classically, 8p:R(p) _ 9pR(p)
holds. Under each condition, one can construct a modulus of convergence, but we will not

know e�ectively which case holds. It is in general not decidable.

A formula of the form 8p:R(p)_9pR(p) with a recursiveR represents a �0
1 -LEM , LEM

denoting limited excluded middle according to [12]. We can thus describe the evaluation of

[x] above as follows: there is a method of computating [x] which is e�ective relative to a �0
1

-LEM .
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Remark 1 Here one uses di�erent types of input and output representations. The input

is represented by a pair (r; �), where r is an e�ectively converging Cauchy sequence and �

is a recursive modulus of convergence, while the output is represented by a monotonically

converging sequence q of rationals. Although the convergence of the output sequence is

e�ective (since [x] is always an integer and hence computable), the modulus of convergence,

called �, cannot be computed from the pair (r; �) which represents the input. For the

computation of �, one needs an a priori knowledge of [x]. In other words, the mapping

(r; �)! � is not computable, although each � is a computable function.

Let us remark that the Gau�ian function is not sequentially computable. A counter-

example is given below. It will imply that the case distinction 8p:R(p) _ 9pR(p) is not

decidable, since otherwise the computation of [x] would be e�ective.

Counter-example Let a be a recursive injection whose range is not recursive. Let fxng
be the computable sequence of reals in Example 4, Chapter 0 of [13]. That is,

xn =

�
1
2m

if n = a(m) for some m

0 otherwise

�

Consider the computable sequence of reals fyng where yn = 1� xn. Then

yn =

�
1� 1

2m
if n = a(m) for some m

1 otherwise

�

This implies that

[yn] =

�
0 if n = a(m) for some m

1 otherwise

�

Now, suppose f[yn]g were a computable sequence. Then, it can be shown, as in Example

4, Chapter 0 of [13], that the range of a would be recursive, yielding a contradiction. So,

f[yn]g cannot be a computable sequence.

This counter-example assures us of the following fact: the Gau�ian function does not

necessarily preserve computability of a sequence of reals.

3 Upper semi-computability In this section, we prove that the Gau�ian function is

upper semi-computable.

We will use the following notations throughout the rest of this article.

N: the set of natural numbers

Z: the set of integers

R: the set of real numbers

Intuitively, we will call a function f : R! R upper semi-computable if, for each x 2 R,

we can compute from a given sequence of open rational intervals whose intersection contains

the single point x, a sequence of rational numbers fqngn2N which satis�es f(x) = infn2N qn.

We will give our de�nition of upper semi-computability as follows. (See [20] and [6] for

details.)

De�nition 3.1 (Upper semi-computable functions) f : R ! R is upper semi-computable

if the following condition holds.

Let x be any real number. Suppose there is a sequence of rational intervals, say

f(an; bn)gn, all of which contain x and which converges to x, and hence fjbn � anjgn con-

verges to 0. Then there is an algorithm to compute a sequence of rationals fqngn from the

information a�orded by fang and fbng, so that f(x) = infn2N qn.
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Remark 2 1. Equivalently, we could replace the sequence of intervals by a sequence of

rational numbers which converges to x.

2. In particular, if x is a computable real number, then there is a computable sequence of

rationals converging e�ectively to x. Therefore, fqng will be a computable sequence.

3. More precisely, the upper semi-computable functions f : R! R are exactly the (�; �>){

computable functions in the sense of the theory of representations in [20].

With this preparation, we come to our �rst conclusion.

Theorem 1 The Gau�ian function is upper semi-computable.

Proof Given a real number x 2 R and a sequence fIngn2N of rational intervals (an; bn)

such that
T

n2N
In = fxg. Then simply de�ne qn := [bn] for all n 2 N. fqngn2N can

be computed from fbngn2N, since the Gau�ian function restricted to rational numbers is a

(classically) computable rational function.

It is then a mathematical practice to prove [x] = infn2N[bn].

First, we note that x < bn for all n 2 N.

Case 1 x 2 Z. Then for each " > 0 there is some k 2 N such that x < bk < x+ " and thus

infn2N[bn] = x = [x].

Case 2 x 62 Z. Let y := minfz 2 Z : x < zg. Then there is some k 2 N such that

x < bk < y and thus infn2N[bn] = [bk] = y � 1 = [x].

Remark 3 In our theory, we distinguish between a sequence of rationals (expressed in the

form of fractions) and a sequence of real numbers whose entries happen to be rationals. The

distinction is especially important in considering computability of such a sequence, since

there is an example of a computable sequence of real numbers whose entries are rationals

but which is not computable as a sequence of rationals (See Example 4, Chapter 0 of [13].)

By a Theorem in [20] a function f : R! R is upper semi-computable, if and only if its

open epigraph epi(f) := f(x; y) 2 R2 : f(x) < yg is a recursively enumerable open set (cf.

[6]).

Corollary 1 (Epigraph) The open epigraph f(x; y) 2 R2 : [x] < yg of the Gau�ian

function is an r.e. open set.

For a later use, we will give the de�nition of the lower semi- computability of a function

f : R ! R similarly to the upper semi-computability. Namely, in De�nition 3.1, replace

inf by sup, so that f(x) = sup
n2N qn.

4 Limiting computation In [8], Gold de�ned the notion of limiting recursion, that

is, if, for a recursive (number-theoretic) function g(p; n), the value will eventually become

stationary with respect to n, then the computation of that stationary value for p is called

the limiting recursion. He also extended the notion of the limiting recursion to that of

functionals.

De�nition 4.1 ([8]:Gold) (1) (Limiting recursive functional) We call a map from tuples

of number-theoretic functions and natural numbers to a natural number a functional.

Let � be a set of total functions.

A partial functional, F (�1; � � � ; �r; p1; � � � ; ps), where r; s � 0, will be called limiting re-

cursive on � if there is a number-theoretic, total recursive function g(z1; � � � ; zr; p1; � � � ; ps; n)
satisfying

F (�1; � � � ; �r; p1; � � � ; ps) = lim
n

g( ~�1(n); � � � ; ~�r(n); p1; � � � ; ps; n)
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for all r-tuples h�1; � � � ; �ri of functions in � and all p1; � � � ; ps 2 N, where ~�(n) represents

a code of the �nite sequence h�(0; p1; � � � ; ps); � � � ; �(n; p1; � � � ; ps)i.

F will be called simply limiting recursive if � is the class of all total recursive functions.

We will give two useful examples of limiting recursive functionals.

Example 1 (Least value functional) Let � denote a number-theoretic function with s + 1

arguments, s � 0. The least value property

9m8n (�(n; p1; � � � ; ps) � �(m;p1; � � � ; ps))

holds for �. Let L(�; p1; � � � ; ps) denote this least value �(m;p1; � � � ; ps). L is limiting

recursive, and will be called the least value functional.

We will show that the least value functional L is indeed limiting recursive. For the sake

of simplicity, we assume s = 0. Let � be a number-theoretic function. The computation

strategy to evaluate L(�) can be described as follows.

At each n, let gn be a guess of the least value up to step n:

g0 = �(0); gn = min(gn�1; �(n))

De�ne a function g by

g(m; 0) = (m)0; g(m;n+ 1) = min(g(m;n); (m)n+1)

where (m)i is the i-th entry of m when m is regarded as a code of a �nite sequence of

numbers. Then g is (primitive) recursive and satis�es

gn = g( ~�(n); n)

Now,

L(�) = lim
n

g( ~�(n); n)

L is thus limiting recursive (over recursive functions).

Example 2 (Limit functional) Let � denote a number-theoretic function, and let Lim

be a partial functional such that Lim(�; p1; � � � ; ps) = limn �(n; p1; � � � ; ps). Then Lim is

limiting recursive.

We will assume that s = 0. That the limit functional Lim is limiting recursive can be

shown as follows. Let � be a number-theoretic function, and let g be a function de�ned by

g(m;n) = (m)n, where (m)n is as de�ned above. Then g is recursive and

g( ~�(n); n) = �(n)

So, Lim(�) = limn g( ~�(n); n), and Lim is limiting recursive.

As an example of application of L, we will consider [x]. Recall that we have made

speculation on the computation of this function in Section 2.

Proposition 4.1 (A computation for [x]) There is a program to compute [x] using the

least value functional L (cf. Example 1 for L).
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Proof Let hfrng; �i be a representation of x. We follow the computation algorithm in

Section 2.

1. Find some n such that n < x < n+ 2.

2. De�ne a recursive sequence (of rationals) fNpg such that Np = n + 1 if r�(p) �

(n + 1) � 1
2p
; Np = n if r�(p) < (n + 1)� 1

2p
.

3. If l = L(fNpg) = n + 1, then put �(p) = 1 for all p; if l = L(fNpg) = n, then put

�(p) = min
�
q 2 N : r�(q) < n+ 1� 1

2q

	
.

4. Output hfNpg; �i. This represents [x].

Note The computation process in the proof above can be extended to a sequence of real

numbers, that is, given a sequence of real numbers fxig, the computation of f[xi]g is carried
out uniformly in i by using L.

We can thus conclude the following.

Theorem 2 (Sequential computation of [x]) The Gau�ian function has a sequential com-

putation using the least value functional. Namely, for any computable sequence of real

numbers, the sequence of values f[xi]g can be computed e�ectively in terms of the least

value functional L.

Proof In the proof of Proposition 4.1, the ki for which ki < xi < ki + 2 holds can be

computed e�ectively in i. The de�nition of Nip is also e�ective in i, since the computation

of

Nip = ki + 1 if ri�(i;p) � (ki + 1) � 1
2p
; Nip = ki if ri�(i;p) < (ki + 1)� 1

2p

is e�ective in i. Then we can apply L to fNipgp, and we put li = L(fNipg; i). li = ki + 1

(Case 1 for i) or li = ki (Case 2 for i). For Case 1, put �(i; p) = 1, and, for Case 2, put

�(i; p) = �q(ri�(i;q) < (ki + 1)� 1
2p
). Now output hfNipg; �i.

In the following, we will prove a general proposition: any upper semi-computable func-

tion can be computed in terms of Lim, the limit functional. This means that the com-

putation in terms of limiting recursive functionals is a wider notion than upper semi-

computability. The same holds for lower semi-computability. On the other hand, there

are functions which can be computed in terms of limiting recursive functionals but are

neither upper nor lower semi-computable.

Theorem 3 (Upper semi-computability, lower semi-computability and Lim) Each upper

(lower) semi-computable function can be computed in terms of the functional Lim.

Proof We will give a proof for the upper semi-computable function. Let f : R ! R be

an upper semi-computable function. From a given information hfrng; �i which represents

x, one can compute a sequence fqlg of rational numbers such that f(x) = inf ql.

For the simplicity, we may assume that ql are positive. We will �rst de�ne a sequence

ftlg as follows.

t0 = q0; tl+1 = minfql+1; tlg

If fqlg is recursive, then so is ftlg. ftlg is decreasing (non-increasing), and so is monotone

converging to f(x). Next de�ne a function g by

g(l; p) =

�
minfk : k < l; tk � tl <

1
2p
g; if such k exists;

0; otherwise:
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If ftlg is recursive, then the function g is also recursive. Since ftlg is monotone converg-

ing, fg(l; p)gl is non-decreasing and bounded above. So,

Lim(g; p) = lim
l!1

g(l; p)

exists. Furthermore, Lim(g; p) > 0 for every p.

For the modulus of convergence, one can take �(p) = Lim(g; p). We have thus obtained

an output hftlg; �i in terms of the limit functional, given an information hfrng; �i.

We will subsequently give further examples of discontinuous functions which can be

\computed" in terms of limiting recursive functionals. We asssume that a real number x is

represented by hfrmg; �i. When we say an object can be found, we will mean that it can

be found e�ectively from the information hfrmg; �i.

Example 3 Let h be the function h(x) = x� [x]. Here we may assume that rm > x. The

n satisfying n < x < n + 2 can be found. De�ne a sequence of natural numbers fNqg and

a sequence of rational numbers fsqg as follows.
Put R(p) � (r�(p) < (n + 1)� 1

2p
).

Nq =

�
n; if 9p � q R(p)

n+ 1 if 8p � q :R(p)

sq =

�
rq � n; if 9p � q R(p)

rq � (n + 1) if 8p � q :R(p)

fsqg converges to h(x). The modulus of convergence, say �, can be obtained as follows.

If L(fNqg) = n, then �(p) = max(�(p); p0), where p0 = �(r�(p) < (n + 1) � 1
2p
); if

L(fNpg) = n+ 1, then �(p) = �(p).

Example 4 Let ]x[ denote the following real function.

]x[= n if and only if n < x � n+ 1

]x[ is lower semi-computable but is not upper semi-computable, and can be computed in

terms of the least value functional L.

Example 5 De�ne a function � as follows: �(x) = 1(x 2 (0;1));= 1
2
(x = 0);= 0(x 2

(�1; 0)). � is a modi�ed version of the signum function, and is neither upper nor lower

semi-computable.

� can be computed in terms of the limit functional Lim.

Given a real number x with a representation hfrng; �i, de�ne a sequence of natural

numbers fMpg as follows.

Mp =

8<
:

2; if r�(p) >
1
2p

1; if jr�(p)j �
1
2p

0 if r�(p) < � 1
2p

For each p, it can be decided which condition holds, and hence the sequence fMpg is

recursive.

De�ne sp =
1
2
Mp. fspg is a recursive sequence of rational numbers.

We will show that �(x) = limp sp.

Case 1: 9p (r�(p) >
1
2p
).

Once a p satisfying r�(p) >
1
2p

is hit, Mq = 2 for all q � p, and hence limpMp = 2 and



414 MARIKO YASUGI, VASCO BRATTKA AND MASAKO WASHIHARA

limp sp = 1. Since the condition 9p (r�(p) > 1
2p
) means that x > 0, �(x) = 1, and so

�(x) = limp sp = 1.

Case 2: 8p (jr�(p)j �
1
2p
)

In this case, the limit of fMpg is 1, x = 0 and hence �(x) = 1
2
= limp sp.

Case 3: 9p (r�(p) < � 1
2p
)

Once such a p is hit, then Mq = 0 for every q � p, and the limit of fMqg is 0. Furthermore,

x < 0 and hence �(x) = 0, and limp sp = 0.

In any case, limp sp exists, and �(x) = limp sp.

Let Lim be the limit functional de�ned in Example 2. Lim(fMpg) = 2 for Case 1,

Lim(fMpg) = 1 for Case 2, and Lim(fMpg) = 0 for Case 3.

The modulus of convergence  is the following.

If Lim(fMpg) = 2 or Lim(fMpg) = 0, then (p) = minfq 2 N : jr�(q)j >
1
2q
g will do.

If Lim(fMpg) = 1, then (p) = 1 will do.

Now output hfspg; i.

As an example of a function sequence which is computable in terms of limiting recur-

sive functionals, let us deal with the Rademacher function system. Some computational

properties of this function sequence has been studied in [25].

Example 6 Let n denote 0; 1; 2; 3; � � � . Then the nth Rademacher function �n(x) is de�ned

as follows.

�0(x) = 1; x 2 [0; 1)

�n(x) =

�
1; x 2 [ 2i

2n
; 2i+1

2n
)

�1; x 2 [2i+1
2n

; 2i+2
2n

)

where n � 1 and i = 0; 1; 2; � � � ; 2n�1 � 1.

The sequence f�n(x)g is called the system of Rademacher functions, or the Rademacher

system. The Rademacher system has an important role in Walsh analysis (cf. [7] and [26]).

Rademacher functions can be computed as a sequence of functions in terms of the least

value functional as follows.

For an n, the k satisfying k

2n
< x < k+2

2n
can be found. Write kn for such k. fkng can

be e�ectively de�ned. De�ne fNn

q
g as follows.

Nn

q
=

�
kn; if 9p � q (r�(p) <

kn+1
2n

� 1
2p
)

kn + 1; if 8p � q (r�(p) �
kn+1
2n

� 1
2p
)

De�ne ftn
q
g as follows. tn

q
= 1 if Nn

q
is even; tn

q
= �1 if Nn

q
is odd. ftn

q
gq converges

to �n(x). The modulus of convergence is the following. �1(n; p) = minfp 2 N : r�(p) <

kn+1 + 1� 1
2p
g if L(fNn

q
g; n) = k; �2(n; p) = 1 if L(fNn

q
g; n) = k + 1.

The following example is a partial function on the real line. Namely, we will consider

the function tanx.

Example 7 In order to make the discussion simple, we de�ne a function � as follows.

� (x) = tanx if 2n+1
2

� < x < 2n+3
2

�; � (x) = 0 if x = 2n+1
2

� for all n. Unlike the preceding

examples, the function � is unbounded on appropriately large compact sets.

An integer n satisfying 2n+1
2

� < x < 2n+5
2

� can be found. De�ne fNpg as follows.

Np =

8<
:

n; if r�(p) <
2n+3
2

� � 1
2p

n+ 2; if r�(p) >
2n+3
2

� + 1
2p

n+ 1; if 2n+3
2

� � 1
2p
� r�(p) �

2n+3
2

� + 1
2p
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De�ne ftqg as follows.

tq =

�
tan rq ; if Nq = n or Nq = n+ 2

0; if Nq = n+ 1

ftqg converges to � (x). The modulus of convergence can be de�ned similarly to that of

Example 5 according as Lim(fNqg) = n, n+ 2 or n+ 1.

Note In Theorems 2 and 3 as well as in each of Examples 3 through 7 above, a sequence of

rational numbers approximating a function value f(x) can be obtained in a uniform manner

from the information on x, and is recursive given that x is computable, while a limiting

recursive functional is used to determine a modulus of convergence. In all the cases except

Theorem 3, a modulus of convergence is recursive, although which function it is cannot

be known e�ectively. In Theorem 3, a modulus of convergence itself requires a limiting

computation.

5 Discontinuous functions in Fr�echet spaces We will �rst give a brief review con-

cerning classical theory of Fr�echet spaces and the notion of computability thereof for the

reader's convenience. See, for example, [14] for the former and [16] for the latter.

Some de�nitions concerning the computability structure on a Fr�echet space will be cited

from [16] and [23].

A Fr�echet space is de�ned as a locally convex topological vector space that is metrizable

and complete. We will work on a Fr�echet space accompanied by a sequence of seminorms

de�ning its topology.

Let hX; fpmgi be a Fr�echet space with a sequence of semi-norms fpmg.

De�nition 5.1 (Computability structure on a Fr�echet space: De�nitions 1 and 2 of [16]

and De�nition 5.1 in [23]) (i) Let fxnkg and fxng be respectively a double sequence and

a sequence from X. fxnkg is said to converge to fxng e�ectively in k and n if there exists

a recursive function d such that

k � d(m;n; l) implies pm(xnk � xn) �
1
2l

(ii) A nonempty family of sequences from X, say S, is called a computability structure

on X if the following three axioms are satis�ed.

Axiom 1 (Linear forms) For fxng; fyng 2 S, for any computable sequences of reals

f�nkg and f�nkg, and for a recursive function d, the sequence fsng de�ned by

sn =

d(n)X
k=1

(�nkxk + �nkyk)

belongs to S.

Axiom 2 (Limits) Let fxnkg 2 S satisfy that xnk converges to xn as k !1 e�ectively

in k and n. Then fxng 2 S.

Axiom 3 (Seminorms) If fxng 2 S, then fpm(xn)g is a computable double sequence

of reals.

Let us remark that, since we assume nonemptiness of S, f0; 0; � � � g belongs to S.

(iii) A sequence fxng is called computable if fxng 2 S. A point x 2 X is called

computable if fx; x; � � � g is computable.
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We will �rst discuss the computability of the Gau�ian function in the Fr�echet space of

integer indexed real sequences.

The notations N, Z and R de�ned in Section 3 will be used.

RN(which is denoted by R1 in the preceding section and in 2 of [16]) will denote the

Fr�echet space of all sequences of reals x = (�k). Its seminorms are de�ned by

pm(x) = maxfj�jj : 0 � j � mg

A computability structure on RN is the family of all sequences fxng, where xn = (�n
k
) and

the sequence f�n
k
g is a computable double sequence of reals.

De�nition 5.2 (Integer indexed sequences) (i) RZ will denote the space of all sequences

of the form

x = (� � � ; ��k; � � � ; ��2; ��1; �0; �1; �2; � � � ; �k; � � � )

where k = 1; 2; � � � and each �l is a real number.

(ii) De�ne a system of real seminorms fpmg from RZ by

pm(x) =
X
jkj�m

j�kj(1)

for m = 1; 2; � � � .

By simply examining the axioms on a Fr�echet space, we can show the proposition below.

Proposition 5.1 (Fr�echet space of integer indexed real sequences) RZ forms a real vector

space with respect to addition and scalar multiplication over reals. fpmg serves as a sep-

arating system of seminorms, and RZ is complete with respect to this seminorm system.

That is,


RZ; fpmg

�
is a Fr�echet space.

Proposition 5.2 (Computability structure for RZ) Let S be a family of sequences from

RZ, and let fxng denote a sequence from RZ, where xn = (�n
k
); n = 0; 1; 2; � � � and k 2 Z.

Suppose S satis�es the following.

fxng 2 S if and only if f�n
(i)

g is a computable double sequence of reals, where (2i) = i

and (2i+ 1) = �i; i = 0; 1; 2; � � � .
(As usual, S may be assumed to contain also multiple-indexed sequences. By a standard

manipulation of coding, we can regard  as a recursive function.)

Then S satis�es the axioms of the computability structure (See De�nition 5.1.) on the

Fr�echet space RZ.

This can be shown similarly to Example (1) in 2 of [16]. The proof is straightforward.

Let � denote the set of right continuous step functions from R to R with integer jump

points. A function f in � is determined by its values f(k) for integers k. So, we can identify

f with its value sequence ff(k)g.
The correspondence between a function f in � and the sequence ff(k)g induces an

isomorphism between � and RZ with respect to linear combinations over reals, and hence

we can identify � and RZ. We will thus call a sequence of functions from �, say ffng
computable if the double sequence ffn(k)g is a computable sequence in RZ.

As a special case, a function f 2 � is computable if ff(k)g 2 S.
Now take f to be the Gau�ian function [x]. [x] 2 � and ff(k)g = fkg, which is certainly

a computable element of RZ. From this fact, we are led to the following.
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Proposition 5.3 (�-computability) The Gau�ian function is computable as a function in

�.

We will next discuss the computability of the functions in � as functions in the Fr�echet

space of locally integrable real functions. See De�nition 5.1 for the e�ective convergence

and the computability structure on a Fr�echet space.

De�nition 5.3 (Locally integrable functions) (i) A function f : R! R is called locally

integrable if f is integrable on every compact interval. L1
loc
(R) will denote the set of such

functions.

(ii) De�ne a system of real valued functions fpmg from L1
loc
(R) by

pm(f) =

Z
[�m;m]

jf jdx

for m = 1; 2; � � � .

From De�nition 5.3, it can be easily veri�ed that


L1
loc
(R); fpmg

�
is a Fr�echet space.

Proposition 5.4 (Computability structure for L1
loc
(R) ) Let S be a family of sequences

from L1
loc
(R) . Suppose S satis�es the following.

ffng 2 S if and only if there is a computable double sequence of real functions in

the sense of De�nition A00 of [13], say fgnkg, such that fgnkg converges to ffng (with

respect to the seminorm system fpmg above) e�ectively as m ! 1. That is, ffkg can

be approximated (with respect to fpmg) e�ectively by a double sequence of continuous

and computable functions over reals on every compact interval [�k; k], m = 1; 2; � � � . (See

De�nition 5.1 for e�ective seminorm convergence.)

Then S is a computability structure for the space


L1
loc
(R); fpmg

�
.

The step functions with compact supports [�k; k]; k = 1; 2; � � � , and with rational values

and jump points form (if enumerated e�ectively) a computable sequence in L1
loc
(R) .

The proposition can be proved in a manner similar to Examples in 3 of Chapter 2 in

[13].

As a corollary of Proposition 5.4, we obtain the following.

Proposition 5.5 (L1
loc
(R) -computability) The Gau�ian function [x] is computable in the

space of locally integrable functions


L1
loc
(R); fpmg

�
.

Note We could have considered the function [x] as a point in the Banach space L1(R; �),

where � denotes the Gau�ian measure, that is, d� = e�x
2

dx. We have not taken that

approach, since we believe that the behavior of the Gau�ian function is better understood

in L1
loc
(R) .

At the end, we will briey explain that some examples in Section 4 can be regarded

as computable objects in some function spaces. Examples 3,4 and 5 are computable in

L1
loc
(R) . As for Example 7, we can de�ne a Fr�echet space F of real functions as follows.

Put 
 = R� f 2n+1
2

� : n 2 Zg, and let L1
loc
(
) be the set of functions which are integrable

on every compact set in 
. De�ne a system of seminorms fpmg by

pm(f) =
X
jnj�m

Z
In;m

jf j;
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where In;m = [2n+1
2

� + 1
2m

; 2n+3
2

� 1
2m

]. Put F =


L1
loc
(
); fpmg

�
. The function � in

Example 7 is an element of this space. We can de�ne a computability structure for F
with e�ective approximations by computable continuous functions in C(R), and � will be

computable in this sense.

Address of gratitude: We are grateful to Y. Akama, B. Buchburger, S. Hayashi, C. Paulin

and B. Werner for their attention and valuable discussions while preparing this article. In

particular, Hayashi introduced to us the notion of limiting recursion, with which we have

been able to improve this article.
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