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INVARTANCE PRINCIPLES FOR A LINEAR COMBINATION OF
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ABSTRACT. Invariance principles or functional limit theorems are well-known for U-
statistic and V-statistic. In the case that the kernel is non-degenerate, we show invari-
ance principles for a linear combination of U-statistics which includes V-statistic and
I.B-statistic.

1 Introduction Let §(F) be an estimable parameter or a regular functional of a distri-
bution F and g(x1,...,z) be its kernel of degree k. We assume that the kernel g(xy, ..., 2%)
is symmetric and not degenerate. Let Xi,..., X, be a random sample of size n from the
distribution F. U-statistic U,, and V-statistic V,, are well-known as estimators of 8(F),
which are given by the followings.

(1.1) U = <Z> h Yoo (X X,

1< < <jr<n

where Zl<j1<---<jk<n denotes the summation over all integers j1,... , ji satisfying 1 < j4 <
-+ < jr <n. V-statistic V,, is given by

1 n n
(1.2) Vn:m2~-~Zg(Xj“...,X]-k)

Ji=1 Jr=1

(see, for example, Lee(1990)).

As an estimator of §(F), Toda and Yamato (2001) introduce a linear combination Y,
of U-statistics as follows: Let w(ry,... ,r;;k) be a nonnegative and symmetric function of
positive integers ry,... ,rj such that y =1,... ,kand ry+---+r; =k, where & is the degree
of the kernel ¢ and fixed. We assume that at least one of w(ry,... ,r;;k)’s is positive. We
put

d(k,j) = Z+ w(ry,...,rj; k)

ridetri=k
for 7 = 1,2,...,k, where the summation Ej’—1+"'+7’j:k is taken over all positive integers

ri,....r; satisfying ry + -+ 4+ r; = k with j and k fixed. For j =1,... ,k, let g¢jy(21, ..., ;)
be the kernel given by

1 +
gz, ... x5) = mzn+---+w=kw(rh”' Jrink)g(ee, .o e, 2y, ).

ry i

Let U,(Zj) be the U-statistic associated with this kernel g(j)(z1,... ,2;) for j=1,... k. The
kernel gj)(x1,... ;) is symmetric because of the symmetry of w(ry,... ,rj; k). If d(k,j)
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is equal to zero for some j, then the associated w(ry,... ,r;;k)’s are equal to zero. In this

case, we let the corresponding statistic Uﬁlj) be zero.
Then the linear combination Y, of U-statistics is given by

(1.3) Y, = D(i,k) ‘k (*, -)(Z)U;;),

J=1

where D(n, k) = ijl d(k‘,])c) Since w’s are nonnegative and at least one of them is

positive, D(n, k) is positive.

Ifw(l,1,...,L;k) =1and w(ry,...,r;; k) = 0 for positive integers r1,... ,r; such that
j=1...,k—landri+---+r; =k thend(k,k)=1,d(k,j)=0(j=1,... ,k —1) and
D(n,k) = (7]:) The corresponding statistic Y,, is equal to U-statistic U, given by (1.1).

If w is the function given by w(ry,...,rj;k) = El/(r!---r;l) for positive integers
’,...,rjsuchthat j =1,... ;kand ri+---+r; =k, then d(k, j) = jIS(k,j) (= 1.... k)
and D(n, k) = n* where S(k, ) are the Stirling number of the second kind. The correspond-
ing statistic V), is equal to V-statistic V,, given by (1.2).

If w is the function given by w(ry,... ,r;; k) = 1 for positive integers r1, ... ,r; such that
j=1,...  kandri+---+r; = k, then d(k, j) = (';j) (j=1,...,k)and D(n,k) = ("TF 7).
The corresponding statistic Y, is equal to LB-statistic B,, which is given by

n+k—1\"
(1.4) Bn:< . ) Yoo X, Xy X X)),
ritetrn=k .
71 Tn
where Zr1+~~~+rn:k denote the summation over all non-negative integers rq, ..., r, satisfying

rm+--tr,=k (see Toda and Yamato (2001)).

In Section 2 we quote the invariance principles for the U-statistic from Miller and Sen

(1972), Sen (1974), Denker (1985) and Borovskikh (1996).

Our purpose is to show the invariance principles for the statistic Y, given by (1.3), using
the invariance principles for the U-statistic. These are shown in Section 3. For V-statistic
the invariance principles are already shown (see Miller and Sen (1972), Sen (1974), Denker
(1985) and Koroljuk and Borovskich (1994)). Our results are obtained for a linear com-
bination of U-statistics including V-statistic and even under stronger conditions than the
ones for V-statistic.

2 Invariance principles for U-statistic For the kernel g(zy,... ,zx), we put

1/)](1‘1,... ,Cﬂj) :E[g(Xh... Xk) |X1 =1,y ,Xj ::ij j: 17...,]{7

and
h(l)(Tl = ti(z1) -
B (24, 25) = a1, 79) — h<1>(7~1) @ (24) — 6,
c—1
ROz, ae) = bol(zr,. .. 20 Rt ;L,l,...,x,‘j)fe
J=1(e,5)
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for ¢ = 3,4, ..., k, where the sum E(c,j) is taken over all integers such that 1 < < -+ <

ij < ¢. Let 0% be the variance of h(1)(X7). Since we consider the non-degenerate kernel ¢
in this paper, we have o7 > 0.

Let {U,(t) : 0 <t <1} be a random process given by

R if t=g/n (j=0,1,.k—1)
@1) L"(“‘{.f(cfj—e)/kalﬁ =i (= k)

and by linear interpolation elsewhere. That is,

i+l

J R ;o Jd
Lrnt:DTnf nt — I —U,(%
(0) = V(L) 4+ tnt = o) (L)
for j/n<t<(j+1)/n(j=k—1,..,n—1). The following lemma is the weak invariance
principle for U-statistic (see, for example, Lee (1990), p.136-137).

Lemma 2.1 (Miller and Sen (1972)) We assume that E | g(X1,... ,Xi) |*< oo.
Then {U,(t) : 0 <t < 1} converges weakly in C[0,1] to a standard Brownian motion W.

The space C]0,1] is the space of all continuous real functions on [0,1] with the norm
p(r,y) =supgci<y | 2(t) — y(t) | for z,y € C[0,1]. The o-field of Borel subsets of C[0, 1] is
generated by the open subsets of C[0,1].

Lemma 2.2 (Borovskikh (1996), p.166.) We assume that E | h{9(X,,...  X.)
for each c=1,2,... ,k where v, = 2¢/(2¢ — 1).
Then {U,(t) : 0 <t < 1} converges weakly in C[0,1] to a standard Brownian motion W.

"/c< o0,

Borovskikh (1996) states this fact in D[0, 1]
Next, we quote strong invariance principle. Let {£(¢) : 0 <t < oo} be a random process
given by
0 f= 0,1,k —1

and by linear interpolation elsewhere.

Let f(t) be a positive function satisfying the following conditions:
(i) f(t) is increasing on [0, 00),

(ii) t~ 1 f(¢) is decreasing on [0, 00),

(iii) ZHZI[f(cn)}_l f[hm:,(r)]2>f(cn)[h(l)(x)}ZdF(x) < oo for Ve > 0.

Since the kernel g is assumed to be non-degenerate, h(l)(;m) is not equal to a constant
almost surely (a.s.). The following lemma is the strong invariance principle for U-statistic
(see, for example, Lee (1990), p.139).

Lemma 2.3 (Sen (1974)) We assume that E | g(X1,... ,Xy) |’< oc. Then there ezists a
standard Brownian motion W(t) on [0, c0] such that as t — oo,

(2.3) E(t) = kayW(t) + O((tf(1)) T logt) a.s.

If we choose f(t) =t/(logt)*, then (7ff(7f))1/4 logt = t'/2 and we have the following.
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Lemma 2.4 (Denker (1985)) We assume that E | g(X1,... ,Xg) [*< oo. Then

(2.4) lim (tloglogt)™% |~ 3k~ E(t) — W(t) |= 0 a.s.

The following random process is defined in a space different from C[0, 1]. Let {v,(¢),t €
[0,1]} be a random process given by

\/77 T
Vn(l‘) = E(Cn(t) — 9),

n(t) =min{j > 1:nj7"' <t} = —[—?}, t €10,1],

where v, (1) belong to the space D[0, 1] of all real functions on [0, 1] which are right contin-
uous and have left-hand limits. The Skorokhod metric is considered on the space DJ0, 1].

Lemma 2.5 (Borovskikh (1996), p.169.) We assume that E | hO(X;, ..., X,)
for each ¢ =1,2,... ,k where v, = 2¢/(2¢ — 1).
Then {vn(t) : 0 <t < 1} converges weakly in D[0,1] to a standard Brownian motion W.

Yol o0,

Borovskikh (1996) says this result reversed invariance principle.

3 Invariant principles for Y-statistic Let {Y,,(¢) : 0 < ¢ < 1} be a random process
given by

o if t=g/n (j=0,1,..k—1)
3.1 Y“(”‘{m—m/kalﬁ =i =k

and by linear interpolation elsewhere.
Then by (1.3) we have

Yo (?

n

)=0, j=0,1,....k—1

k N
LS ()00
) D(]7k) r=1 ( 7T.)<r> ko—l\/ﬁ ’ J ’ + ’ /TL?

For d and D given in Section 1, we suppose that there exists a positive constant 3y such
that

RS

(3.2) Yl

S |~.

We note that the left-hand side is nonnegative from the assumption. The inequality (3.3)

is equivalent to
d<k7.j>(’?) <A
7 n

k—1

1

(3.4) XY

i=1
For the LB-statistic given by (1.4), 81 = k(k — 1) and for the V-statistic given by (1.2),
81 = k(k —1)/2 (see Toda and Yamato (2001)). Since we have 3; = 0 for the U-statistic,

the U-statistic U, is not included in the following discussion.
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IA

Proposition 3.1 We suppose (3.3), and that E | g(X;,,... ,X;,) |[< oo for 1 <iyp <---
ix < k. Then supycicy | Yn(t) — Un(t) | converges to zero in probability as n — oo.

Proof: Since U,(lk) = U,, by (3.2) we have

k—1
(3.5) sup | Va(t) = Un(t) < I + > 151,
0<t<1 —1

where

L= max | d(k, k) <J) x| U

J
K< | D(j. k) \k n

) |

and

~ - (r)
dik,r) (NG 1T =6
{7 = max - J =1, k1
n kIélja;n D(]k) (7‘ ]’CO’l\/ﬁ - ’ ’

By using (3.3) to Iy, we have

d(k, k)

Tin = max | AN ‘jIUJ—H\
" k<i<n | D(5, k) \Kk koyy/n

U, -8
< i max M
koy k<j<n /i

We note that {Uj,7 = k,k+1,...} is a reverse martingale with respect to the o-fields
o(U;,Uj41,...) and therefore {| U; — 0 |,j = k,k 4+ 1,...} is a reverse submartingale. So
by applying the inequality given by Koroljuk and Borovskich (1994), p.78 to P(sup;»; |
Uj— 0| /vn>e), for Ve > 0 we have

E|Ui—6|
ev/n

which converges to zero as n — oco. Thus maxg<j<, | U; — 8 | /y/n and therefore I,
converges to zero in probability as n — oc.

7.
(3.6) P( max M

< P(s U, — 6 N <
X, 2 S P Ui =6 > evn) <

By (34) ,forr=1,... ,k —1 we have

r(r)
rn o H U =81 16, -46]

I, < —{ ma> ,
n = .ZCO'l {kgja;n \/E \/ﬁ }

where 6, = EU](-T). By the same reason as Ii,, maxg<;<n | U;T) — 8, | /\/n converges to

zero in probability as n — oco. Thus Iéz) converges to zero in probability as n — oo for
r=1,...,k—1. Hence by (3.5), supg<;<y | Yu(t) — U,(t) | converges to zero in probability

as n — oo. O

iFrom Lemmas 1.1, 1.2 and Proposition 3.1, we have the following theorems.

Theorem 3.2 We assume (3.3), E | g(X1,... ,X¢) |*< 0o, and that

E|lgXi,.... XN, <o for 1 <iy <---<ip<k.
Then {Y,,(t) : 0 <t < 1} converges weakly in C[0,1] to a standard Brownian motion W.
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Theorem 3.3 We assume that E | h(c) LX)
where v, = 2¢/(2¢ — 1) and E | g(X;
suppose (3.3).

Then {Y,(t) : 0 <t < 1} converges weakly in C[0,1] to a standard Brownian motion W.

el 00, for each ¢ = 1,2,... k,
)|<oof0r1<21§~--§ik§k. We also

RN

Now we consider the strong invariance principle for the statistic Y.

Lemma 3.4 We suppose (3.3), and that E | g(X;

ST

Xip) < oo for 1 <iyp <-o- < <
k. Then (n/loglogn)|Y, —U,| converges to zero almost surely as n — oo.
Proof: By (1.3) we have

g ) S e -

Using (3.3) and (3.4) to the right-hand side of the above, we have

k—1
n ; P
Y, —U, |< U, 6 Ul —¢
loglogn RE < log log n“ | +]Z1 | -
Under the assumption for 5 = 1,... ,k, U,Sj) — 0; a.s. as n — oo and therefore the right-

hand side converges to zero a.s. as n — oo. Hence (n/loglogn) | Y, — U, | converges to
zero a.s. as n — oo. U

Let {n(t) : 0 <t < o0} be a random process given by

() = 0 t=0,1,...k—1
n(t) = n(Y,—0) t=n,n>k

and by linear interpolation elsewhere.
Then for all n > k, we have

n(n) = &(n) = n(Yn = Un),
which converges to zero a.s. as n — oo by Lemma 3.4. So we have
[ n(n) = £(n) |= o((nf(n)) T logn).
Thus by this result and Lemma 2.3 we have the following.

Theorem 3.5 We assume that E | g(X1,... ,Xy) |*°< o0 and that E | ¢(X;,,..., X)) <
oo for 1 <iy <. <ip < k. We also suppose (3.3). Then there exists a standard Brownian
motion W(t) on [0, 00] such that as t — oo,

n(t) = kot W(t) + O((tf(t)) T logt) a.s.

Theorem 3.6 We assume that E | g(X1,... ,Xy) |?< 00 and that E | ¢(X;,,..., X)) |<
0o for 1<y <+ <ip <k. We also suppose (3.3). Then

tlim (tloglog t)_% | a_%kf_177(t) —W(t)[=0 as.
— 00
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The following is the reversed invariance principle for Y;,. Let {(,(¢),t € [0,1]} be a random
process given by

. n

Calt) = kL(Ynm —6), t€[0,1).

,0'1
The random process (,(t) belong to D0, 1].
Theorem 3.7 We assume that E | h9(Xy,... ,X,) < oo, for each ¢ = 1,2,... ,k where
Ye = 2¢/(2¢ — 1) and that E | g(Xi,,... , Xi,) |[< oo for 1 <4y <o < < k. We also
suppose (3.3).
Then {(n(t) : 0 <t < 1} converges weakly in D[0,1] to a standard Brownian motion W.

Proof. By the definition of v,(t), (a(t), we have

n n i
sup ‘ C"(t) - Vn(t,) |: k‘£ sup ‘ }fn(t) - Un(t) ‘: k£ sup | Y} — D]'
0<t<1 01 0<t<1 01 j>n

By (1.3), (3.3) and (3.4), for 7 > n we get

k—1
YU < I -0 Y 6.

r=1

Thus

k—1
31 1 1 (r)
3.7 su W(t) — () | o —sup | U, — 0| + —sup | U;"’ — 6|}
B1 o [l @) 1< g pen [ U= 0143 oo |07~ 01}

By the same reason stated with respect to (3.6), for Ve > 0 we have

N

1 1
Pl—sup |U; -0 |>e) < —=E|U,— ¥
(ol Ui=01>) < |

which converges to zero as n — oo. Thus SUP;j>, | U;j — 6 | /+/n converges to zero in
probability as n — co. Similarly for r =1,... |k — 1, sup;s,, | Uj(:r) — 6| /+/n converges to
zero in probability as n — oo by the assumption. Hence by (3.7), supg<i<y | Cu(t) — vn(¥) |
converges to zero in probability as n — oo. This fact and Lemma 2.5 give the weak conver-
gence of {(,(t):0<t<1}. O
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