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Abstract. The purpose of this paper is to extend Prokhorov-LeCam's criteria for

compactness and Varadarajan's criterion for metrizability to vector measures with val-

ues in certain locally convex spaces. Our results contain not only Prokhorov-LeCam's

and Varadarajan's criteria for real measures but a sequential compactness criterion

which was recently given by M�arz and Shortt for vector measures with values in a

Banach space.

1 Introduction. Compactness and metrizability for the weak topology of measures are

important and applicative properties in the space of positive or real measures on topological

spaces.

In 1956, Prokhorov [15] gave a compactness criterion for the weak topology of measures

in the space of all positive, �nite measures on a complete separable metric space. This

criterion was extended by LeCam [11] to real Radon measures on an arbitrary completely

regular space. These results are called Prokhorov-LeCam's compactness criteria, and play

an important role in the study of stochastic convergence in probability theory and statistics.

As to the metrizability in the space of measures, it was proved in [15] that the space of

all positive, �nite measures on a separable metric space is metrizable. This is not the case

for real measures, and in fact it was proved in Varadarajan [19] that the set of all real Radon

measures on a metric space S is metrizable if and only if S is a �nite set. Nevertheless,

it was also proved in [19] that not the whole space but a relatively compact subset of real

measures on a locally compact separable metric space is metrizable. This criterion is called

Varadarajan's metrizability criterion.

The purpose of this paper is to extend these criteria for compactness and metrizability

to vector measures with values in certain locally convex spaces. Our criteria contain not

only Prokhorov-LeCam's compactness criteria and Varadarajan's metrizability criterion for

real measures but a sequential compactness criterion which was recently given by M�arz and

Shortt [13] for vector measures with values in a Banach space. We should note here that in

Theorem 1.5 of [13], they have not treated metrizability in the space of vector measures.

In the following section, we prepare notation and de�nitions, and recall some necessary

results concerning vector measures and an integral of scalar functions with respect to vector

measures.

In Section 3, we give a general compactness criterion for a set of vector measures, which

are de�ned on an arbitrary completely regular space and take values in a sequentially

complete locally convex space.

In Section 4, using the compactness criterion established in Section 3, we show that

any uniformly bounded and uniformly tight subset of vector measures with values in a
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Fr�echet space is relatively sequentially compact with respect to the weak topology of vector

measures. During its proof, we have actually established the result, which is a generalization

of Varadarajan's metrizability criterion.

In this paper, all the topological spaces and topological linear spaces are Hausdor�, and

the scalar �elds of topological linear spaces are taken to be the �eld R of real numbers.

2 Preliminaries. Let X be a locally convex space. Denote by X� the topological dual

of X and by hx; x�i the natural duality between X and X�. The weak topology of X means

the �(X;X�)-topology on X. If x� 2 X� and p is a seminorm on X, we write x� � p

whenever j hx; x�i j � p(x) for all x 2 X.

Let S be a �-�eld of subsets of a non-empty set S and � : S ! X be a �nitely additive

set function. We say that � is a vector measure if it is countably additive, i.e., for any

sequence fEng of pairwise disjoint subsets of S, we have
P
1

n=1
�(En) = � (

S
1

n=1
En) in the

initial topology of X. If � is a vector measure, then x�� := h�; x�i is a real measure for

each x� 2 X�. Conversely, a theorem of Orlicz and Pettis ensures that a �nitely additive

set function � : S ! X is countably additive if x�� is countably additive for each x� 2 X�

(see, for instance, Corollary 1 of McArthur [14]).

Let � : S ! X be a vector measure and p be a seminorm onX. Then the p-semivariation

of � is the set function k�kp : S ! [0;1) de�ned by

k�kp(E) := sup
x��p

jx��j(E)

for all E 2 S, where jx��j(�) is the total variation of the real measure x��. See Lewis [12]

and Kluv�anek and Knowles [10] for some properties of p-semivariations.

In this paper, we need an integral of real valued measurable functions with respect to

vector measures with values in locally convex spaces. Let � : S ! X be a vector measure. A

real valued S-measurable function f on S is said to be �-integrable if (a) f is x��-integrable

for each x� 2 X�, and (b) for each E 2 S, there exists an element of X, denoted by

Z
E

fd�,

such that �Z
E

fd�; x�
�
=

Z
E

fd(x��)

for each x� 2 X�. We note here that if X is a sequentially complete, then every bounded,

S-measurable, real valued function f is �-integrable, and

(2:1) p

�Z
E

fd�

�
� sup

x��p

Z
E

jf jdjx��j � sup
s2E

jf(s)j � k�kp(E)

for everyE 2 S and every continuous seminorm p onX. See [12] and [10] for some additional

properties of this integral.

In what follows, let S be a topological space and B(S) be the �-�eld of all Borel subsets

of S. Denote by M(S;X) the set of all vector measures � : B(S)! X. When X = R, we

write M(S) instead of M(S;R). Then, M(S) is a Banach space with the total variation

norm jmj := jmj(S).

A vector measure � : B(S) ! X is said to be Radon if for each " > 0, E 2 B(S), and
continuous seminorm p onX, there exists a compact subsetK of E such that k�kp(E�K) <

", and it is said to be tight if the condition is satis�ed for E = S. Then it is known that a

vector measure � : B(S)! X is Radon if and only if x�� is Radon for every x� 2 X� (see

Theorem 1.6 of [12]).
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By Mt(S;X) we denote the set of all Radon vector measures � : B(S)! X. As before,

we write Mt(S) instead of Mt(S;R). Denote by C(S) the Banach space of all bounded,

continuous, real valued functions on S with the norm kfk := sup
s2S

jf(s)j.
Let � 2 M(S;X). If X is sequentially complete, then we can de�ne a continuous linear

operator T� : C(S)! X by

T�(f) =

Z
S

fd�; f 2 C(S);

which is called the operator determined by �. Recall that a linear operator T : C(S)! X is

said to be weakly compact if it maps every bounded subset of C(S) into a relatively weakly

compact subset of X. When S is compact and X is a Banach space, it was �rst shown

in Bartle, Dunford, and Schwartz [1] that every weakly compact operator from C(S) into

X is determined by a Radon vector measure whose values in X (see also Theorem VI.5 of

Diestel and Uhl [4]).

This type of representation theorem was extended to several other cases. For the case

that S is compact and X is an arbitrary locally convex space see Theorem 3.1 of [12].

On the other hand, for the case that X = R, but S is an arbitrary completely regular

space see Chapter IV, x5, no. 2, Proposition 5 of Bourbaki [2] and Theorem 2 in x3 of

Smolyanov and Fomin [18]. See [7] for the case that X is the weak� dual of a barreled

locally convex space.

The following proposition, which may be virtually known, insists that every continuous

linear operator, satisfying some tightness condition, from C(S) into X can be determined

by a vector measure � 2 Mt(S;X) even for the case that S is an arbitrary completely

regular space and X is an arbitrary locally convex space. See [8] for its proof.

Proposition 1. Let S be a completely regular space and X a locally convex space. Assume

that a weakly compact operator T : C(S)! X satis�es the following condition (�): For each

" > 0 and x� 2 X�, there exists a compact subset K of S such that j hT (f); x�i j � "kfk for

all f 2 C(S) with f(K) = 0.

Then, there exists a unique vector measure � 2 Mt(S;X) such that

(a) every bounded, Borel measurable real function is �-integrable, and

(b) T (f) =

Z
S

fd� for all f 2 C(S).

3 A general compactness criterion. We �rst introduce the notion of weak conver-

gence of vector measures. Let S be a completely regular space and X be a locally convex

space. Let f��g be a net in M(S;X) and � 2 M(S;X). According to the de�nition by

Dekiert [3], we say that f��g converges weakly to � and write ��
w

�! � if the corresponding

net of real measures fx���g converges weakly to x��, i.e., for each f 2 C(S), we have

lim
�

Z
S

fd(x��) =

Z
S

fd(x��):

It is obvious that ��
w

�! � if and only if the net fT��g of operators determined by ��
converges to the operator T� determined by � in the weak operator topology. In the

following, we equip M(S;X) with the topology determined by this weak convergence and

call it the weak topology of vector measures. In the case that X = R, we call it the weak

topology of measures.

A subset V ofM(S;X) is said to be uniformly bounded if sup
�2V k�kp(S) <1 for every

continuous seminorm p on X. Since every weakly bounded subset of X is bounded, it is
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readily seen that V is uniformly bounded if x�(V) := fx�� : � 2 Vg is uniformly bounded

for each x� 2 X�, i.e., sup
�2V

jx��j(S) < 1 for each x� 2 X�. Further, the principle of

uniform boundedness (see Corollary to III.4.2 of Schaefer [16]) ensures that if every element

of x�(V) is Radon, then the uniform boundedness of x�(V) follows from the condition that

sup
�2V

j
R
S
fd(x��)j <1 for each x� 2 X� and f 2 C(S).

We say that V is uniformly tight if for each " > 0 and continuous seminorm p on X,

there exists a compact subset K of S such that k�kp(S�K) < " for all � 2 V. It is obvious
that if V is uniformly tight, so is x�(V) for each x� 2 X�. However, the converse statement

is not valid in general; see an example of [8]. This concept is very important in the study

of compactness for sets of real or vector measures.

The following theorem gives a general weak compactness criterion for vector measures

which will be used in Section 4. Theorem 1 has been proved in [9], but we give its proof for

the completeness of this paper.

Theorem 1. Let S be a completely regular space and X be a sequentially complete locally

convex space. Assume that V �Mt(S;X) satis�es the following two conditions:

(a) For each x� 2 X�, the set x�(V) is relatively compact in Mt(S).

(b) There exists a relatively weakly compact subset W of X such that

�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�
�W:

Then, V is relatively compact in Mt(S;X). If X is semi-re
exive, (b) follows from (a).

Proof. For each � 2 M(S;X), we de�ne a continuous linear operator T� : C(S)! X by

T�(f) =

Z
S

fd�; f 2 C(S):

Then it follows from (b) that T� is weakly compact for every � 2 V. Let X� be the space

X with the weak topology �(X;X�). Denote by L(C(S);X�) the space of all continuous

linear operators from C(S) into X�, and by L�(C(S);X�) the same space with the topology

of simple convergence. We also denote by XC(S) the set of all mappings from C(S) into

X. Put H = fT� : � 2 Vg and denote by H1 the closure of H in XC(S) for the topology of

simple convergence. Then, it follows from (b) and Tychono�'s theorem that H1 is compact

in XC(S) for the topology of simple convergence. To prove that H is a relatively compact

subset of L�(C(S);X�), we have only to show that H1 � L(C(S);X�). Since (b) implies

that the set fhT�(f); x�i : � 2 Vg is bounded for each x� 2 X� and f 2 C(S), it follows from
Banach-Steinhaus theorem (see, e.g., Theorem III.4.2 of [16]) that H is an equicontinuous

subset of L(C(S);X�). Then H1 � L(C(S);X�) by Theorem III.4.3 of [16]. Thus, we have

�nished the proof of the relative compactness of H, so that for any net f��g of V, we can
�nd a subnet f��0g of f��g and an operator T 2 L(C(S);X�) such that

(3:1) hT (f); x�i = lim
�0



T�

�
0
(f); x�

�
= lim

�0

�Z
S

fd��0 ; x�
�

for all x� 2 X� and f 2 C(S).
Now we shall prove that T is weakly compact and satis�es assumption (�) of Proposi-

tion 1. Put D = ff 2 C(S) : kfk � 1g. By (b), there exists a relatively weakly compact

subset W of X such that

fT�(f) : f 2 D;� 2 Vg �W;
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so that we have
S
�0 T�

�
0
(D) �W . On the other hand, by (3.1) it is easy to see that T (D)

is contained in the closure of
S
�0 T�

�
0
(D) for the weak topology �(X;X�). Thus T (D) is a

relatively weakly compact subset of X, so that T is weakly compact.

Next we show that T satis�es assumption (�) of Proposition 1. Fix " > 0 and x� 2 X�.
By (3.1), we have

(3:2) j hT (f); x�i j = lim
�0

����
�Z

S

fd��0 ; x�
����� = lim

�0

����
Z
S

fd(x���0)

����
for all f 2 C(S). On the other hand, by (a) there exists a subnet fm�00g of fx���0g and a

real measure m 2 Mt(S) such that

(3:3) m�00

w

�! m:

Since m is Radon, there exists a compact subset K of S such that

(3:4) jmj(S �K) < ":

Fix f 2 C(S) with f(K) = 0. Then, it follows from (3.2){(3.4) that

j hT (f); x�i j = lim
�00

����
Z
S

fdm�00

���� =
����
Z
S

fdm

����
=

����
Z
S�K

fdm

���� � kfk � jmj(S �K) < "kfk;

and this implies that T satis�es assumption (�) of Proposition 1. Thus, by Proposition 1,

we can �nd a vector measure � 2 Mt(S;X) such that

T (f) =

Z
S

fd�

for all f 2 C(S). Hence, by (3.1) we have

lim
�0

�Z
S

fd��0 ; x�
�
=

�Z
S

fd�; x�
�
;

and this implies the relative weak compactness of V.
Assume that X is semi-re
exive. By (a), x�(V) is uniformly bounded for each x� 2 X�,

so that V is uniformly bounded as is stated in the beginning of this section. Then, the set�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�

is a bounded subset of X, and hence it is weakly relatively compact by IV.5.5 of [16]. 2

It is well known as Prokhorov-LeCam's compactness criterion that every uniformly

bounded and uniformly tight subset M of Mt(S) is relatively compact in Mt(S) (see [18],

and also [11] and [19]). The following is a vector measure version of this criterion.

Corollary. Let S be a completely regular space and X be a sequentially complete locally

convex space. Assume that V �Mt(S;X) satis�es the following three conditions:

(a) For each x� 2 X�, x�(V) is uniformly bounded.

(b) For each x� 2 X�, x�(V) is uniformly tight.
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(c) There exists a relatively weakly compact subset W of X such that�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�
�W:

Then, V is relatively compact in Mt(S;X). Further, if X is semi-re
exive, (c) follows from

(a).

Proof. By (a), (b), and Theorem 2a in x5 of [18], for each x� 2 X�, x�(V) is relatively
compact in Mt(S). Consequently, V is relatively compact in Mt(S;X) by Theorem 1. 2

4 Sequential compactness and metrizability. In this section, we turn our attention

to a sequential compactness criterion and a metrizability criterion in the space of vector

measures.

It is well known as Prokhorov-LeCam's sequential compactness criterion that any uni-

formly bounded and uniformly tight subset of real measures on a completely regular space

S is relatively compact and relatively sequentially compact, provided that every compact

subset of S is metrizable; see Theorem 6 of [11] and Theorem 2 in x5 of [18]. The following

theorem extends this important and applicative result to vector measures with values in a

Fr�echet space.

Theorem 2. Let S be a completely regular space whose compact subsets are all metrizable,

and let X be a Fr�echet space. Assume that V � Mt(S;X) satis�es the following three

conditions:

(a) V is uniformly bounded.

(b) V is uniformly tight.

(c) There exists a relatively weakly compact subset W of X such that�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�
�W:

Then, V is relatively compact and relatively sequentially compact in Mt(S;X). Further, if

X is re
exive, (c) follows from (a).

To prove Theorem 2, we need the following

Lemma 1. Let S be a space as in Theorem 2 above and X a sequentially complete locally

convex space. Let V �Mt(S;X) be uniformly tight. Let p be a continuous seminorm on X.

Then, there exists a countable dense subset I of C(S) which satis�es the following condition:

For any " > 0 and f 2 C(S), we can �nd a g 2 I satisfying

p

�Z
S

(f � g)d�

�
� " (k�kp(S) + 2kfk + ")

for all � 2 V.

Proof. By uniform tightness of V, there exists a sequence fKng of compact subsets of S

such that

(4:1) k�kp(S �Kn) <
1

n

for all � 2 V and n � 1. Since each Kn is metrizable, C(Kn) is separable. Fix n � 1 for a

moment, and let fgi;ng1i=1
be a countable dense subset of C(Kn). Then, each gi;n has an



COMPACTNESS AND METRIZABILITY 353

extension ~gi;n 2 C(S) such that

(4:2) k~gi;nk = kgi;nkKn := sup
s2Kn

jgi;n(s)j:

Put I = f~gi;ng1i;n=1
. Fix f 2 C(S) and " > 0, and choose n0 such that 1=n0 < ". We set

fn0 = f�
Kn0

(the restriction of f onto Kn0
) 2 C(Kn0

), then there exists a gi0;n0 2 C(Kn0
)

such that

(4:3) kfn0 � gi0;n0kKn0 <
1

n0

since fgi;n0g
1

i=1
is a dense subset of C(Kn0

). On the other hand, by (4.2) and (4.3), we

have

kf � ~gi0;n0k � kfk+ k~gi0;n0k = kfk + kgi0;n0kKn0

� kfk+

�
1

n0
+ kfn0kKn0

�

� 2kfk+
1

n0
:

By (4.1), (4.3) and the inequality above, together with (2.1) and the fact that k�kp(�) is
increasing on B(S), for each � 2 V, we have

p

�Z
S

(f � ~gi0;n0)d�

�
� p

 Z
Kn0

(fn0 � gi0;n0)d�

!
+ p

 Z
S�Kn0

(f � ~gi0;n0)d�

!

� k�kp(Kn0
) � kfn0 � gi0;n0kKn0

+k�kp(S �Kn0
) � kf � ~gi0;n0k

�
1

n0
k�kp(S) +

1

n0
kf � ~gi0;n0k

�
1

n0
k�kp(S) +

1

n0

�
2kfk+

1

n0

�

� " (k�kp(S) + 2kfk + ") :

Hence, the proof of Lemma 1 is complete if we put g = ~gi0;n0 2 I. 2

Proof of Theorem 2. Denote by �M the weak topology of vector measures on Mt(S;X),

and by A the closure of a subset A of Mt(S;X) with respect to �M.

Assume that V �Mt(S;X) satis�es (a){(c) of Theorem 2. Then, V is relatively compact

by Theorem 1, so that V is compact. Take a sequence f�ng � V, and putM = f�ng. Then,
M is compact since M is a closed subset of V. Consequently, to prove Theorem 2, we

have only to show that the weak topology �M is metrizable on M , since compactness and

sequential compactness coincide on metrizable spaces. For this end, we need the following

Lemma 2. Let p be a continuous seminorm on X. Then, there exists a semi-metric dp
on M which satis�es the following two conditions:

(a) The weak topology �M on M is �ner than the topology generated by dp.
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(b) Let �; � 2M . Then, dp(�; �) = 0 implies that

p

�Z
S

fd��

Z
S

fd�

�
= 0

for all f 2 C(S).

Proof. Let I be a countable dense subset of C(S) in Lemma 1, and put I = fgmg1m=1
for

simplicity. Put

Q =

�Z
S

gmd�n : m � 1; n � 1

�
;

and denote by X0 the closed linear subspace spanned by Q. Since X0 is a separable metriz-

able locally convex space, X�
0
is separable for �(X�

0
;X0) by IV.1.7 of [16], so that there

exists a countable subset fu�
l
g1
l=1

of X�
0
which is dense in X�

0
for �(X�

0
;X0). By Hahn-

Banach Theorem, each u�
l
has an extension x�

l
2 X�. Put H = fx�

l
g1
l=1

. Since fu�
l
g1
l=1

is

dense in X�
0
for �(X�

0
;X0), H separates points of X0, i.e., x0 2 X0 and hx0; x�i = 0 for all

x� 2 H, then x0 = 0.

De�ne a semi-metric dp on M by

dp(�; �) =

1X
l=1

1X
m=1

1

2l
�

1

2m
�

��
R
S
gmd��

R
S
gmd�; x

�

l

���
1 +

��
R
S
gmd��

R
S
gmd�; x

�

l

���
for all �; � 2 M . Then, we shall show that dp satis�es (a) and (b). It is easy to prove

(a), so that we shall prove (b). Let �; � 2 M , and dp(�; �) = 0. Then, it is readily shown

that
R
S
gmd�;

R
S
gmd� 2 X0 for all m � 1, since M = f�ng by the de�nition and X0 is the

(weakly) closed linear subspace spanned by Q = f
R
S
gmd�n : m � 1; n � 1g. Hence, by the

de�nition of dp and the fact that H = fx�
l
g separates points of X0, we have

(4:4)

Z
S

gmd� =

Z
S

gmd�

for all m � 1. Fix f 2 C(S) and " > 0. By Lemma 1, there exists a gm0
2 I such that

(4:5) p

�Z
S

(f � gm0
)d�

�
� " (k�kp(S) + 2kfk + ")

for all � 2 V. Thus, by (4.4) and (4.5), we have

p

�Z
S

fd� �

Z
S

fd�

�
� p

�Z
S

(f � gm0
)d�

�
+ p

�Z
S

gm0
d��

Z
S

gm0
d�

�

+p

�Z
S

(gm0
� f)d�

�

� " (k�kp(S) + 2kfk+ ") + " (k�kp(S) + 2kfk + ") :

Since " is arbitrary, we have

p

�Z
S

fd��

Z
S

fd�

�
= 0;

and the proof of Lemma 2 is complete. 2
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Let us return to the proof of Theorem 2. Let fpng be a countable set of continuous

seminorms which generates the topology of X. Put dn = dpn for simplicity and de�ne a

semi-metric on M by

d(�; �) =

1X
n=1

1

2n
�

dn(�; �)

1 + dn(�; �)

for all �; � 2M . To prove that d is actually a metric, we assume that d(�; �) = 0, �; � 2M .

Then, dn(�; �) = 0 for all n � 1, so that, by (b) of Lemma 2, we have

(4:6) pn

�Z
S

fd� �

Z
S

fd�

�
= 0

for all n � 1 and all f 2 C(S). Since fpng generates the topology of X, it follows from

(4.6) that Z
S

fd� =

Z
S

fd�

for all f 2 C(S), which implies � = �, since � and � are Radon.

By (a) of Lemma 2, it is easy to see that the weak topology �M on M is �ner than the

metric topology generated by d. >From this and the compactness of M it follows that both

topologies are equivalent (see, e.g., I.5.8 of Dunford and Schwartz [6]). Hence, the weak

topology �M onM is metrizable, and the proof of the relative weak sequential compactness

of Theorem 2 is complete.

Finally, assume that X is re
exive. Then, it follows from (a) that the set�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�

is a bounded subset of X, so that it is weakly relatively compact by Theorem IV.5.6 of [16].

2

In the proof of Theorem 26 in Part II of [19], it was proved that any relatively com-

pact subset of real measures on a locally compact separable metric space is metrizable

with respect to the weak topology of measures, so that it is relatively sequentially com-

pact (Varadarajan's metrizability criterion). Since every locally compact separable metric

space is a Polish space (see Theorem 6 in Chapter II of Schwartz [17]), by Theorem 30 in

Part II of [19], relative compactness coincides with the combination of uniform boundedness

and uniform tightness for subsets of Mt(S). Therefore, the following Theorem 3 extends

Varadarajan's metrizability criterion to vector measures with values in a separable Fr�echet

space.

Theorem 3. Let S be a completely regular space whose compact subsets are all metrizable.

Let X be a Fr�echet space whose topological dual X� has a countable set which separates points

of X (this is equivalent to X� being separable for the weak topology �(X�;X)). Assume that

V �Mt(S;X) satis�es the following three conditions:

(a) V is uniformly bounded.

(b) V is uniformly tight.

(c) There exists a relatively weakly compact subset W of X such that�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�
�W:

Then, V is metrizable and relatively compact inMt(S;X), so that it is relatively sequentially

compact in Mt(S;X).
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To prove Theorem 3, we need the following

Lemma 3. Let S be a completely regular space and X a locally convex space. Assume

that V � Mt(S;X) is uniformly bounded and uniformly tight. Then the closure V of V in

Mt(S;X) is also uniformly bounded and uniformly tight.

Proof. Fix " > 0 and a continuous seminorm p on X. Since V is uniformly tight, there

exists a compact subset K of S such that

(4:7) k�kp(S �K) < "

for all � 2 V.
Take � 2 V arbitrarily. Then there exists a net f��g � V such that ��

w

�! �. By (4.7)

and Chapter IX, x5, no. 3, Proposition 6 of [2], for any x� 2 X� with x� � p, we have

jx��j(S �K) � lim inf
�

jx���j(S �K)

� sup
�2V

jx��j(S �K) � sup
�2V

k�kp(S �K) � ";

so that k�kp(S �K) � ". Since � 2 V is arbitrary, we have

sup
�2V

k�kp(S �K) � ";

and this implies that V is uniformly tight. Uniform boundedness of V can be proved

similarly. 2

Proof of Theorem 3. In the proof of Theorem 2, put M = V instead of M = f�ng. Then,
by Lemma 3, M is uniformly bounded and uniformly tight. Therefore, Lemma 1 is valid

for M . Consequently, Lemma 2 can be proved for the set M , since X� has a countable set

which separates points of X. The rest of the proof is the same as the proof of Theorem 2.

2

Remark. When X is a Banach space, condition (c) of Theorems 1 and 2 follows from

uniform tightness of V and the following condition (d) which was assumed in Theorem 1.5

of [13]:

(d) For each compact subset D of S, there exists a weakly compact subset WD of X

such that �Z
D

fd� : f 2 C(S); kfk � 1; � 2 V

�
�WD:

To prove this, we �x " > 0. By uniform tightness of V, there exists a compact subset D

of S such that k�k(S�D) < " for all � 2 V, where k�k denotes the semivariation of � with

respect to the norm on X. Then we have




Z
S

fd� �

Z
D

fd�





 =





Z
S�D

fd�





 � kfk � k�k(S �D) � "

for all � 2 V and all f 2 C(S) with kfk � 1. Let WD be the weakly compact subset of X

in condition (d). Then

W :=

�Z
S

fd� : f 2 C(S); kfk � 1; � 2 V

�
�WD + "BX ;

where BX denotes the closed unit ball of X. Thus, W is relatively weakly compact by

Grothendieck's lemma (see Lemma XIII.2 of Diestel [5]).
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