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HIGH ACCURATE RATIONAL CUBIC CURVE
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ABSTRACT. We consider a uniformly parameterized planar rational cubic interpola-
tion. The necessary and sufficient conditions on inflection points and singularities for
a convex data have been presented. This paper uses the remaining two degrees of
freedom. Shape preserving parameters are automatically generated and the degree of
smoothness attained is G?. Numerical examples with their curvature plots demonstrate
high accuracy of our scheme for both C-type and S-type data.

1 Introduction Data interpolation is a useful and powerful tool for curve and surface
design. Smooth curve representation, to visualize the data without undesirable infelction
points and singularities, is of great significance. In CAGD applications, it is often desirable
to find the conditions for high degree rational cubic interpolant such that a curve may or
may not have cusps and inflection points. Many efforts and proposals recently have been
made for an approximation (interpolation) theory of parametric curves or planar data by
geometric splines with polynomial or rational segments from the viewpoints of approxi-
mation orders and shape preserving properties; refer to [2], [3] and therein for a unified
theory of the general geometric Hermite interpolation. Most authors consider G2 (2nd or-
der geometric continuity) two-point Hermite interpolation by a planar rational cubic curve
z(t) = (z(t),y(t)),0 < ¢ <1 with four Bézier control vertices p;,0 < i < 3 of the form:

(1) 2(0) = Yo panBi(0)) Y wiBi(0), Bilt) = < ; )ti@ g

=0

where B;(t) is the cubic Bernstein polynomial.

The following osculatory (G? two point Hermite interpolation) problem is well-known:
given the four control vertices and a curvature value at each end point, find weights wy, wo
subject to wy = w3 = 1 or w; = we = 1 such that the resulting rational cubic of the
form (1) assumes the given curvatures at the end points, see [4],[5]. de Boor, et al. ([1])
considered another osculatory cubic polynomial interpolation (i.e., w; = 1, 0 < ¢ < 3)
passing through given two points and satisfying the corresponding tangent directions and
consistent curvatures at the end points for a C-shaped control polygon. Then the curvatures
ki, i = 0,1 can be viewed as shape parameters while our results ([5]) enable us to view the
weights w;, i = 1,2 as the shape ones for the given (fixed) curvatures, though the weights
can also be used to achieve a high order approximation or a high order of contact at the end
points, i.e., use of rational cubic approximations instead of polynomial yields considerable
improvement in accuracy.

The main object of our paper is to consider the same G? two-point Hermite inter-
polation problem by use of a more general rational cubic of the form (1) with weights
(wo, wy,we,ws) = (v,v 4 2,w + 2, w) where v, w > 0. Inflection point and singularity tests
for both C-type and S-type data are given in section 2. Section 3 gives numerical examples
to show the accuracy of our scheme with cutvature plots.
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2 Rational Cubic Interpolant We consider a rational cubic interpolant z through a,
b with the tangent vectors Ty, T'; and curvatures kg, k1 at the two points. The angle 0 is
measured from Ty to ab, v is measured from ab to T'; and - is measured from ab to X-axis
where assume that 0 < 0, [¢| < 7 and that 6 + ¢ > 0. Then, note that with rg,7; > 0

(2) To = ro(—cos (0 +7),sin (0 +7)), T1=—ri(cos (¥ —7),sin (¢ —7))
P1
P2
P
Ps (-1,0) 0,
&) Po (1, 0)
E)
P3(-1,0) Po(1,0) P2

Figure 1: C-shaped (0 > 0,7 > 0) and S-shaped (6 > 0, < 0) polygons.

Figure 1 gives typical C- and S-shaped control polygons with their interpolated curves
where a=(1,0) and b=(-1,0), (y=0). Assume that the both end points, the end tangent
directions and curvature are consistent where the ”consistent” curvatures at the end points
a, b with respect to the corresponding tangent directions mean ”sign of 2/(i) x (ab) = (—1)*
sign of k4,4 = 0,1” or kpsin® > 0,k1siney > 0 ([7]). Then, we consider a rational cubic
curve z(t),0 <t <1 of the form with four control vertices p,(= a), p;, ps, P3(= b):

(3) z(t) = v(1 = 1)3py + (v + 2)t(1 — £)2py + (w + 2)t2(1 — t)p, + wtdpy
= o1 =3+ (v+ 2)t(1 — )2 + (w+2)2(1 — t) + w3

where
= a+ (—cos(0+7),sin(0+7))
Dy - 1}+2 Y)s Y
- rw _ . _
Py = bt (cos (4= 7)sin (4= )

The curvature (t) of a plane curve z(t) is

3
(4) K(t) = (2'(t) x 2" (1))/ |2/ ()]
Then, it satisfies the required conditions:
2(0)=a,z(1) =b; 2'(0)=Ty,2'(1)=T1; £(0)= ko, k(1) =K1

where r = ||ab||, b= a+ r(—cos~y,sinvy).

We take rg, r1 as positive parameters, i.e., we assume that the unit tangent vectors (tan-
gent directions) are given at the two points a,b. Then we consider the sufficient condition
on the given data 6,1, kg, k1 and the weights (v, w). jFrom x(0) = ko, k(1) = k1, we get a
system of quadratic equations:

(7) korav + 2riwsin (0 4+ ) = 2r(w + 2) sin 6

(5)
(i) k12w + 2rousin (0 + ¥) = 2r(v + 2) sine
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Solving (5) for v and w, we get:

v = 4r(kyrisinf 4 2rsin @ sin ) — 2y sinepsin (0 + ) /D
w = 4r(rord siny + 2rsin @sin v — 2rq sin O sin (6 + 1))/ D

where
D = kgkyrari — 4(rsiny — rosin (6 4 1)) (rsin @ — risin(0 + )

Introduce Ry, R1;po, p1 (note that consistent tangent directions and curvatures at the end
points mean Ry, Ry > 0; refer to [1],[7]) as:

R — ror(v + 2)2sin® ¢ B rir(w + 2)%sin? 0 .
*7 2u(w+2)sinfsin? (0 + ) 2w(v+ 2)sinysin (0 + )
vro sin (6 + ) wry sin (6 + )
po = pr=—r———

~ r(v+2)siny r(w+2)sind

Then we have a reduced quadratic system of equations in (pg, p1) from (5):
(6) po=1—Rip{, p1=1-Ropy

Depending on the C- and S- shapes of the control polygons as shown in Figure 1, we
give the following theorem on N (= the number of solutions of the quadratic system (6)).
Cases 1-2 and 3-4 are C- and S-shaped respectively, where § > 0 and ¥ > 0 (< 0) for C-
(S-) shaped.

1.75
1.5 0 1
1.25
2
1
32—
0.75 (3/4,314)
0.5 1 0
0.25
0.5 1 1.5 2 R

Figure 2: Number of solutions of quadratic system (6)

Theorem 1 ([1], [5]) (Number of solutions of quadratic system (6)).

Case 1 (0 <0+ <7): N is given in Fig. 2, where the curve separating the regions is
represented by RoR1{256 RgR1 — 256(Ro + R1) + 288} = 27 having a cusp at (3/4, 3/4).
Case 2 (m< @+ <2n): N=1 for Ry, Ry > 0.

Case 3 (-7 <0+ <0): N=1for Ry>1,R >0 and N =0 for Ry <1,R; > 0.
Case4 0< 0+ <m): N=1for Ry>0,Ri >1and N =0 for Ry > 0,0 < Ry <1.

We consider the inflections and singularities (loop and cusp) on the curve(s) of the form

(3).
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Inflection points: The change of variable ¢ = 1/(1 + s) converts the interval (0, 1) to
(0,00). For z(t) = (z(t), y(t)), Mathematica (if necessary) helps us obtain:

2(1+s)3

(7) y”(t)x/(t) o ZL'/I(t)yl(t) = m ‘

dis', t=1/(1+s)
0

with
do = k3w /2, dy = 2rrvw?sineg,  dy = 3rrovwsind,  dz = korgv® /2
Use of Decartes’ rule of signs and intermediate value of theorem shows that eq (7)

has no positive (just one) zero acoording to C- (S-) shaped control polygons since then
(do,dy1,d2,d3) = (+,+,+,+) (=, —,+,4+)). Hence, we have

Theorem 2 (Inflection points) The segment of the form (3) has no (or just one) inflection
point for the C-(or S-) shape of the polygon.

Next, we consider the singularities.
Singularities (loops): As in the inflection points, convert the interval (0,1) to (0,00)
by a change of variable; ¢ = 1/(1 + p). Assume the existance of a loop, i.e., for p,q > 0:

@) x(1/(1+p)—z(1/(1+q)=0 and y(1/(1+p))—y(1/(1+4q))=0

Here, letting p + ¢ = m and pg = n, then

p=(m+vVm2—4n)/2 and q=(m—/m?—4n)/2, m?> > 4n.
Mathematica helps us reduce (8) to a system of linear equations in rg, r1:

{pcos (v + 0)}ro + {Acos (v —v¥)}br1 = ncosy
(9)

{psin (v + 0)}ro + {Asin (y — ) }ry = nsiny
where
p=w(mw +n(w+2) —nv), \=whmv+n(v+2) —w)
n = r(m?vw + 2nv + mw(v + 2) + (2n + mnw)(w + 2))(> 0)

Solving (9) for ro and 1, we get:

nsin 6

, ~ nsiny .. B
(10) (@) r ——(>0), (i) mfm

* 7 psin (0 + )

from which we derive:

(>0)

(i) r(v42)siney — rousin (8 + 1)(= k1riw/2)
rv?(2mn + 2n? + n?v + w(m? — n) + mnw) sin 1)

I

(11)
(i) r(w+2)sin@ — rywsin (0 + )(= Korgv/2)
rw?(2 + 2m + mv + v(m? — n) +w) sin @
A
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Now depending on the polygon, we consider the following four cases:

Case 1 (0 < 0+ ¢ < m): Note 10(i) to obtain p > 0 and so, 11(i) can not be valid since
k1 > 0.

Case 2 (7 < 0 + ¢ < 2m): Note 10(i)-(ii) to obtain A, 4 < 0 which can not be valid at the
same time since:

A+ Am = wn(w + 2) + 2mn + nv(m? —n +m) > 0

Case 3 (—7 < 6+ < 0): Note 10(i) to obtain u > 0 and so, 11(i) can not be valid since
k1 < 0 and siny < 0.
Case 4 (0 < 0+ < m): Note 10(ii) to obtain A > 0 and so, 11(ii) can not be valid since
ko > 0.

The above consideration for all cases shows that the linear system (9) can not be valid,
i.e., the segment has no loop.

Singularities (cusps): Assume that the rational cubic z(t)(= (z(t),y(t))) of the form
(3) would have a cusp at ¢ = m,0 < m < 1 for which the necessary condition is z'(m) =
y'(m) = 0 (the curvature becomes unbounded). The condition gives with m = 1/(1+s),0 <
s < 0o the same two equations (9) with m = 2s,n = s2(< m? = 4n). Since then (10) and
(11) can not be valid, i.e., the system (9) has no positive solutions r¢, . Hence the curve
z has no cusp. Therefore we obtain:

Theorem 3 (Singularities): The segment of the form (3) has no singularity regardless of
the shape of the control polygon.

3 Demonstration Let us consider numerical examples of C-type and S-type data:

2
1
1.5
0.8
z 1 0.6
0.4
0.5
0.2
0 /—\
0 0
-1 Z0.5 0 0.5 1

Figure 3: The number of curves and curve together with the curvature plot for C-shaped
polygon

C-shaped polygon:
a=(1,0),b=(-1,0),(0,v, ko, k1,70,71) = (7/8,7/6,0.2,0.6,1, 1)

S-shaped polygon:
a = (la 0)7 b= (_L 0)7 (07 ¢a Ko, K1,T05 Tl) = (ﬂ-/47 _7T/8a 057 _027 17 1)
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Figure 4: The number of curves and curve together with the curvature plot for S-shaped
polygon

The left graphs in Figures 3 and 4 give N(= the number of the curves with respect
to (v,w)). The right ones in Figures 3 and 4 give the curves (represented in bold) and
the curvature plots along the curves as offset distances proportional to the curvatures. For
the C-shaped polygon, (v,w) = (5.75583,0.16943)(< (Rop, R1) = (1,1)). Its curvature
plot in Figure 3 shows neither inflection point nor singularity. For the S-shaped polygon,
(v,w) = (1,1) gives Ry > 1 from which the curve has just one inflection point. Its curvature
plot in Figure 4 shows the existence of the inflection point where it crosses the curve.
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