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Abstract. In this paper, we �nd the necessary and suÆcient condition for the simple,

2-connected, plane graphs to be isomorphic and the necessary and suÆcient condition

for the simple, connected, plane graphs to be isomorphic. And we �nd an algorithm

to give all non-isomorphic embeddings of the simple, connected, planar graph by using

this condition. Finally, we compute the numbers of the non-isomorphic embeddings of

simple, connected, planar graphs and those of the simple, 2-connected, planar graphs

with order p=8,9 and 10.

1 Theorems We generally follow the de�nitions and notation of [2].

Let G1 and G2 be two simple, connected, planar graphs. Let �1 : G1 ! S2 and �2 :

G2 ! S2 be embedding of G1 and G2 into S2, respectively. Two embeddings �1 and

�2 are called to be isomorphic if there exists a homeomorphism h : S2 ! S2 such that

h induces the isomorphism between �1(G1) and �2(G2). Two embeddings �1 and �2 are

called to be orientation-preservingly isomorphic if there exists an orientation-preserving

homeomorphism h : S2 ! S2 such that h induces the isomorphism between �1(G1) and

�2(G2). Two embeddings �1 and �2 are called to be orientation-reversingly isomorphic if

there exists an orientation-reversing homeomorphism h : S2 ! S2 such that h induces

the isomorphism between �1(G1) and �2(G2). And therefore, two embeddings �1 and �2
are called to be isomorphic if and only if they are orientation-preservingly isomorphic or

orientation-reversingly isomorphic.

A path addition to a graph G is the addition to G of a path between two existing vertices

of G, such that the edges and internal vertices of the path are not in G.

A Whitney synthesis of a graph G from a graph H is a sequence of graph, G0; G1; � � � ; Gl,

where G0 = H;Gl = G, and Gi is the result of a path addition to Gi�1, for i = 1; � � � ; l.

Theorem 1. (Whitney, 1932) A graph is 2-connected if and only if G is a cycle or a
Whitney synthesis from a cycle.

Lemma 1. Let G1 and G2 be simple, 2-connected, planar graphs and �1 : G1 ! S2 and
�2 : G2 ! S2 be embeddings such that the dual graph ��

1
is isomorphic to the dual graph ��

2

as abstract pseudo graphs. Then there exist a homeomorphism h : S2 ! S2 such that h
induces isomorphism between �1(G1) and �2(G2).

Proof. We use the Whitney's Synthesis of 2-connected graphs. We will prove with the

induction on the number of edge of G1. If G1 is a cycle, then the result is trivial. Therefore,

by the Whitney's synthesis of 2-connected graphs, let G1 be aWhitney synthesis from a cycle

H0;H1; � � � ;Hl. Hl is the result of a path addition to Hl�1. Let P be the path that is added

to Hl�1 and let Q be the path of G2 that corresponds to P by the isomorphism ��
1
! ��

2
.

Let G0

2
= G2 � Q, �0

1
= �1jHl�1, and �0

2
= �2jG

0

2
. Then we have an induced isomorphism
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(�0
1
)� �= (�0

2
)�. By the assumption of the induction, we have a homeomorphism g : S2 ! S2

such that g induces the isomorphism �0
1
(Hl�1) �= �0

2
(G0

2
). By modifying the corespondance

between the face including P and the face including Q of the homeomorphism, we can

obtain the resulting homeomorphism.

For the simple, 2-connected, planar graphs, we have the following theorem.

Theorem 2. Let G be a simple, 2-connected, planar graph and �1 : G! S2 and �2 : G! S2

be two embeddings of G. Then �1 is isomorphic to �2 if and only if the dual graph of �1 is
isomorphic, as abstract pseudo graphs, to the dual graph of �2.

Proof. ()) The assertion is trivially true.

(() Let G1 = G and G2 = G in Lemma 1, then we have the result.

For the simple, connected, plane graphs, we need more conditions. Let G be a simple,

connected, planar graph and �1 : G! S2 and �2 : G ! S2 be two embeddings of G. If the

dual graph of �1 is isomorphic, as abstract pseudo graphs, to the dual graph of �2, then we

have a one-to-one correspondence between the faces given by the embedding �1 : G ! S2

and the faces given by the embedding �2 : G! S2. If each pair of the corresponding faces is

the pair of the same polygons whose coresponding vertices have the same degrees, then we

call the isomorphism DP (degree preserving). If each pair of the corresponding faces, where

one face is reected, is the pair of the same polygons whose coresponding vertices have

the same degrees, then we call the isomorphism DR (degree reversing). If each pair of the

corresponding faces is the pair of the same polygons whose boundaries are composed of the

edges that are adjoining with the faces that corresond to the faces given by the isomorphism,

then we call the isomorphism BP (boundary preserving). If each pair of the corresponding

faces, where one face is reected, is the pair of the same polygons whose boundaries are

composed of the edges that are adjoining with the faces that corresond to the faces given

by the isomorphism, then we call the isomorphism BR (boundary reversing).

Lemma 2. Let G1 and G2 be simple, connected, planar graphs and �1 : G1 ! S2 and
�2 : G2 ! S2 be the embeddings of G1 and G2, respectively. Suppose that there exists an
isomorphism (as abstract pseudo graphs) ' from the dual graph of �1 to the dual graph of
�2 such that (1) ' is DP and (2) ' is BP. Then, there exists an orientation-preserving
homeomorphism h : S2

! S2 such that h induces the isomorphism between �1(G1) and
�2(G2).

Proof. We prove with the induction on the number of edge of G1. If G1 consists of one

point, then the assertion is trivially true. First of all we consider the case that G1 has a

vertex v1 of degree 1. Let e1 be the edge that is incident on v1. Let e2 be the edge of G2 that

corresponds to e1 under the given isomorphism. Let G0

1
= G1�e1; G

0

2
= G2�e2; �

0

1
= �1jG

0

1
,

and �0
2
= �2jG

0

2
. Then the given isomorphism induces the isomorphism between (�0

1
)� and

(�0
2
)�. It is trivially true that this isomorphism satis�es all conditions of Lemma 2. By

the assumption of the induction, there exists an orientation-preserving homeomorphism

g : S2 ! S2 that induces an isomorphism between �0
1
(G0

1
) and �0

2
(G0

2
). Let �1 be the face

including e1 and let �2 be the face including e2. By the condition (1), we can modify the

corespondance between the faces �1 and �2 of the homeomorphism, and we can obtain the

resulting homeomorphism. If G1 has no vertex of degree 1, then G1 has a cycle. Let e1
be an edge on a cycle of G1 and let e2 be the edge that corresponds to e1 under the given

isomorphism. Let G0

1
= G1 � e1; G

0

2
= G2 � e2; �

0

1
= �1jG

0

1
, and �0

2
= �2jG

0

2
. Then the given

isomorphism induces the isomorphism between (�0
1
)� and (�0

2
)�. It is trivially true that this

isomorphism satis�es all conditions of Lemma 2. By the assumption of the induction, there
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exists an orientation-preserving homeomorphism g : S2 ! S2 that induces an isomorphism

between �0
1
(G0

1
) and �0

2
(G0

2
). Let �1 be the face including e1 and let �2 be the face including

e2. By the condition (2), we can modify the corespondance between the faces �1 and �2 of

the homeomorphism, and we can obtain the resulting homeomorphism.

Lemma 3. Let G1 and G2 be simple, connected, planar graphs and �1 : G1 ! S2 and
�2 : G2 ! S2 be the embeddings of G1 and G2, respectively. Suppose that there exists an
isomorphism (as abstract pseudo graphs) ' from the dual graph of �1 to the dual graph
of �2 such that (1) ' is DR and (2) ' is BR. Then, there exists an orientation-reversing
homeomorphism h : S2 ! S2 such that h induces the isomorphism between �1(G1) and
�2(G2).

Proof. The proof is essentially same with Lemma 2. We omit it.

Theorem 3. Let G be a simple, connected, planar graph and �1 : G ! S2 and �2 : G !

S2 be two embeddings of G. Then the embedding �1 : G ! S2 is orientation-preservingly
isomorphic to the embedding �2 : G ! S2 if and only if there exists an isomorphism (as
abstract pseudo graphs) ' from the dual graph of �1 to the dual graph of �2 such that (1) ' is
DP and (2) ' is BP. And the embedding �1 : G! S2 is orientation-reversingly isomorphic
to the embedding �2 : G! S2 if and only if there exists an isomorphism (as abstract pseudo
graphs) ' from the dual graph of �1 to the dual graph of �2 such that (1) ' is DR and (2)
' is BR.

Proof. ()) The assertion is trivially true.

(() Let G1 = G and G2 = G in Lemma 2 and 3, then we have the results.

2 Examples The next two embeddings are not isomorphic to each other but there is an

isomorphism between their dual graphs that satis�es the conditions (2) of Theorem 3.
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Figure 1

In this example the face is only an outside, respectively. We call this 0. The isomorphism

h from the dual of the left graph to the dual of the right graph maps 0 to 0. Then the face se-

quences along the edges of both embeddings are 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0.

Then h is BP and BR. The degree sequence along the edges of the left graph is 6; 3; 1; 3; 1; 3; 6;

1; 6; 3; 1; 3; 1; 3; 6; 1; 6; 1; 6; 1 and the degree sequence along the edges of the right graph is

6; 3; 1; 3; 1; 3; 6; 1; 6; 1; 6; 3; 1; 3; 1; 3; 6; 1; 6; 1. Then h is not DP nor DR.

The next two embeddings are not isomorphic to each other but there is an isomorphism

between their dual graphs that satis�es the conditions (1) of Theorem 3.
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Figure 2

In this example we call the outside face 0, the left triangle 1, the left square 2, the middle

upper face 3, the middle lower face 4, and the right triangle 5. Let h(0) = 0; h(1) = 1; h(2) =

2; h(3) = 4; h(4) = 3 and h(5) = 5 . Then h is an isomorphism from the dual of the left

graph to the dual of the right graph. Then the degree sequences along edges is given by the

following list.

face = 0 10 3 3 10 2 2 3 2

1 10 2 3

2 10 3 2 2

3 10 3 1 3 1 3 10 1 10 3 3

4 10 1 10 3 1 3 1 3 10 3 3

5 3 3 3

degree sequence along edges of the left graph

face = 0 10 3 3 10 2 2 3 2

1 10 2 3

2 10 3 2 2

3 10 1 10 3 1 3 1 3 10 3 3

4 10 3 1 3 1 3 10 1 10 3 3

5 3 3 3

degree sequence along edges of the right graph

Then h is DP. But the face sequence along edges of face 3 of the left graph is 3; 3; 3; 3; 3; 3; 3; 3;

4; 5; 0 and the face sequence along edges of face 4 of the right graph is 4; 4; 4; 4; 4; 4; 4; 4; 0; 5; 3.

Then h is not BP.

3 Algorithm We will review the de�nition of the appendage. Let H be a subgraph of a

connected graph G. Two edges e1 and e2 of EG � EH are unseparated by subgraph H if

there exists a walk in G that contains both e1 and e2, but whose internal vertices are not in

H. An appendage to subgraph H is the induced subgraph on an equivalence class of edges

of EG � EH under the relation unseparated by H. An appendage to H is called a chord

if it contains only one edge. Let B be an appendage to H. Then a contact point of B is
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a vertex of B \ H. Let C be a cycle of a graph G and let B be an appendage to C. Let

fv1; v2; � � � ; vng be the contact points. If n is equal to 2, let K be the edge that joins v1 and

v2, and if n is greater than or equal to 3, let K be the cycle < v1; v2; v3; � � � ; vn; v1 >. We

call the graph B+K modi�ed appendage. If the appendage has only one contact point, we

call the appendage modi�ed appendage. Let C be a cycle in a graph. The appendages B1

and B2 of C are said to overlap if either of the following conditions holds:

1. Two contact points of B1 alternate with two contact points of B2 on cycle C.

2. B1 and B2 have three contact points in common.

Let C be a cycle in a planar drawing of a graph, and let B1 and B2 be overlapping ap-

pendages of C. Then the appendages do not both lie on the same side of that cycle in the

plane. Let C be a cycle of a connected graph G, and suppose that C has been drawn in the

plane. Relative to that drawing, an appendage of C is said to be inner or outer, according

to whether that appendage is drawn inside or outside of C.

We use the planarity algorithm given in [4]. By modifying the planarity algorithm, we

construct the list of the possible arrangement of each appendage. For example we make the

list given in Figure 4 to the graph given in Figure 3.
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Figure 4

This list is composed in the following manner. First we �nd a cycle < 0; 1; 2; 0 >. We

express this cycle as f0; 1; 2g. We set this cycle f0; 1; 2g to the �rst slot of the list. There

exists two appendages to the cycle.
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Figure 5

These appendages do not overlap. There exists four distributions to the inside or the

outside of the cycle of these appendages. We set the pointer to this combination to the

second slot of the list and set the number of the appendages to the third slot of the list.

The modi�ed appendage of the left appendage is the cycle f0; 3; 2g. Then we set the contact

points f0; 2g of the left appendage to the 4th slot of the list and set the pointer to the list of

the modi�ed appendage of the left appendage to the 5th slot of the list. The right appendage

has only one contact point and has not any cycle that contains the contact point. Then we

make a list that consists of the appendages to the vertex 4 to show that the vertices 2 and

4 are adjacent. We set the contact point f2g to the 6th slot of the list and set the pointer

of the above list to the 7th slot of the list. We call this list appendage tree.

Generally we compose the node of the appendage tree in the following manner:

We set a cycle or vertex to which we take appendages to the 1st slot of the node. We set

the pointer to the list that consists of all possible distributions to the outside or inside of

the appendages to the second slot of the node. We set the number of the appendages to the

third slot of the node. We arrange the contact points and the pointer to the appendage tree

that is made from the modi�ed appendage of each appendage to the slots that continue.

The algorithm that gives all non-isomorphic embeddings of a simple, connected, planar

graph is as follows.

Algorithm 1.

input a simple, connected, non-trivial, planar graph G

output all non-isomorphic embeddings in S2 of G

1. Construct the appendage tree.

2. Compose recursively all possible embeddings of G, by using the above tree.

3. By using Theorem 3, select the non-isomorphic embeddings.

Details of Step 1

1. Find a cycle in G

2. If the cycle does not exist, then

(a) Let x be a vertex of G whose degree is equal to 1

(b) Let w be the adjent vertex to x

(c) Let G0 be G� x

(d) Set fxg to the �rst slot of the node

Set NULL to the second slot of the node

Set 1 to the third slot of the node

Set fxg to the 4th slot of the node

Set the value, that planegivenvertex with the arguments of G0 and w returns, to

the 5th slot of the node
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(e) The tree that was made is the resulting tree.

3. If the cycle exists, then

The value that planegivencycle with the arguments of G and the cycle returns is the

resulting tree.

tree *planegivenvertex(graph G, int v)

1. If G is a single vertex, then

return the node that consists of fvg, NULL, and 0.

2. Let H be fvg and get the appendages of G to H.

3. Let n be the number of the appendages.

4. Set fvg, NULL, and n to the node.

5. for i=1 to n

(a) Implement the following thing toward the ith appendage Bi.

(b) Set fvg to the 2i+ 2th slot of the node as the contact points.

(c) Find a cycle in Bi that contains v.

(d) If the cycle does not exist, then

Let w be the adjacent vertex of v in Bi and let H be Bi-v. Set the value, that

planegivenvertex with the arguments of H and w returns, to the 2i+3th slot of

the node.

(e) If the cycle exist, then

Set the value, that planegivencycle with the arguments of the appendage Bi and

the cycle returns, to the 2i+ 3th slot of the node.

6. Return the tree that was made.

tree *planegivencycle(graph G, path cycle)

1. Set the cycle to the �rst slot of the node.

2. Get the appendages of G to the cycle.

3. Rearrange them so that chords come �rst if they exist.

4. Set the pointer to the list that consists of all possible distributions to the outside or

inside of the appendages to the second slot of the node.

5. Let n be the number of the appendages.

6. Set n to the third slot of the node.

7. for i=1 to n

(a) Implement the following thing toward the ith appendage Bi.

(b) Set the contact points of Bi to the 2i+ 2th slot of the node.

(c) If Bi is a chord, then

Set NULL to the 2i+ 3th slot of the node.
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(d) If the contact points of Bi is a single vertex v, then

i. Find a cycle C in Bi that contains v.

ii. If C does not exist, then

A. Let w be the adjacent vertex of v in the appendage.

B. Let H be Bi � v.

C. Set the value, that planegivenvertex with the argument of H and w

returns, to the 2i+ 3th slot to the node.

iii. If C exists, then

Set the value, that planegivencycle with the argument of Bi and C returns,

to the 2i+ 3th slot of the node.

(e) If the contact points of Bi consists two or more vertices and Bi is not a chord,

then

i. Let fv1; v2; v3; � � � ; vng be the contact points.

ii. Find a shortest v1 � v2 path P in Bi that contains no other contact points.

iii. Let C be the cycle < P; v3; � � � ; vn; v1 >.

iv. Set the value, that planegivencycle with the argument of the modi�ed ap-

pendage and C returns, to the 2i+ 3th slot of the node.

8. Return the tree that was made.

Details of Step 2

For example, the useless embeddings increase very much when we consider all possible

combinations in the case of the following graph.
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Therefore, when we make the intermidiate embeddings, we do cropping as follows.

1. Make the set of all possible embeddings that are attached to the modi�ed appendage

to the cycle which is in the �rst slot.

2. Restrict the isomorphisms of the dual graphs only to the one that are correspondences

between the faces that contain the same vertices of the cycle.

3. Leave only orientation-preserving non-isomorphic embeddings under the above iso-

morphism.

Now we explain the details of the construction of the embeddings. We construct recur-

sively the embedding as follows.

1. In the case that the �rst slot of the tree is a vertex v

(a) In the case that the third slot of the tree is 0

Make the embedding that consists only one vertex v.

(b) In the case that the third slot of the tree is 1
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i. In the case that the �rst slot of the modi�ed appendage is vertex w and the

third slot of the modi�ed appendage is 0

Make the embedding that consists only one edge fv;wg.

ii. In the case that the �rst slot of the modi�ed appendage is vertex w and the

third slot of the modi�ed appendage is positive integer

Make all posible embeddings that are attached the edge fv;wg to the em-

bedding of the modi�ed appendage to the outside.

iii. In the other case

Use the embedding of the appendage as it is.

(c) In the case that the third slot of the tree is two or more

If a modi�ed appendage is attached to the vertex for the �rst time, then

i. In the case that the �rst slot of the modi�ed appendage is a vertex w and

the third slot of the modi�ed appendage is 0

Make the embedding that consists only one edge fv;wg.

ii. In the case that the �rst slot of the modi�ed appendage is a vertex w and

the third slot of the modi�ed appendage is positive integer

Make all posible embeddings that are attached the edge fv;wg to the em-

bedding of the modi�ed appendage to the outside.

iii. In the other case

Use the embedding of the appendage as it is.

else

i. In the case that the �rst slot of the modi�ed appendage is a vertex w and

the third slot of the modi�ed appendage is 0

Make all possible embeddings that are attached the edge fv;wg to the em-

bedding that has already been made. Classify the faces into two types

by whether v is contained or not. Leave only orientation-preserving non-

isomorphic embeddings, when the isomorphisms of the dual graphs are re-

stricted to the one that are correspondeces between the faces of the same

type.

ii. In the case that the �rst slot of the modi�ed appendage is a vertex w and

the third slot of the modi�ed appendage is positive integer

Make all possible embeddings that are attached the edge fv;wg to the em-

bedding of the modi�ed appendage to the outside. Incorporate them as

much as possible into the embeddings that have already been made. Clas-

sify the faces into two types by whether v is contained or not. Leave only

orientation-preserving non-isomorphic embeddings, when the isomorphisms

of the dual graphs are restricted to the one that are correspondeces between

the faces of the same type.

iii. In the other case

Assign the appendages of the embedding that has already made to the faces

of the modi�ed appendage that contain the contact point. The assignment

renders all the combination including the permutations of the appendages.

Classify the faces into two types by whether v is contained or not. Leave only

orientation-preserving non-isomorphic embeddings, when the isomorphisms

of the dual graphs are restricted to the one that are correspondeces between

the faces of the same type.

2. In the case that the �rst slot of the tree is a cycle C
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Make the embedding that consists only cycle C and attach the modi�ed appendages

of the node of the tree to it.

� If this is the embedding of the intermediate modi�ed appendage, it is suÆcient to

make the embedding which has the outside face that contains all contact points.

Therefore, it does the following manner, in the case that the number of contact

points of the modi�ed appendage is 3 or more.

If there exists the chord that ties v0 and v1 of the contact points of the modi�ed

appendage and is attached in the outside, then

Attach it �rst

else

The distribution does not compose.

� If the embedding is the �nal result, we make all combination.

� If the modi�ed appendage has only one contact point of degree one, we make

all combinations of the way of attaching of a possible branch and make the

embedding of the modi�ed appendage.

� If the modi�ed appendage has only one contact point of degree 2 or more, we

assign the appendages of the embedding that has already made to the faces of

modi�ed appendage that contain the contact point. The assignment renders all

the combination including the permutations of the appendages.

Theorem 4. The cropping does not change the �nal results.

Proof. Let E1 and E2 be two intermidiate embeddings that are restricted orientation-

preserving isomorphic to each other. Let f : S2 ! S2 be the orientation-preserving

homeomorphism to which the restricted orientation-preserving isomorphism corresponds.

We are suÆcient to consider two cases.

In the case that other modi�ed appendage A is attached to these embeddings:

Let F1 be the face of E1 to which A is attached. Let f map F1 to the face F2 of E2.

By the assumption, F2 contains all contact points of A. Then f can be extend to the

orientation-preserving isomorphism.

In the case that these embeddings are attached to some embedding B:

If the number of the contact points is greater than or equal to 3, then E1 and E2

contain the unique face that consists only contact points. Then we can modify the identity

homeomorphism between S2 and S2 to the resulting orientation-preserving homeomorphism

by using f . If the number of the contact points is equal to 2, then E1 and E2 contain two

faces that contain all contact points. The orientation-preserving homeomorphism between

E1 and E2 distinguishes these faces with other faces. Then we can modify the identity

homeomorphism between S2 and S2 to the resulting orientation-preserving homeomorphism

by using f . If the number of the contact points is equal to one and the contact point has

degree one, then by attaching an edge to the faces, which correspond under f , respectively,

we can modify the identity homeomorphism between S2 and S2 to the resulting orientation-

preserving homeomorphism. And if the number of the contact points is equal to one and the

contact point has degree greater than one, then by distributing the faces of B to the faces of

E1 and E2 that correspond under f , we can modify f to the resulting orientation-preserving

homeomorphism.

Theorem 5. Algorithm 1 give all non-isomorphic embedding of the simple, connected, non-
trivial, planar graph.
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Proof. Let G be a simple, connected, non-trivial, planar graph. If G has a cycle C then

let B1; B2; � � � ; Bm be the appendages to C. If all possible distributions to the inside or

the outside of the cycle C of B1; B2; � � � ; Bm are considered and the appendages are added

with all the possible method to the cycle C then all the possible emmbedings are obtained.

When we add the chord Bi to the intermediate embedding, we add it to the faces which

contains two constant points of Bi. When we add the appendage Bi with three or more

contact points to the intermediate embedding, we add it to the faces which contains all

constant points of Bi. When we add the appendage Bi with only one contact point to the

intermediate embedding, we divide it into two case. If the contact point of Bi has degree

one then we add it to the faces which contains the constant point of Bi. If the contact point

of Bi has degree two or more then we add it in the following manner. Let v be the contact

point and let H be the intermediate embedding. Let D1;D2; � � � ;Dn be the appendagea to

fvg. Then we add D1;D2; � � � ;Dn to the faces of Bi wchich contains v. The assignment

renders all the combination including the permutations of D1;D2; � � � ;Dn. If G has not a

cycle then let v be the vertex of G whose degree is equal to 1 and let w be the adjent vertex

to v. To complete the embedding, we add an edge vw to the intermidiate embedding in all

the possible manner. Even when the appendages are taken to vertex fvg, we do similarly.

It is clear that all embeddings are obtained with this method. Finally, we select the non-

isomorphic embedding by using Theorem 3. Therefore, we can obtained all non-isomorphic

embedding of the simple, connected, non-trivial, planar graph G. Our Details of Step 1 and

Step 2 only are expressing the technical skill for the implementation of this algorithm.

4 Computations In [3], the non-isomorphic embeddings of the simple, 2-connected, pla-

nar graphs with order p=7 or less are given and the numbers of the non-isomorphic, simple,

connected, planar graphs with order p=8 or less are listed. We will expand this list.

We can obtain the next theorem with a personal computer by using this algorithm. The

program that we made for this paper consists of about 7000 lines with C ++.

Theorem 6. We obtain the result like the next table about the numbers of the non-isomorphic
embedding of the simple, 2-connected, planar graphs and those of the simple, connected, pla-
nar graphs.

The numbers of the non-isomorphic embeddings of the simple, 2-connected, planar graphs

order 8 9 10

size = 8 1

9 6 1

10 59 7 1

11 328 104 9

12 1146 915 181

13 2114 5046 2239

14 2144 16009 17876

15 1246 30183 85550

16 447 33719 254831

17 88 23749 478913

18 14 10585 581324

19 3017 468388

20 489 255156

21 50 93028

22 22077

23 3071

24 233
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Remark Our result of order 7 or less agrees with the one that is listed in [3].

The numbers of the non-isomorphic embeddings of the simple, connected, planar graphs

order 3 4 5 6 7 8 9 10

size = 2 1

3 1 2

4 2 3

5 1 7 6

6 1 7 22 12

7 5 42 76 27

8 2 49 237 271 65

9 1 35 442 1293 1000 175

10 18 510 3539 6743 3752

11 5 412 6205 25811 34035

12 2 218 7482 63233 173058

13 84 6318 106974 562486

14 18 3833 129780 1264809

15 5 1623 115988 2064232

16 485 76582 2520468

17 88 37421 2340393

18 14 13111 1665251

19 3228 904432

20 489 370667

21 50 111177

22 23376

23 3071

24 233

We give even the result of the planar graphs for the reference, because our program

generates even all non-isomorphic planar graphs of order ten or less.

number of non-isomorphic, simple, 2-connected, planar graph

order 8 9 10

size = 8 1

9 6 1

10 40 7 1

11 158 70 9

12 406 426 121

13 662 1645 1018

14 737 4176 5617

15 538 7307 20515

16 259 8871 52068

17 72 7541 94166

18 14 4353 123357

19 1671 116879

20 378 79593

21 50 37859

22 12066

23 2306

24 233
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number of non-isomorphic, simple, connected, planar graph

order 8 9 10

size = 7 23

8 89 47

9 236 240 106

10 486 797 657

11 804 2075 2678

12 1112 4454 8548

13 1211 8053 22768

14 1026 11990 51816

15 626 14379 99212

16 275 13380 156780

17 72 9464 199758

18 14 4844 201912

19 1734 158312

20 378 94321

21 50 41004

22 12394

23 2306

24 233

Remark We calculate also these values by the algorithm given in [2] and get the same

results. Our result of order 7 or less agrees with the one that is listed in [3].
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