Scientiae Mathematicae Japonicae Online, Vol. 5, (2001), 47-54 47

ON n-INNER PRODUCTS, »-NORMS, AND THE CAUCHY-SCHWARZ
INEQUALITY

HENDRA GUNAWAN

Received March 2, 2000; revised December 7, 2000

ABSTRACT. Our observation on the Cauchy-Schwarz inequality in an inner product space
and 2-inner product space suggests how the concepts of inner products and 2-inner
products, as well as norms and 2-norms, can be generalized to those of n-inner products
and n-norms for any n € N. In this paper, we offer a definition of n-inner products
which is simpler than (but equivalent to) the one formulated by Misiak [9]. We also
reprove the Cauchy-Schwarz inequality and give a necessary and sufficient condition for
the equality.

1. INTRODUCTION

We are already familiar with inner products and norms. So, let us begin with the
definition of 2-inner products and 2-norms.
Let X be a real vector space of dimension d > 2. A 2-inner product on X is a function

(-],) : X x X x X — R satistying the following properties:

(11) {x|y,y) > 0 for all x,y € X; (z|ly,y) = 0 if and only if = and y are linearly dependent;
(12) (z|y,y) = {y|x, z) for all z,y € X;

(I3) (x|y, z) = (x|z,y) for all z,y,z € X;

(I4) {z|y, az) = a(z|y, z) for all z.y,z € X and o € R;

(I5) (z|y,z + 2") = (2]y, z) + (z|y, 2") for all z,y,z,2" € X.

The pair (X, {:|,-)) is called a 2-inner product space (see [2] and [3]). Note that, for
generalization purpose, we use a slightly different notation for 2-inner products.
Meanwhile, a 2-norm on X is a function ||-,]] : X x X — R satisfying the following
properties:
(N1) ||z, y|| = 0 if and only if « and y are linearly dependent;
(N2) ||, y|| = ||y, z|| for all z,y € X;
(N3) |le, ayll = lol 7, y] for all 2, € X and a € R;
(N4) ||lzsy + 2|l < ||z, yll + ||z, z|| for all z,y,z € X.
The pair (X, |-, -]|) is called a 2-normed space (see [4]).
If X is equipped with an inner product (-,-), then we can define a norm || - || on X by
|z|| := (x,2)%. One of the properties of the norm is that it satisfies the triangle inequality

[l +yll < ll=ll + [lyll.
which is easy to prove by using the Cauchy-Schwarz inequality

(@, )® < =l lyll*.
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By rewriting it as a determinantal inequality involving a 2 x 2 Gram matrix

R A

we see that the Cauchy-Schwarz inequality holds since the matrix is positive semidefinite
(see [6], pp. 407-408, for Gram matrices).
At the same time, we can also define a 2-inner product (:|-,-) on X by

sy = | 070

vyl = (z]y,y) 2, that is,

from which we obtain a 2-norm ||-, || on X defined by

1
2

(z,2) (,)
)

(y,2) (y,y

eyl —\

Let us examine this 2-norm. As usual, the properties (N1), (N2) and (N3) are easy
to check. To verify the property (N4) or the triangle inequality, it suffices to prove the
Cauchy-Schwarz inequality
y,2)" <|

.yl 2]

(x

But, again, by rewriting it as

)

z
,

(xly,y) (zly,
x|z,

(zlz,y)  (

and noting that the matrix is positive semidefinite, that is,

>0

Lo o[ ey W ] 6 ] = tetent seian 2 20

for any «a, 8 € R, we see that the Cauchy-Schwarz inequality holds.

Alternatively, one may observe that, under the assumption = # 0, the Cauchy-Schwarz
inequality

is equivalent to

<ZC,$> <$,y> <$7Z
(y,2) (yoy) (y,2) | >0

<27‘T> <Zvy> (Z,

(see [3]). Since the matrix is positive semidefinite, the inequality follows and we also see
that the equality holds if and only if z,y and z are linearly dependent.

The above observation on the Cauchy-Schwarz inequality in an inner product space and
2-inner product space suggests how the concepts of inner products and 2-inner products, as
well as norms and 2-norms, can be generalized to those of n-inner products and n-norms
for any n € N. In this paper, we shall offer a definition of n-inner products which is slightly
simpler than (but equivalent to) the one offered by Misiak [9]. We shall also reprove the
Cauchy-Schwarz inequality and give a necessary and sufficient condition for the equality.
For related work, see another paper of Misiak [10].
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2. AN NATURAL EXAMPLE OF n-INNER PRODUCTS AND n-NORMS

We shall first show that we can actually define an n-inner product and accordingly an
n-norm on any inner product space provided the dimension is sufficiently large.

Let n € N and (X, (,-)) be a real inner product space of dimension d > n. Define the
following function {-,..., |,y on X x -+ x X (n + 1 factors) by

,"

<$17'171> <'171-,~Tn71> <$17Z>
<.1?1,... s Lp—1 y*Z> =
<$n—17x1> <xn—17xn—1> <xn—172>

<y71'1> . <y7xn_1> <y72>
Then one may check that this function satisfies the following five properties:
(I {z1,. .y Tp1|Tn,Tn) > 05 (T1,...,Tp_1|y, v,y = 0ifand only if w4, ..., z, are linearly
dependent;
(I12) (z1,. ., @n_t|Tn, ) = (Tiy, ..., i, _,|Ti,, 2, ) for every permutation (iy,...,%,) of

(1,...,n);

(I3) {z1, ..y xn_1ly,2) = (T1,.. ., Tn_1
(

(

2 Y);

) (zy,...,xn1|y, a2) = aler, .., xn_1 |y, 2);
I5) (21, an-1ly, 2+ 27) = (21, o xn—1 |y, 2) + (21,00 21y, 2.
Accordingly, we can define ||-,..., ] on X x --- x X (n factors) by
Hl’l,...,l“n” = <l‘17...,l“n,1‘l“n,l“n>1/2,
that is,
1
<CC1,331> <$17:Cn>
21, 2l = :
<xn7x1> <In-$n>
For n = 1, we know that || - || is a norm, while for n = 2, ||-,+|| defines a 2-norm. Note

further that for n = 1, ||| gives the length of @y, while for n = 2, ||x1, 22| represents the
area of the parallelogram spanned by z; and z5. One may also observe that, for n = 3 and
X = R?, ||z1, 22, 3] is nothing but the volume of the parallelepiped spanned by @1 z2 and
x3, that is,

le1, 22, 23] = |21 - (22 x 23)].
Thus, in general, ||z1,...,2,|| can be interpreted as the volume of the n-dimensional par-
allelepiped spanned by x1,...,2, in X. Further, it satisfies the following four properties:
(N1) ||z1,...,7,]| =0 if and only if z1,..., 7, are linearly dependent;
(N2) ||z1, ..., x|l is invariant under permutation;
(N3) ||z1,. -y 1, axy]| = || ||z1, .o 20l
(N4) [|z1s- sty + 2] < z1se ey tnta gl + 215 ooy 2, 2]

Again, the first three properties are easy to see. To prove the last property or the
triangle inequality, we need to establish the Cauchy-Schwarz inequality. Indeed, we have
the following:

Fact 2.1 (The Cauchy-Schwarz Inequality). For all zy,...,2,_1,y,2 € X, we have
(1) <x17 e 7xn—1|y72>2 S Hxlv sy mn,—lvszHml: R 71’”_172”2,

and the equality holds if and only iof x1,...,2n—1,Y, 2 are linearly dependent.
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Proof. First observe that the inequality may be rewritten as
<901:---735n—1|y7y> <x17"'7xn—1‘y72>

>0
<x17"'7xn—1|27y> <I1:"'7In—1‘272> o
which obviously holds since the matrix is positive semidefinite.

Next, suppose that we have the equality

<$1~,--~71‘n—1|y7y> <‘,L‘1:"'7‘,L‘n—1‘y7z> =0
<"L‘17"'75L‘n—1|27y> <(E1,..../(En_1‘272> '

If (w1,...,¢n—1ly,y) = 0 or (xy,...,25_1]2,2) = 0, then xy,...,2,_1,y,2z are linearly
dependent. Otherwise, there exists a 3 # 0 such that

<$17"'7$n—1|y72> = /3<$17"'7$n—1|y7y>

and
(x1,.. . xn_1l|z,2) = B{x1, ... 2n—1]2,y).
Hence
(x1,.yon_1ly, Py —2) =0 and (w1,...,75_1]z, 0y —z) =0,
and so

(x1,.. . an_1|By —z,Py —z) = 0.
But this implies that x1,...,2,-1,8y — 2z are linearly dependent, and so are x1,...,T,_1,
Y, Z.

Conversely, suppose that zy,...,2,-1,y,2 are linearly dependent. If zq,...,x,_1 are
linearly dependent, then the right-hand side of (1) equals zero and so does the left-hand
side. So suppose that x1,...,2x,_1 are linearly independent. Since the equation

a1+ Fap 1ty 1+ Py +y2=0
has a non-trivial solution, we must have 8 or v # 0. Without loss of generality, assume

that 4 # 0 so that
z=a121 4+ + ap_1Tn_1 + by

for some scalars ay,...,an_1,b € R. From its definition, we have {(z1,...,2n_1|y, 2s) =
(x1,...,2n_1|z,2x) =0foreach k =1,...,n — 1. Hence
<$17-~~:$n—1 y72> = <$1:"'7$ﬂ—1‘y:by> :b<$1¢"'7$ﬂ—1‘y:y>
and
<l'17--~71'n—1|373> = <$15"':$n—1‘byvby> = b2<$17"'7$n—1|y7y>7
and therefore the equality follows. O

Moreover, as it can be predicted from our introductory observation, we have the following:

Fact 2.2. The Cauchy-Schwarz inequality (1) is equivalent to

<I1,I1> <$1,y> <l‘172>
(wa1> <yy> (y,Z)
) o (my) (e

To prove Fact 2.2, we shall use some facts about symmetric matrices. For 2 x 2 matrices
Ay = [aij], we have |Az| = aj1a22 — a1za21. Particularly, when a2 = ag1, we have |4;| =
ayidss —afm and so, for instance, | 43| > 0 is equivalent to arfz < ayja9y. Forlarger matrices,
we have the following:
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Fact 2.3. Suppose that Ay = [a;;] is an N x N matriz (N > 3) such that the determinants
of the sub-matrices Ap = [aijlij=1..k (E=1,...,N —2) are all non-zero. Then we have

(3) Ay

where M;; denotes the (N — 1) x (N — 1) matriz obtained from An by deleting the i-th row
and j-th column. In particular, if An 1s symmetric, then

An

Ay_o

= |Mn-1,nv-1| [Mnn| = | My~

My n-1l,

f/lN,Q = |JLI]\T,LN,1‘ |-A/-/[NN‘ — |-A/-/[J\771,N|2~

Proof. The proof is elementary. Oune can just use Gaussian elimination to reduce Ay into
the following form

- -
0
00 ... = ’
00 ... 0
|00 ... 0 |
and then compare both sides of (3). O

We are now ready to prove Fact 2.2.

Proof of Fact 2.2. First note that the Cauchy-Schwarz inequality says that

<‘xlaxl> <‘x17xn—1> <$1,Z>
) . .
<$n717$1> <$n717$n71> <$n7172>
<y./.131> <y7‘7371*1> <y*Z>
(z1,21) (z1,2n-1) (z1.9) (x1,21) (z1,20-1) (z1,2)
(Tn—1,21) o (Tn—1,@n1)  (Tn-1,y) (Tn—ts21) oo {TnotTno1) (Tn1,2)
(yoz) oo (yaaa) (v, y) (zozr) ... (zaa) (z,2)
If #4,...,2,_1 are linearly dependent, then both (1) and (2) become the equality 0 = 0. So
suppose that z1,...,x,—1 are linearly independent. Then |[(z;,z;)]i j=1.. k| > 0 for each
k=1,...,n—1, and so, by Fact 2.3, the inequality is equivalent to
<l’1,l’1> <.1?1,y> <I1,Z>
o s
<wa1> <yy> <y,2>
<va1> <Z:y> <Z*Z>
since the (n + 1) x (n + 1) matrix is symmetric. O

3. A DEFINITION OF n-INNER PRODUCTS AND n-NORMS

Inspired by our observations in the previous sections, we shall now generalize the concepts
of inner products and 2-inner products as well as norms and 2-norms to those of n-inner
products and n-norms for any n € N.

Let n € N and X be a real vector space of dimension d > n. A function (-,...,-|-,-) on
X x - x X (n+1 factors) satisfying the five properties (I1) — (I5) listed in §2 is called an
n-iner product on X, and the pair (X, (-,...

o], +)) is called an n-inner product space.
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Meanwhile, a function ||-,..., || on X x -+ x X (n factors) satisfying the four properties
(N1) — (N4) listed in §2 is called an n-norm on X, and the pair (X,|-,...,||) is called an
n-normed space.

Note that our definition of n-inner products is slightly simpler than Misiak’s [9]. To see
that it is equivalent to Misiak’s, one only needs to verify that

<’7717 s ,,77”_1|y, Z) = <‘Ti17 RS M) |y7 Z>
for every permutation (iy,...,in—1) of (1,...,n —1). But this will follow easily from the
property (I2) and the polarization identity
1
<‘T17" . ,xn_1|y,2> = E[<-7717---:-77n—1‘y +z,y +Z> - <T1 7'7772—1|y — Y- Z>]
The following theorem confirms that Fact 2.1 is true in any n-inner product space.

Theorem 3.1 (The Cauchy-Schwarz Inequality). Let (X, (...
product space. Then we have

o)) be an n-inner

Y, Z>2 S <$17 s 7$n—1|y7y><x17' c ,$n_1|2’,2’>,

<'1'17' sy n—1
and the equality holds if and only if x1,...,xn_1,y, 2z are linearly dependent.

Proof. The proof goes like that of Fact 2.1. The only difference is when we have to prove
that, if ¢1,...,2,-1,¥, z are linearly dependent, then the equality holds. We note here that,
for each k =1,...,n — 1, we have (z1,...,n—1|2r, 2%) = 0 and consequently

<x17 s 7xn71|y7xk>2 S <x1: s 7$n—1‘y~,y><9€1~, s ,$n71|xk7l’k> - 07

which implies that (zy,...,2,—1|y,2%) = 0. The same is true when y is replaced by z.
Thus, if z = ay21 + -+ + ap—12p—1 + by for some aq,...,a,-1, b € R, then

(21, an_1ly, 2) = {1, .y xn_1ly, by) = blay, ... w01y, y)
and
(@1, wp_1]z,2) = (21, 20 _1|by,by) = b (x1, ... an_1ly,y),
and hence the equality follows. |

Corollary 3.2. On an n-inner product space (X,(-,...,-|-,-)), the following function

lz1, ... zal = <:cl,...7:cn,1\:cn7:cn>%

defines an n-norm. In particular, the triangle inequality
let, sz, y+ 2| < oty 2nm1,yll + |21, oy 201, 2]
holds for all x1,...,0p_1,y,2z € X.

Corollary 3.3. Let (X,(-,...,-
linearly dependent in X, then

-,)) be an n-inner product space. If x1,...,Tn-1,y.% are

Hmlv"':mn—lvy+'2” = ||'7717"'7‘77n—1:y|| + Hmlt"'vmn—hz”
or
Hmlv"-axn—lvyf ZH = ||»T/1,...,Tn_1,yH + ||'7717"-7’77n—1:ZH'

Conversely, if one of the above two equalities holds, then xq,...,2,-1,y,2 are linearly
dependent in X.
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Proof. Suppose that z1,...,2,-1.y, 2 are linearly dependent in X. As before, we may
assume that 2 = ayx1 + -+ dp—1Tn—1 + by for some ay,...,a,-1,b € R. If b > 0, then we
have
i, anmt,y+ 2] = ||z, 20—, (1 + D)y
=(1+b)||z1, - Tn-1,Y]
=lle1,. ooyl F T, Zam1, bY||
=z, ta—1, vl F 21,0 o1, 2|
If b < 0, then we have
lz1, oy zn_1,y— 2| = |71, -, @0—1, (1 = b)y||
=(1=0b)||z1,.--yTn_1,Y]
= lzvs syl + e, - mn, byl
=z, yll e e 2l
Therefore one of the two equalities must hold.
Conversely, without loss of generality, suppose that the equality
lz1, sz, y+ 2| = lo1y oo Tam1s yll + lz1, - oy 2n—1, 2]
holds. Squaring both sides, we get
(1,0 Tty 2y = |z, syl @,y @nsa, 2]
By Theorem 3.1, #1,...,%n—1,y, z must be linearly dependent. O

The notion of n-normed spaces may be of independent interest. In an n-normed space
(X, |I,--,-I), we have, for instance, |[z1,...,7,|| > 0 and ||z1,...,2p_1, 7] =
1, o sp_t,@n + oy + -+ oty forall y,... 2, € X and ay,...,a,,_1 € R.
As in a 2-normed space, a sequence z(k) in an n-normed space (X, |[|-,...,-||) is said to

be convergent to some x € X if klim llz1,. .., 2pn_1,2(k) — 2| =0 for all ay,... 2,4 € X.
—o0
In such a case, we write klim z(k) = x and call @ the limit of x(k). One may then show
— 0
that, when klim x(k) exists, it must be unique.
redeel

Many results in 2-normed spaces, such as fixed point theorems (see [1], [7] and [8]), may
have analogues in n-normed spaces.
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