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Abstract. It is known that the parallel imbeddings of a complex or a quaternionic

projective space into real space forms are the examples of planar geodesic submanifolds.

Namely each geodesic on these projective spaces is mapped to a plane curve in the

ambient real space form through the parallel imbeddings. Moreover, we know that

some particular circles of positive curvature on these submanifolds are also mapped to

plane curves. In this paper we consider the converse of this geometric property of such

planar geodesic immersions.

1 Introduction. LetM and ~M be Riemannian manifolds and f :M ! ~M be an isomet-

ric immersion. We recall the de�nition of planar geodesic immersions. If for each geodesic


 on the submanifoldM the curve f Æ
 is a plane curve in the ambient manifold ~M , that is

f Æ
 is locally contained in a 2-dimensional totally geodesic submanifold of ~M , the isometric

immersion f is called a planar geodesic immersion.

By virtue of the result [6] planar geodesic submanifolds of a real space form ~Mm(~c)(=

Em; Sm(~c) or Hm(~c)) of curvature ~c are completely classi�ed. If M is a planar geodesic

submanifold of ~Mm(~c), then M is totally umbilic in ~Mm(~c) or a compact symmetric space

of rank one through parallel immersions (for details, see Theorem A). We here pay attention

to these parallel imbeddings of three projective spaces, namely they are a real projective

space RPn, a complex projective space CPn and a quaternionic projective space QPn. We

shall investigate the extrinsic shape f Æ
 for a circle 
 on KPn(K = R;C;Q) in the ambient

real space form ~Mm(~c) under the parallel imbedding f .

In this paper we �rst show that for each circle 
 of positive curvature on RPn the curve

f Æ 
 is a helix of proper order 3 or 4 in ~Mm(~c), so that it is never a plane curve in the

ambient space (see Proposition 1). On the contrary, we know that some circles of CPn or

QPn are mapped to plane curves in the ambient space ~Mm(~c) under parallel imbeddings

(see Propositions 2 and 3).

Our purpose of this paper is to give some characterizations of parallel imbeddings of

a complex projective space and a quaternionic projective space by observing the extrinsic

shape of particular circles (Theorems 1 and 2). Our main results are improvements of

Theorems B and C.

The author is grateful to Professor Sadahiro Maeda for his valuable suggestions and also

she heartily thanks the referee for useful comments.

2 Preliminaries. We �rst review the de�nition of circles. A curve 
 = 
(s), parametrized

by its arclength s, in a Riemannian manifold M is called a circle if there exist a �eld
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Y = Y (s) of unit vectors along 
 and a nonnegative constant k which satisfy(
r _
 _
 = kY

r _
Y = �k _
;
(2.1)

where _
 denotes the unit tangent vector of 
 and r _
 the covariant di�erentiation along 


with respect to the Riemannian connection r of M . The constant k is called the curvature

of the circle. A circle of curvature zero is nothing but a geodesic. For an arbitrary point

x, an arbitrary orthonormal pair (u; v) of vectors at x and a positive k, there exists locally

a unique circle 
 = 
(s) with initial condition that 
(0) = x, _
(0) = u and Y (0) = v. For

detail, see [4] .

For later use, we prepare the following lemma ([4]).

Lemma 1. A circle 
 = 
(s) satis�es the following di�erential equation

r _
(r _
 _
) + hr _
 _
;r _
 _
i _
 = 0;(2.2)

where h ; i denotes the Riemannian metric of M . Conversely, if a curve 
 = 
(s) satis�es

(2:2), then it is a circle.

We next review the Frenet formula for a smooth Frenet curve in a Riemannian manifold

M . A smooth curve 
 = 
(s) parametrized by its arclength s is called a Frenet curve of

proper order d if there exist orthonormal frame �elds fV1 = _
; � � � ; Vdg along 
 and positive

functions �1(s); � � � ; �d�1(s) satisfying the following system of ordinary equations

r _
Vj(s) = ��j�1(s)Vj�1(s) + �j(s)Vj+1(s); j = 1; � � � ; d;(2.3)

where V0 � Vd+1 � 0. We call Equation (2:3) the Frenet formula for the Frenet curve 
.

The functions �j(s) (j = 1; � � � ; d � 1) and the orthonormal frame fV1; � � � ; Vdg are called

the curvatures and the Frenet frame of 
, respectively.

A Frenet curve is called a Frenet curve of order d if it is a Frenet curve of proper order

r(� d). For a Frenet curve of order d which is of proper order r(� d), we use the convention

in (2:3) that �j � 0 (r � j � d � 1), and Vj � 0 (r + 1 � j � d). We call a smooth

Frenet curve a helix when all its curvatures are constant. A helix of order 1 is nothing but

a geodesic and a helix of order 2 is a circle. The following is an improvement of Lemma 1.

Lemma 2 ([3]). A Frenet curve 
 = 
(s) of order 2 satis�es the following di�erential

equation

�(s)(r _
(r _
 _
) + hr _
 _
;r _
 _
i _
) = _�(s)r _
 _
;(2.4)

where �(s) = kr _
 _
k. Conversely, if a Frenet curve 
 = 
(s) satis�es (2:4), then it is of

order 2.

In this paper a curve means a smooth Frenet curve. We next recall the notion of isotropic

immersions ([5]). Let M and ~M be Riemannian manifolds and f :M ! ~M be an isometric

immersion. We denote by � the second fundamental form of f . Then the immersion f

is said to be �-isotropic at x 2 M if k�(X;X)k=kXk2(= �) is constant for each nonzero

X 2 Tx(M) of M at x. If the isometric immersion is isotropic at every point, then the

immersion is isotropic. Note that a totally umbilic immersion is isotropic, but not vice

versa.
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Finally we review fundamental equations in submanifold theory. Let M be an n-

dimensional Riemannian submanifold of ~Mn+p with metric h ; i. We denote by r and
~r the covariant di�erentiations of M and ~M , respectively. Then the second fundamental

form � of the immersion is de�ned by

�(X;Y ) = ~rXY �rXY;(2.5)

where X and Y are vector �elds tangent to M . For a vector �eld � normal to M , we write

~rX� = �A�X +r?
X
�;(2.6)

where �A�X (resp. r?
X
�) denotes the tangential (resp. the normal) component of ~rX�.

We de�ne the covariant di�erentiation �r of the second fundamental form � with respect to

the connection in (tangent bundle) + (normal bundle) as follows:

( �rX�)(Y;Z) = r?
X
(�(Y;Z)) � �(rXY;Z)� �(Y;rXZ):(2.7)

The second fundamental form � is said to be parallel if ( �rX�)(Y;Z) = 0 for all tangent

vector �elds X;Y and Z on M .

3 Planar geodesic immersions. Let ~Mm(~c) be an m-dimensional complete simply

connected real space form of curvature ~c. It is well-known that ~Mm(~c) is isometric to

Em; Sm(~c) or Hm(~c), according as ~c is zero, positive or negative.

The following theorem classi�es all planar geodesic submanifolds in a real space form.

Theorem A ([6]). Let Mn be a Riemannian submanifold of a real space form ~Mn+p(~c)

through an isometric immersion f . Suppose that f is a planar geodesic immersion. Then

Mn is totally umbilic in ~Mn+p(~c) or Mn is locally congruent to a compact symmetric space

of rank one which is immersed into some totally umbilic submanifold of ~Mn+p(~c) through

the parallel minimal immersion. This parallel minimal immersion is locally equivalent either

to the �rst standard minimal imbedding of one of the compact symmetric spaces of rank one

or to the second standard minimal immersion of a sphere.

4 Extrinsic shape of circles on RPn. Let 
 be a circle on a real projective space RPn.

We shall study the extrinsic shape f Æ 
 through the parallel imbedding f in the ambient

real space form. Note that every circle on RPn is locally contained in some totally geodesic

RP 2 of RPn. So it is enough to study the case of n = 2. It follows from Theorem A that

for each geodesic 
 on RPn the curve f Æ 
 is a plane curve which is nothing but a circle

of the same positive curvature in the ambient space (see [6]). The following clari�es the

extrinsic shape of circles of positive curvature on RPn in ~M (~c).

Proposition 1. Let f = f2 Æ f1 : RP 2( c
3
)

f1�! S4(c)
f2�! ~M2+p(~c) be an isometric parallel

imbedding of RP 2( c
3
) into a real space form ~M2+p(~c) (c � ~c). Here f1 is the �rst standard

minimal imbedding of RP 2( c
3
) into S4(c) and f2 is a totally umbilic imbedding of S4(c)

into ~M2+p(~c). Then

(I) When c = ~c,

(i) f maps each circle of curvature
p
cp
6
to a helix of proper order 3 of curvatures

p
cp
2
;
p
c.
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(ii) f maps each circle of positive curvature k 6=
p
cp
6
to a helix of proper order 4 of

curvatures
p
3k2+cp

3
; 3k

p
cp

3k2+c
;

j6k2�cjp
3(3k2+c)

.

(II) When c > ~c,

f maps each circle of positive curvature k to a helix of proper order 4 of curvatures
p
3k2+4c�3~cp

3
;

3k
p
cp

3k2+4c�3~c
;

p
4(3k2+c)2�3~c(12k2+c)p

3(3k2+4c�3~c)
.

Proof. Let f : Mn(c1) ! ~Mn+p(c2) be a �-isotropic immersion. Then the equation of

Gauss for the second fundamental form � of f is given by

h�(X;Y ); �(Z;W )i � h�(X;W ); �(Y;Z)i(4.1)

= (c1 � c2)(hX;Y ihZ;W i � hX;W ihY;Zi)

for any vector �eldsX;Y;Z;W on the submanifoldMn(c1). On the other hand, exchanging

X and Y in (4:1), we get

h�(X;Y ); �(Z;W )i � h�(X;Z); �(Y;W )i(4.2)

= (c1 � c2)(hX;Y ihZ;W i � hX;ZihY;W i):

Since f is �-isotropic, for all vector �eldsX onM , we have h�(X;X); �(X;X)i = �2hX;XihX;Xi,
which is equivalent to

h�(X;Y ); �(Z;W )i + h�(X;Z); �(Y;W )i + h�(X;W ); �(Y;Z)i(4.3)

= �2(hX;Y ihZ;W i + hX;ZihY;W i + hX;W ihY;Zi):

Summing up (4:1); (4:2) and (4:3), we obtain

h�(X;Y ); �(Z;W )i

=
c1 � c2

3
( 2hX;Y ihZ;W i � hX;ZihY;W i � hX;W ihY;Zi)

+
�2

3
(hX;Y ihZ;W i + hX;ZihY;W i + hX;W ihY;Zi):

Since our isometric imbedding f given by the assumption of Proposition 1 is a
p
4c�3~cp

3
-

isotropic (parallel) imbedding, it satis�es that

h�(X;Y ); �(Z;W )i =
2c� 3~c

3
hX;Y ihZ;W i(4.4)

+
c

3
(hX;W ihY;Zi + hX;ZihY;W i):

Let 
 = 
(s) be a circle of curvature k (> 0) in RP 2( c
3
). We denote by ~r the covariant

di�erentiation of ~M2+p(~c). Then it follows from (2:1); (2:5); (2:6) and (2:7) that

~r _
 _
 = �1V2;(4.5)

where

�1 =

p
3k2 + 4c� 3~cp

3
(4.6)
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and

V2 =

p
3p

3k2 + 4c� 3~c
(kY + �( _
; _
)):(4.7)

Di�erentiating (4:7), we obtain

~r _
V2 = ��1 _
 +
3
p
3kp

3k2 + 4c� 3~c
�( _
; Y ):

Therefore, from (4:4) if we put

�2 =
3k
p
cp

3k2 + 4c� 3~c
(4.8)

and

V3 =

p
3p
c
�( _
; Y );(4.9)

then we have

~r _
V2 = ��1 _
 + �2V3:(4.10)

Similarly, di�erentiating (4:9), we obtain

~r _
V3 = ��2V2 + �3V4;(4.11)

where

�3 =

p
4(3k2 + c)2 � 3~c(12k2 + c)p

3(3k2 + 4c� 3~c)
(4.12)

and

V4 =
(6k2 � 4c+ 3~c)cY � 3k(3k2 + c� 3~c)�( _
; _
)p
c(3k2 + 4c� 3~c)f4(3k2 + c)2 � 3~c(12k2 + c)g

(4.13)

+
3k(3k2 + 4c� 3~c)�(Y; Y )p

c(3k2 + 4c� 3~c)f4(3k2 + c)2 � 3~c(12k2 + c)g
:

Finally, di�erentiating (4:13), we �nd

~r _
V4 = ��3V3:(4.14)

From (4:5); (4:6); (4:8); (4:10); (4:11); (4:12) and (4:14) we get (i),(ii) of (I) and (II).

�
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5 Extrinsic shape of K�ahler circles and quaternionic circles. We here review

the de�nition of some particular circles in a K�ahler manifold and a quaternionic K�ahler

manifold.

Let 
 be a circle in a K�ahler manifoldM . Then we see from (2:1) that hJ _
; Y i is constant
along 
, where J is the complex structure ofM . Therefore it makes sense to de�ne a K�ahler

circle as a circle 
 satisfying the condition that _
 and Y span a holomorphic plane, that is,

Y = J _
 or Y = �J _
. Note that if 
 is a K�ahler circle, then (2:1) reduces to

r _
 _
 = kJ _
 or r _
 _
 = �kJ _
:

The extrinsic shape of K�ahler circles through the parallel imbedding of a complex pro-

jective space is known as follows ([2]):

Proposition 2. Let f = f2 Æ f1 : CPn( 2n
n+1

c)
f1�! Sn(n+2)�1(c)

f2�! ~M2n+p(~c) be an iso-

metric parallel imbedding of CPn( 2n
n+1

c) into a real space form ~M2n+p(~c) (c � ~c). Here f1

is the �rst standard minimal imbedding of CPn( 2n
n+1

c) into Sn(n+2)�1(c) and f2 is a totally

umbilic imbedding of Sn(n+2)�1(c) into ~M2n+p(~c). Then f maps every K�ahler circle 
 of

CPn( 2n
n+1

c) to a circle in ~M2n+p(~c), so that in particular the curve f Æ 
 is a plane curve

in the ambient space ~M2n+p(~c).

The following is a characterization of the parallel imbedding f in Proposition 2.

Theorem B([2]). Let M be a non-
at K�ahler manifold of real dimension 2n (� 4) which

is immersed into a real space form ~M2n+p(~c). If there exists k > 0 and all K�ahler circles

of curvature k on M are mapped to circles in ~M2n+p(~c), then M is locally congruent to a

complex projective space imbedded into some sphere in ~M2n+p(~c) through the �rst standard

minimal imbedding.

LetM be a quaternionic K�ahler manifold with local basis fI; J;Kg of quaternionic structure
and let 
 be a circle in M . Then I; J and K satisfy8><

>:
r _
I = qJ � rK

r _
J = �qI + pK

r _
K = rI � pJ;

(5.1)

for some functions p; q; r along 
. We see from (2:1) and (5:1) that hY; I _
i2 + hY; J _
i2 +
hY;K _
i2 is constant along 
 ([1]). Therefore it makes sense to consider a circle 
 satisfying

the condition that Y is a linear combination of I _
; J _
 and K _
 at each point of 
. In fact, Y

is a linear combination of I _
; J _
 and K _
 if and only if hY; I _
i2 + hY; J _
i2 + hY;K _
i2 = 1.

A quaternionic circle is, by de�nition, a circle with such a property.

The extrinsic shape of quaternionic circles through the parallel imbedding of a quater-

nionic projective space is known as follows ([2]):

Proposition 3. Let g = g2 Æ g1 : QPn( 2n
n+1

c)
g1�! Sn(2n+3)�1(c)

g2�! ~M4n+p(~c) be an

isometric parallel imbedding of QPn( 2n
n+1

c) into a real space form ~M4n+p(~c) (c � ~c). Here

g1 is the �rst standard minimal imbedding of QPn( 2n
n+1

c) into Sn(2n+3)�1(c) and g2 is a

totally umbilic imbedding of Sn(2n+3)�1(c) into ~M4n+p(~c). Then g maps every quaternionic

circle 
 of QPn( 2n
n+1

c) to a circle in ~M4n+p(~c), so that in particular the curve g Æ 
 is a

plane curve in the ambient space ~M4n+p(~c).
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The following is a characterization of the parallel imbedding g in Proposition 3.

Theorem C([2]). Let M be a non-
at quaternionic K�ahler manifold of real dimension

4n (� 8) which is immersed into a real space form ~M4n+p(~c). If there exists k > 0 and all

quaternionic circles of curvature k on M are mapped to circles in ~M4n+p(~c), then M is

locally congruent to a quaternionic projective space imbedded into some sphere in ~M4n+p(~c)

through the �rst standard minimal imbedding.

6 Characterization of parallel imbeddings of CPn. We consider the converse of

Proposition 2 to obtain a characterization of the parallel imbedding of a complex projective

space. First we prove the following.

Theorem 1. Let M be a non-
at K�ahler manifold of real dimension 2n (� 4) which is

immersed into a real space form ~M2n+p(~c). If there exists k > 0 and all K�ahler circles of

curvature k on M are mapped to plane curves in ~M2n+p(~c), then M is locally congruent to

a complex projective space imbedded into some sphere in ~M2n+p(~c) through the �rst stan-

dard minimal imbedding.

Proof. We denote by f : M ! ~M2n+p(~c) the isometric immersion which satis�es our

assumption. Let x be any point ofM . In the following, take and �x a unit vector X 2 TxM .

Let 
 = 
(s) be a K�ahler circle of curvature k on M satisfying the equation r _
 _
 =

kJ _
; jsj < � for some � > 0 with initial condition that 
(0) = x; _
(0) = X and (r _
 _
)(0) =

kJX: Needless to say, the curve 
 satis�es (2:2). By assumption the curve f Æ 
 is a plane

curve in ~M2n+p(~c), hence from (2:4) it satis�es the di�erential equation

�(s)( ~r _
( ~r _
 _
) + h ~r _
 _
; ~r _
 _
i _
) = _�(s) ~r _
 _
;(6.1)

where �(s) = k ~r _
 _
k and ~r is the covariant di�erentiation of ~M2n+p(~c). We here note

that �(s) > 0 for any s, that is, the curve f Æ 
 is of proper order 2. Indeed, suppose that

the Frenet curve f Æ 
 satis�es � � 0. This implies that the curve f Æ 
 is a geodesic in

the ambient space ~M2n+p(~c), so that the curve 
 = 
(s) is a geodesic in M , which is a

contradiction. It follows from (2:5); (2:6) and (2:7) that

~r _
( ~r _
 _
) = r _
(r _
 _
) + 3k�(J _
; _
) �A�( _
; _
) _
 + ( �r _
�)( _
; _
):(6.2)

We �nd from (2:2); (2:5); (6:1) and (6:2) that

�(s)(3k�(J _
; _
)�A�( _
; _
) _
 + ( �r _
�)( _
; _
) + k�( _
; _
)k2 _
)(6.3)

= _�(s)(kJ _
 + �( _
; _
)):

Considering the tangential component and the normal component for the submanifold M

in Equation (6:3), we obtain the following:

�(s)(�A�( _
; _
) _
 + k�( _
; _
)k2 _
) = _�(s)kJ _
:(6.4)

�(s)(3k�(J _
; _
) + ( �r _
�)( _
; _
)) = _�(s)�( _
; _
):(6.5)

Note that

�(s) = k ~r _
 _
k =
p
k2 + k�( _
; _
)k2 > 0:
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Hence

�(s) _�(s) =
1

2

d

ds
�(s)2 =

1

2

d

ds
h�( _
; _
); �( _
; _
)i

= hr?
_
 (�( _
; _
)); �( _
; _
)i

= h( �r _
�)( _
; _
) + 2k�(J _
; _
); �( _
; _
)i:

Thus, at s = 0 we get the following:

�(0) =
p
k2 + k�(X;X)k2:(6.6)

�(0) _�(0) = h( �rX�)(X;X) + 2k�(JX;X); �(X;X)i:(6.7)

Evaluating (6:5) at s = 0, we �nd

�(0)(3k�(JX;X) + ( �rX�)(X;X)) = _�(0)�(X;X):(6.8)

It follows from (6:7) and (6:8) that

3k�(0)2�(JX;X) � 2kh�(JX;X); �(X;X)i�(X;X)(6.9)

= h( �rX�)(X;X); �(X;X)i�(X;X) � �(0)2( �rX�)(X;X):

We here apply the above discussion to another K�ahler circle r _
 _
 = �kJ _
 with ini-

tial condition that 
(0) = x; _
(0) = X and (r _
 _
)(0) = �kJX; we �nd the following

corresponding to (6:9):

(6:9)0 �3k�(0)2�(JX;X) + 2kh�(JX;X); �(X;X)i�(X;X)

= h( �rX�)(X;X); �(X;X)i�(X;X) � �(0)2( �rX�)(X;X):

Hence, from (6:9) and (6:9)0 we can see that

3�(0)2�(JX;X) � 2h�(JX;X); �(X;X)i�(X;X) = 0:

This, together with (6:6), yields

(3k2 + k�(X;X)k2)h�(JX;X); �(X;X)i = 0:

As k > 0, we get

h�(JX;X); �(X;X)i = 0:(6.10)

We here evaluate (6:4) at s = 0. Then we �nd

�(0)(�A�(X;X)X + k�(X;X)k2X) = _�(0)kJX:(6.11)

Taking the inner product of the both sides of (6:11) and JX, we have

��(0)h�(JX;X); �(X;X)i = _�(0)k:(6.12)

We get _�(0) = 0 from (6:10) and (6:12). Since x is arbitrary, this guarantees that _�(s) = 0

for any s, so that �(s) is constant along the curve f Æ 
. Namely the curve f Æ 
 is a circle

in ~M2n+p(~c). Therefore from Theorem B we get the conclusion. �
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7 Characterization of parallel imbeddings of QPn. For a quaternionic K�ahler man-

ifold we obtain the following result similar to Theorem 1.

Theorem 2. Let M be a non-
at quaternionic K�ahler manifold of real dimension 4n (� 8)

which is immersed into a real space form ~M4n+p(~c). If there exists k > 0 and all quater-

nionic circles of curvature k on M are mapped to plane curves in ~M4n+p(~c), then M is

locally congruent to a quaternionic projective space imbedded into some sphere in ~M4n+p(~c)

through the �rst standard minimal imbedding.

Proof. We denote by f : M ! ~M4n+p(~c) the isometric immersion which satis�es our

assumption. Let x be any point ofM . In the following, take and �x a unit vector X 2 TxM .

Let 
 = 
(s) be a quaternionic circle of curvature k with initial condition that 
(0) =

x; _
(0) = X and Y (0) = Y = �IX + �JX + �KX on M . Then the circle 
 satis�es the

following equations:

r _
 _
 = kY (s); r _
Y (s) = �k _
; Y (s) = �I _
 + �J _
 + �K _
;

where �; � and � are functions along 
 satisfying �2 + �2 + �2 = 1. Then by an argument

similar to the proof of Theorem 1, at the point x we obtain

3k�(0)2�(�IX + �JX + �KX;X)(7.1)

�2kh�(�IX + �JX + �KX;X); �(X;X)i�(X;X)

= h( �rX�)(X;X); �(X;X)i�(X;X) � �(0)2( �rX�)(X;X)

which corresponds to Equation (6:9).

Next, we shall study another quaternionic circle 
 of the same curvature k with initial

condition that 
(0) = x; _
(0) = X and Y (0) = �Y . Then we get the following identity

corresponding to (7:1):

(7:1)0 �3k�(0)2�(�IX + �JX + �KX;X)

+2kh�(�IX + �JX + �KX;X); �(X;X)i�(X;X)

= h( �rX�)(X;X); �(X;X)i�(X;X) � �(0)2( �rX�)(X;X):

It follows from (7:1) and (7:1)0 that

3�(0)2�(�IX + �JX + �KX;X)

�2h�(�IX + �JX + �KX;X); �(X;X)i�(X;X) = 0:

This, together with (6:6), implies that

(3k2 + k�(X;X)k2)h�(�IX + �JX + �KX;X); �(X;X)i = 0:

As k > 0, we get

h�(�IX + �JX + �KX;X); �(X;X)i = 0:(7.2)

On the other hand, in (6:4) setting �I _
 + �J _
 + �K _
 in place of J _
 and s = 0, we obtain

�(0)(�A�(X;X)X + k�(X;X)k2X) = _�(0)k(�IX + �JX + �KX):

Taking the inner product of this identity and the vector �IX + �JX + �KX, we see that

��(0)h�(�IX + �JX + �KX;X); �(X;X)i = _�(0)k:

This, combined with (7:2), shows _�(0) = 0. Hence, from Theorem C we get the conclusion.

�
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