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Abstract.

We determine a normal form for hypersubstitutions for the type (2,1) variety of

star-bands, �nd the monoid of all star-band-proper hypersubstitutions, and show that

although none of the basis identities for star-bands are hyperidentities, this variety

does have some hyperidentities of any arity k.

1 Introduction A star-regular band, or star-band for short, is an algebra of type (2; 1)

with a binary multiplication indicated by juxtaposition and a unary operation �, which

satis�es the following identities:

x(yz) � (xy)z, x�� � x, (xy)� � y
�
x
�, xx�x � x, and xx � x.

We will use the notation StB for the variety of all star-bands. The lattice of all sub-

varieties of StB is countably in�nite, and has been studied by Adair ([Ad]) and Petrich

([Pet]).

In this paper, we apply the theory of hypersubstitutions and hyperidentities to the vari-

ety StB and its subvarieties. Section 2 provides the necessary background on hyperidentities

and hypersubstitutions, in particular the concepts of proper and normal form hypersubsti-

tutions. Section 3 summarizes the results we need about the varieties of star-bands and their

identities. In Section 4, we produce a normal form for hypersubstitutions for StB, and use

this to �nd the monoid P (StB) of all proper hypersubstitutions for StB. Finally in Section

5 we show that although StB satis�es some general iterative identities as hyperidentities,

none of the �ve de�ning identities for StB given above are hyperidentities.

2 Hyperidentities and Hypersubstitutions In this paper we will be interested in

varieties of type (2; 1), with two operation symbols. But �rst we present information on

hypersubstitutions for the most general setting, an arbitrary type � . We let � be a �xed

type, with fundamental operation symbols fi, i 2 I. An identity s � t of type � is called a

hyperidentity of a variety V if for every substitution of terms of V (of appropriate arity) for

the operation symbols in s � t, the resulting identity holds in V . To make this precise, we

use the idea of a map � which associates to every operation symbol fi of the given type � a

term �(fi) of type � , of the same arity as fi. Any such map � is called a hypersubstitution

(of type � ).

Let W� (X) be the set of all terms of type � on an alphabet X = fx1; x2; x3; : : :g. Any

hypersubstitution � can be uniquely extended to a map �̂ on W� (X) inductively as follows:

(i) if t = xi for some i � 1, then �̂[t] = xi;

(ii) if t = f(t1; : : : ; tn) for some n-ary operation symbol f and some terms t1, : : : ; tn, then

�̂[t] = �(f)(�̂ [t1]; : : : ; �̂[tn]).
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Here the left side of (ii) means the composition of the term �(f) and the terms �̂[t1],

: : :, �̂[tn]. We can de�ne a binary operation Æ on the set Hyp(� ) of all hypersubstitutions

of type � , by taking �1 Æ �2 to be the hypersubstitution which maps each fundamental

operation symbol fi to the term �̂1[�2(fi)]. The set Hyp(� ) of all hypersubstitutions of

type � is closed under this associative binary operation. Hyp(� ) then is a monoid, since

the identity hypersubstitution �id (mapping every fi to fi(x1; : : : ; xni
)) acts as an identity

element.

Now let M be any submonoid of Hyp(� ). An identity u � v of a variety V is called an

M-hyperidentity of V if for every hypersubstitution � 2 M , the identity �̂[u] � �̂[v] holds

in V . A variety V is called M-solid if every identity of V is an M-hyperidentity of V . In

the special case that M is all of Hyp(� ), we speak of a hyperidentity and a solid variety.

Denecke and Reichel in [DR] connected submonoids of Hyp(� ) with sublattices of the

lattice of all varieties of type � . If M is a submonoid of Hyp(� ), then the collection of

all M-solid varieties of type � is a complete sublattice of the lattice of all varieties of type

� . There is then a Galois correspondence between submonoids of Hyp(� ) and complete

sublattices of the lattice of all varieties of type � . Thus studying submonoids of Hyp(� )

may give a method for studying the complete sublattices of this lattice.

Our goal is to study, in the particular context of star-bands, two concepts for hypersub-

stitutions de�ned by P lonka.

De�nition 2.1 ([P]): Let V be a variety of type � .

i) A hypersubstitution � of type � is called a V -proper hypersubstitution if for every identity

s � t of V , the identity �̂[s] � �̂[t] also holds in V . We use P (V ) for the set of all V -proper

hypersubstitutions of type � .

ii) Two hypersubstitutions �1 and �2 of type � are called V -equivalent i� �1(fi) � �2(fi)

is an identity in V for all i 2 I. In this case we write �1 �V �2.

P lonka showed that P (V ) is a submonoid of Hyp(� ), the largest monoid M for which V

is M-solid. The relation �V is always an equivalence relation on Hyp(� ), and is sometimes

but not always a congruence. (Denecke and Marsza lek ([DM]) and Wismath ([W]) have

characterized which varieties V have �V a congruence.) The relation �V also has three

other important properties, which we shall refer to as the P lonka properties.

Lemma 2.2 ([P]): P lonka properties of �V :
Let V be a variety of type � , and let �1 and �2 2 Hyp(� ). If �1 �V �2, then
(i) for every term t of type � , the equation �̂1[t] � �̂2[t] is an identity of V ;
(ii) �1 is a V -proper hypersubstitution i� �2 is a V -proper hypersubstitution;
(iii) for all s; t 2 W� (X), the equation �̂1[s] � �̂1[t] is an identity in V i� �̂2[s] � �̂2[t] is
an identity in V .

The second of these properties tells us that the submonoid P (V ) of Hyp(� ) is in fact

a union of equivalence classes of the relation �V . This is also true when we restrict our

attention to a submonoidM of Hyp(� ), and to the relation�V jM . This is signi�cant for the

testing of hyperidentities of V , since it allows us to reduce the number of hypersubstitutions

we need to consider.

De�nition 2.3 Let M be a monoid of hypersubstitutions of type � , and let V be a variety

of type � . Let � be a choice function which chooses from M one hypersubstitution from

each equivalence class of the relation �V jM , and let N
�

M be the set of hypersubstitutions

so chosen. Thus N
�

M is a set of distinguished hypersubstitutions from M , which we shall

call normal form hypersubstitutions.
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It follows from P lonka property (ii) that to test whether an identity s � t is an M-

hyperidentity of V , it suÆces to consider �̂[s] � �̂[t] for each � from N

�

M . Thus a variety

V is M-solid if the result of applying any one of the distinguished hypersubstitutions from

N

�

M to an identity of V is still an identity of V .

Although such normal-form hypersubstitutions suÆce for testing for M-hyperidentities,

Denecke and Arworn have shown in [DA] that the set N

�

M is no longer a monoid. When

we compose two hypersubstitutions � and � in N

�
M , according to the usual composition in

Hyp(� ), the result need not be in N

�

M , although it is equivalent to some element in N

�

M . If

we de�ne a new product * on N

�

M which assigns this equivalent element to � � �, we get a

groupoid structure on N

�

M , but the operation * is not always associative.

3 Identities and Varieties of Star Bands In this section we present background

information on star-bands. These are type (2; 1) algebras, having both a binary and a

unary operation. We shall denote these operation symbols in two ways, depending upon

the context: formally, and when we consider hyperidentities, we denote the binary operation

by f and the unary operation by st; informally, when we consider identities, we often replace

f by juxtaposition and st(x) by x
�.

The variety StB of all star-bands is the type (2; 1) variety de�ned by the following �ve

identities:

(I1) x(yz) � (xy)z, (associativity law )

(I2) x�� � x, (involution law)

(I3) (xy)� � y
�
x
�, (product law)

(I4) xx�x � x, (absorption law) and

(I5) xx � x (idempotent law).

The lattice of all subvarieties of StB has been described by Adair ([Ad]) and Petrich

([Pet]). This lattice consists of four special varieties, then a countably in�nite chain of

varieties Vn, with each variety being de�ned within StB by one additional identity. For

u � v an identity of type (2; 1), we will use the notation V (u � v) for the subvariety of

StB determined by u � v. For any term u of type (2; 1), we use the notation u for the

left-to-right dual of u, so that for instance x1x
�

2x2 = x2x
�

2x1. The lattice of all varieties

of star-bands is shown in Figure 1. We list here the special varieties which appear in this

diagram:

TR = V (x � y), the trivial variety,

V1 = SL = V (x� � x) = V (x � xx
�) = V (xy � yx), the variety of semilattice star-bands,

RB = V (xyx � x), the variety of rectangular star-bands,

V2 = NB = V (xy � xy
�
xy) = V (xyzw � xzyw), the variety of normal star-bands,

V3 = RegB = V (xy � xx
�
yxy) = V (xyzx � xyxzx), the variety of regular star-bands.

Above n = 2, the identities de�ning varieties Vn are de�ned inductively; for our purposes

here it is not necessary to know these identities.

For any word w, the content c(w) of w is the set of letter variables (ignoring stars) which

occur in w. Note that c(xx�) = fxg = c(x�). (The content is also sometimes denoted by

V ar(w), the set of all variables which occur in the term w.) Many of our calculations for

identities will use the following important fact about contents.

Lemma 3.1 ([Ad]) For any words u, v and w, if c(v) � c(u) = c(w), then the identity
uvw � uw holds in every variety of star-bands.

In the remainder of this section we summarize, without proof, Adair's notation and

results about identities which hold in the various varieties of star-bands.
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Figure 1: The lattice of varieties of star-bands
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De�nition 3.2 ([Ad]) Let X be a set of variable letters, with X
� a dual set of starred

letters. Let p and q be words of type (2; 1) on the alphabet X. We will use the following

notation:

i) An identity p � q will be called homotypical if c(p) = c(q); otherwise p � q is called

heterotypical.

ii) The head h(p) of p is the element of X
S
X
� which occurs �rst in the word p;

dually, the tail t(p) of p is the element of X
S
X
� which occurs last in p.

iii) The initial part i(p) of p is the word obtained from p by keeping only the �rst

occurrence of each letter in p, in the order in which they �rst occur in p;

dually, the �nal part f(p) of p is the word obtained from p by keeping only the last occurrence

of each letter in p, in the order in which they make their last occurrence.

iv) For n equal to the size of c(p) and 2 � j � n,


j(p) is the longest left cut of p with j � 1 variables; and dually,

Æj(p) is the longest right cut of p with j � 1 variables.

v) When p � q is a homotypical identity with content size n, we set

I(p; q) = f
j(p) � 
j(q) : 2 � j � ng
S

fÆj (p) � Æj(q) : 2 � j � ng.

vi) An identity p � q is called rectangular if h(p) = h(q) and t(p) = t(q); it is called

initial (dually �nal) if i(p) = i(q) (dually f(p) = f(q)).

Theorem 3.3 ([Ad]) i) Any heterotypical and rectangular identity de�nes the variety RB;
any heterotypical and non-rectangular identity de�nes the trivial variety TR.
ii) Any homotypical identity holds in SL; if it is non-rectangular then it de�nes SL, other-
wise it also holds in NB.
iii) A homotypical, rectangular identity which is either not initial or not �nal de�nes NB.
iv) Let n � 3 and let Vn = V (un � vn). Let r � s be an initial and �nal identity. Then
r � s is satis�ed by Vn i� I(r; s) holds in Vn�2.

4 Normal Form and StB-Proper Hypersubstitutions Our �rst goal now is to de-

scribe a normal form for hypersubstitutions in Hyp(2; 1), modulo the relation �V induced

by V = StB. We note �rst that any hypersubstitution � in Hyp(2; 1) is completely deter-

mined by the two images �(f) and �(st). We shall sometimes denote a hypersubstitution

� as �u;v, to mean that �(f) = u and �(st) = v.

To describe normal form hypersubstitutions for the variety StB, we make use of P lonka's

relation �V . However, �V requires that we consider all the operation symbols of the given

type simultaneously. In our case, where we have two operation symbols to deal with in

our type, it is more convenient to consider the two symbols separately. To this end, we

introduce two related relations on the set of hypersubstitutions. Since P lonka's �V has

not been used on types with more than one symbol before, we present our de�nitions for

arbitrary type � .

De�nition 4.1 Let � be a �xed type, with fundamental operation symbols fi for i 2 I.

Let j be a �xed element of the index set I. We de�ne relations Rj and �j;V on Hyp(� ) by

setting

�1 Rj �2 i� �1(fj ) � �2(fj ) is an identity of V and �1(fi) = �2(fi) for all

i 6= j;

and �1 �j;V �2 i� �1(fj ) � �2(fj) is an identity of V .

In the special case where � has only one operation symbol these new relations coincide

with �V , but otherwise they are di�erent. We have Rj � �V � �j;V . It is easy to verify

that the relations Rj have the P lonka properties from Lemma 2.2, making them useful in

calculations of normal forms. The larger relation �j;V does not have the P lonka properties,
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but these relations are still useful since the intersection over all j 2 I of the �j;V is exactly

�V . Together, these relations mean that to describe �V for a particular type and variety

V , we can proceed by examining one image �(fj ) at a time.

We illustrate these ideas with our variety StB. For clarity we shall refer to the relations

Rj as Rf and Rst, and similarly for �j;V . We look �rst at the second operation symbol

of our type, the unary operation st. Any hypersubstitution � must map st to some unary

term v. It is clear from the identities for StB, especially the idempotent and absorption

laws, that any such unary term v is equivalent to one of the four choices x, x�, xx� and

x
�
x. This proves the following:

Lemma 4.2 For V = StB, the relation �st;V has exactly four equivalence classes; and for
each choice of a binary term for �(f), there are four equivalence classes in Rst.

Thus we think of partitioning Hyp(2; 1) thus far into four classes, each corresponding to

one of the four choices available for �(st). Next we consider further partitioning according

to the behaviour of �(f).

Lemma 4.3 For V = StB, the relation �f;V has 264 equivalence classes.

Proof. Any hypersubstitution � must map f to a binary term of type (2; 1), and it

follows from our de�nition of �f;V that we are essentially looking for equivalence classes of

binary terms modulo the set of identities of StB. First, we note that among terms that use

only one of the two possible content letters, there are 8 non-equivalent terms: x, x�, xx�,

x
�
x, y, y�, yy� and y

�
y. Now consider any word w whose content contains both variable

letters x and y. In order to use Theorem 3.3 in subsequent proofs, we shall be particularly

interested in starts and ends of words, and longest left or right cuts using one letter only

(since binary terms use only two variables). So we will consider for each word w what the

left one-letter cut is, what the next letter is, and dually what the right one-letter cut is

and what the preceding letter is. By the Content Lemma 3.1 and idempotence, we see that

any such word w is equivalent to a word of the form �pq�, where � and � are the longest

one-letter left and right cuts, and p and q are single letters (possibly starred). That is,

either � 2 fx, x�, xx�, x�xg and p 2 fy; y
�

g, or � 2 fy, y�, yy� and y
�

yg and p 2 fx; x
�

g;

and similarly for q and �. This shows that there are 8 � 2 � 2 � 8 = 256 non-equivalent

binary terms using both variable letters. Together with the 8 terms of content size one, this

gives our result.

Corollary 4.4 We have a normal form description of Hyp(2; 1)= �StB using 1056 classes,
based on 4 choices for �(st) and 264 choices for �(f), as described above.

We now use our normal form result to show that the set P (StB) of star-band-proper

hypersubstitutions contains only two of these 1056 equivalence classes. As is customary, we

do not usually distinguish between a normal form hypersubstitution and the equivalence

class of �StB it represents.

Theorem 4.5 The monoid P (StB) of star-band-proper hypersubstitutions consists of two
hypersubstitutions only, �id and �x�;yx.

Proof. We need to investigate which of our normal form hypersubstitutions � have the

property that when applied to any identity u � v of StB they always produce an identity

�̂[u] � �̂[v] which holds in StB. It follows from [DR] that it suÆces to look for � which

have this property for all of the �ve basis identities for StB. Thus we have the �nite task

of checking 1056 hypersubstitutions on �ve identities!
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We proceed by a series of observations about the base identities which restrict the

possibilities for a hypersubstitution � to be in P (StB). First, consider the identity (I2),

st(st(x)) � x. Regardless of the value of �(f), if �(st) = xx
� or x�x then application of �̂

to (I2) yields an identity which de�nes the variety SL. This means that any � in P (StB)

must have �(st) equal to x or x�.

Next we consider the identity (I3), st(f(x; y)) � f(st(y); st(x)). If �(st) = x and �(f) is

a binary term w, application of �̂ yields the identity w(x; y) � w(y; x). But for any binary

term w this identity is non-rectangular, and holds at most in the varieties SL and TR. This

means that for � 2 P (StB), we must have �(st) = x
�.

Next we consider (I3) again, this time with �(st) = x
� and �(f) = w, for some binary

term w. The identity that results when �̂ is applied to (I3) is w(x; y)� � w(y�; x�). If the

term w uses only one of the input variables x and y, then our identity is non-rectangular

and heterotypical, and hence holds only in the trivial variety. Thus w must use both letters

x and y. If w contains no occurrences of the star operator, then it must be one of the six

terms x, y, xy, yx, xyx and yxy. Testing each of these individually shows that only two of

them yield an identity which holds in StB. This gives us two possible elements of P (StB):

the identity element �id = �xy;x� and �yx;x� . The identity element is always in P (StB),

and it is easily veri�ed that �yx;x� is also in P (StB), since all �ve base identities for StB

are self-dual.

Thus we now have two elements in P (StB), and we know that for any other � in P (StB)

we must have �(st) = x
� and �(f) equal to a word w which uses both letters x and y and

has at least one occurrence of the star operator. Now consider the identity (I5), f(x; x) � x.

If the �rst or last symbol to occur in w is starred, then the result of applying �̂ to (I5) is

an identity of the form x
�
� � x or �x� � x, for some word � with content fxg, and such

an identity holds only in the varieties SL and TR. Thus we conclude that w cannot have

a star on its �rst or last symbol.

We return to (I3) again, where the result of applying �̂ is an identity w(x; y)� �

w(y�; x�). If w has its �rst and last symbol the same, we see that the resulting identity is

not rectangular, and hence cannot hold in StB.

This reduces our possibilities for � in P (StB) to the following. We must have �(st)

= x
� and �(f) = w, where w is a binary term using both letters x and y, at least one

occurrence of a star, and with �rst symbol x and last symbol y or vice versa. Together with

our normal form for terms, this allows us to completely describe the remaining possibilities

for � 2 P (StB). In normal form, the term w = �pq� can have � 2 fx; xx
�

g, p 2 fy; y
�

g, q

2 fx; x�g and � 2 fy; y�g, or dually if w has �rst symbol y. This gives 32 possible terms to

test. We now show that other than the two hypersubstitutions already found in P (StB),

none of these 32 are in P (StB). We do this by showing that when any such �̂ is applied to

the associative identity (I1), the result is an identity which does not hold in St(B).

We will use the notation Lw � Rw for the identity which results from (I1) when the

hypersubstitution with �(f) = w is applied. It is clear that Lw � Rw is always going to be

homotypical and rectangular, and thus holds in at least the variety NB and its subvarieties.

From Theorem 3.3, we know that if it is not initial or not �nal, then the identity does not

hold in any higher varieties, in particular in StB. If it is both initial and �nal, we use

Theorem 3.3 to test whether it holds in the next highest variety, RegB. Since Lw � Rw has

content fx; y; zg, we need to consider longest left and right cuts of content sizes one and two.

It follows from Theorem 3.3 part (iv) that Lw � Rw holds in RegB if and only if the two

cut-identities in I(Lw; Rw) both hold in SL, and moreover that if these two cut-identities

de�ne SL then Lw � Rw holds in no higher varieties than RegB.

We now claim that any of our 32 possibilities for w results in an identity Lw � Rw

for which the cut identities I(Lw; Rw) de�ne SL. This can be checked by calculating each
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identity and its cuts, in a case by case analysis.

Case 1: w = xyxy: here w is equivalent modulo StB to xy, already considered.

Case 2: w = xyxy
�
y: Here

Lw = xyzyz
�
zxz

�
zy
�
z
�
y
�
yzyz

�
z and Rw = xyxy

�
yzxyxy

�
yz

�
z.

Hence the right two-variable longest cut-identity is non-rectangular, and holds only in SL

and TR.

Case 3: w = xyx
�
y: Here Lw = xyzy

�
zx

�
yzy

�
z and Rw = xyx

�
yzy

�
xy

�
x
�
z. Again the

right two-variable cut-identity is non-rectangular and heterotypical, so de�nes the trivial

variety.

Case 4: w = xyx
�

y
�

y: Here

Lw = xyzy
�
z
�
zx

�
z
�
zyz

�
y
�
yzy

�
z
�
z and Rw = xyx

�
y
�
yzy

�
yxy

�
x
�
z
�
z.

Again the right two-variable longest cut-identity is heterotypical and non-rectangular.

Cases 5 to 8: w = xy
�
uy, where u is one of x, xy�, x� or x�y�: In all of these, the left

two-variable longest cut has content fx; zg in Lw and fx; yg in Rw, and the identities are

non-rectangular in each case. This means that the cut-identities hold in at most SL, and

Lw � Rw holds in at most RegB.

Cases 9 to 12: w = xx
�
yuy, where u is one of x, xy�, x� or x�y�: In all of these, the

left two-variable longest cut is not rectangular.

Cases 13 to 16: w = xx
�
y
�
uy, where u is one of x, xy�, x� or x�y�: In all of these, the

left two-variable longest cuts have di�erent contents.

Cases 17 to 32: These are the duals of the �rst 16, where now w has y as its �rst symbol

and x as its last. These cases are handled similarly.

We have shown that the monoid P (StB) is quite small, containing only two (equivalence

classes of) hypersubstitutions. However, the monoid is not just the trivial submonoid.

Denecke and Koppitz ([DK]) have called a variety unsolid if the only hypersubstitutions

in P (V ) are those equivalent to the identity hypersubstitution, and completely unsolid

when P (V ) consists only of �id. Our theorem thus shows that StB is neither unsolid nor

completely unsolid.

In the proof of the previous theorem, and in Theorem 5.3 below, the variety SL of

semilattices plays a special role. We conclude this section by �nding P (SL), the monoid of

proper hypersubstitutions, for this variety.

Theorem 4.6 P (SL) is the monoid of hypersubstitutions � for which �(f) is a binary term
which uses both letters x and y.

Proof. From Theorem 3.3 we know that any identity u � v for which c(u) = c(v) holds

in SL. Thus (I2), (I4) and (I5) are clearly hyperidentities for SL. For (I1) also, any choice

of term to use for the symbol f results in a homotypical identity which holds in SL, so (I1)

is a hyperidentity. For (I3) however, we see that the result of applying �̂ is a homotypical

identity if and only if �(f) is a word w for which c(w) is fx; yg.

5 Hyperidentities for Star-Band Varieties In this section we show that none of the

identities in the usual basis for the variety StB, consisting of the �ve identities from Section

1, is a hyperidentity for StB. We show that there are however some identities for StB which

are hyperidentities.

Theorem 5.1 None of the �ve identities in the de�ning basis for StB is a hyperidentity
for StB.
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Proof. For each of the �ve identities (I1) to (I5), we exhibit a hypersubstitution � for

which the result of applying �̂ to the identity is an identity which does not hold in StB. For

(I1), application of a hypersubstitution which maps f to the term xyx yields the identity

xyzyx � xyxzxyx, which is known to de�ne the subvariety RegB. For (I2), using xx
� for

the operation st yields xx� � x, which is equivalent to SL. Use of any terms such as x or y

for f in (I3) lead to identities of the form x � y, which only hold in the trivial variety TR.

Finally, using x
� for f in (I4) or (I5) leads to the identity x � x

�, which de�nes SL.

Corollary 5.2 The identities (I2), (I5) and (I4) hold as hyperidentities in the varieties
SL and TR only; the identity (I3) holds as a hyperidentity only in the trivial variety TR;
and the identity (I1) holds in NB and its subvarieties, but in no higher varieties.

Proof. The claim for (I3) follows from Theorem 5.1. The claims for (I2), (I5) and

(I4) follow from Theorems 4.6 and 5.1. For (I5), we saw in the proof of Theorem 4.5

that this identity holds in at least the variety NB; but case 3, using w = xys
�
y gives a

hypersubstitution � whose application to (I1) results in a non-�nal identity, showing that

this identity cannot hold in any higher variety.

Although none of the basis identities for StB are hyperidentities, there are some hyper-

identities known for this variety. In [KW], Koppitz and Wismath showed that StB satis�es

some iterative hyperidentities, of arity one and two. We summarize their results here, and

show that they may be extended to arbitrary arities. Thus we now consider as possible

hyperidentities a family of identities with one operation symbol G of some arity n � 1.

In this case, hypersubstitution amounts to substitution of an n-ary term w of StB for the

operation symbol G. As discussed in the previous section, we may reduce the possibilities

for this term modulo the identities of StB; in particular, we may use associativity to write

w as a \word" in the variables or letters x1, : : :, xn.

We de�ne G2(x1; : : : ; xn) = G(G(x1; : : : ; xn); x2; : : : ; xn), and then inductively,

G
k+1(x1; : : : ; xn) = G(Gk(x1; : : : ; xn); x2; : : : ; xn), for k � 2. An n-ary iterative hyperiden-

tity is a hyperidentity of the form G
a(x1; : : : ; xn) � G

b(x1; : : : ; xn), for some b > a � 1.

This concept of iterative hyperidentities was studied in [HMT]. The following theorem was

proved for the special cases n = 1 and n = 2 in [KW].

Theorem 5.3 (i) If b > a � 1 and a and b have opposite parity, then the hyperidentity
G
a(x1; : : : ; xn) � G

b(x1; : : : ; xn) holds only in SL and TR.
(ii) If b � 3 with b odd, then G(x1; : : : ; xn) � G

b(x1; : : : ; xn) holds only in SL and TR.
(iii) If b � a � 2 have the same parity, then the hyperidentity G

a(x1; : : : ; xn) �

G
b(x1; : : : ; xn) is satis�ed in every variety of star-bands.

Proof. (i) Using x�1 for G forces x�1 � x1, and hence SL. It is clear that the hyperidentity

does hold in TR and SL.

(ii) It is easy to verify inductively that for b odd, the result of using x
�

1x
�

2 : : : y
� for G in

G
b(x; y) is the word xnxn�1 : : : x2x

�

1
x
�

2
: : : x

�

n. Thus a hypersubstitution which uses the term

x
�

1
x
�

2
: : : y

� results in a non-rectangular identity which by Theorem 3.3 de�nes the variety

SL.

(iii) Let w be any n-ary term. We will let wk denote the result of hypersubstituting w

for G in the term G
k(x1; : : : ; xn), for k � 1. We must show that when b > a � 2 have the

same parity, the identity wa � wb holds in every variety of star-bands. Since this identity

is clearly homotypical and contains (some of) the n variables x1, : : :,xn, we know from

Theorem 3.3 that it suÆces to consider the longest left and right cuts for each content size
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from 1 to n � 1. We claim that these cuts are the same for each of wa and wb, which

will establish the desired result. This is because the cuts for any wk, for k � 2, depend

on the cuts for w = w1, in an inductive manner determined according to the following

key observation. If Gk(x1; : : : ; xn) has produced a word wk, then we can obtain the word

wk+1 from it by going through wk and replacing every occurrence of x1 or x
�

1 by wk or

w
�

k respectively, while leaving each xi or x
�

i alone, for 2 � i � n. This means that while

occurrences of the variable x1 or x�1 are signi�cant in w1, occurrences of the other variables

are not particularly important. If w1 contains no occurrences of x1 or x
�

1, then clearly

wa = wb always holds. So we assume that w1 contains at least one occurrence of x1 or x�1,

and we can write w = �p�q
, where p; q 2 fx; x
�
g, � is any (possibly empty) word with

c(�) � fx1; : : : ; xng, and � and 
 are any (possibly empty) words with content a subset of

fx2; : : : ; xng. This gives us four cases to consider, depending on the choices of p and q.

Case 1: w = w1 = �x1�x1
.

Note that this means that �w1 � w1 and w1
 � w1. Let us inductively de�ne � = �1 and

�k+1 as the result of using wk for the x1-inputs and xi as the xi-input, for 2 � i � n, in

the subword �k. Then we have w2 � �w1�2w1
 � w1�2w1, and for each k � 2, wk+1 �

�wk�k+1wk
. Thus by induction, for all k � 2 we have wk starting with �w1 � w1 and

ending with w1
 � w1. In particular, this means that wa and wb have the same left and

right cuts of each content size, since they are all the same as the cuts for w1.

Case 2: w = w1 = �x1�x
�

1
.

Then w2 � �w1�2w
�

1
, and for each k � 2, wk+1 � �wk�k+1w
�

k
. By induction, we get

that for k � 2, the word wk starts with �w1 � w1, and so has the same left cuts of each

content size as w1. This also means that for k � 2, wk ends with w
�

1
, and so has the same

right cuts as w�1
. In particular, wa and wb have the same right cuts.

Case 3: w= w1 = �x
�

1�x1
.

This case is dual to Case 2, and is proved in a similar way.

Case 4: w = w1 = �x
�

1�x
�

1
.

Then w
�

1 � 

�

x1�
�

1x1�
�, so that 
�w�1 � w

�

1 � w
�

1�
�. We have w2 � �w

�

1�2w
�

1
, and for

any k � 1, wk+1 � �w
�

k�k+1w
�

k
, and

wk+2 � �w
�

k+1�k+2w
�

k+1
 � �

�
wk�

�

k+1wk�
�
�k+2


�
wk�

�

k+1wk�
�

.

Therefore by induction, for k � 3 and odd, the word wk starts with �

�
w1 and ends

with w1�
�

. Thus if b � a are both odd, wa and wb have the same left and right cuts of

each content size. Similarly, for k � 4 and even, we have wk starting with �

�
�w

�

1 and

ending with w
�

1
�
�

, and wa � wb holds. Finally, for the special case a = 2 and b � 2 is

even, we note that t2 also starts with �

�
�w

�

1, since �w�1 � �

�
w
�

1 � �

�
�


�
w
�

1 � �

�
�w

�

1;

and similarly for the ends.

Although the iterative identities presented in Theorem 5.3 are all iterated or nested on

the left-most position, for the variable x1, it is clear that we could do the iteration on any

�xed variable xi, for 1 � i � n.
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