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ABSTRACT. To be able to consider convenient hulls of (¢) AUnif, the category of (quasi-)
approach uniform spaces and uniform contractions, one needs to have (in particular fi-
nally dense) topological universe extensions of these categories available. To this end,
the categories (¢)SAUConv, (¢)SAULim and (¢)PsAULim are introduced and are
shown to be topological universes and appropriate generalizations (quantifications) of
the categories (¢)SUConv, (¢)SULim and (¢)PsULim introduced earlier by Preuf and
Behling ([2]) (as extensions of (¢)Unif, the category of (quasi-)uniform spaces and uni-
formly continuous maps), in the same way that (¢)AUnif generalizes (¢)Unif. By also
describing the final hulls of (¢)AUnif in the previously mentioned topological universes,
some finally dense topological universe extensions are eventually obtained.

1. INTRODUCTION.

On the one hand, in [5], Cook and Fisher introduced the category of uniform convergence
spaces (and uniformly continuous maps) as a generalization of the category Unif of uniform
spaces (and uniformly continuous maps) in the sense of Weil [27]. This category, when mod-
ified as suggested by Wyler [29] and then denoted ULim, turned out to be a cartesian closed
topological category (Lee [11]), but not an extensional (= hereditary) topological category
(cf. Behling [2]). In [2], [23] and [24], Behling and Preuf} further extended this category to
obtain the topological universes SULim and SUConv of respectively semi-uniform limit
spaces and semi-uniform convergence spaces (and corresponding quasi-versions by drop-
ping a symmetry requirement), where a topological universe (= topological quasitopos) is
a cartesian closed and extensional topological construct.

On the other hand, in [14], Lowen and Windels introduced the category AUnif of approach
uniform spaces (and uniform contractions) to contain both uniform and metric spaces and
thereby allowing a quantified view on uniform properties ([15]) and completion ([16]). Also,
an “approach” extension AUCS (also denoted AULim in the following) of ULim was
considered (see e.g. [28]) which, unlike ULim, is not cartesian closed topological.

In this paper, the categories (¢)SAULim and (¢)SAUConv of respectively (quasi-) semi-
approach uniform limit spaces and (quasi-)semi-approach uniform convergence spaces are
introduced as “approach” extensions of (¢)SULim and (¢)SUConv and are shown to be
topological universes (and therefore convenient extensions of (¢)AUnif) such that a non-
quantified construct is bireflectively bicoreflectively embedded in its “approach” extension
(among other various relations shown to hold).

Next, some particular attention is given to an example lifted from [17], that is, the cate-
gory (¢)PsAULim C (¢)SAULim of (quasi-)pseudo-approach uniform limit spaces (and
uniform contractions), which is an “approach” extension of the category (¢)PsULim C
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(¢)SULim of (quasi-)pseudo-uniform limit spaces as described in [2], which are both topo-
logical universes determined by means of axioms similar to the one’s of Choquet’s pseudo-
topological spaces ([4]) and Lowen’s pseudo-approach spaces ([13]).

Also obtained in this paper are the final hulls of (¢)AUnif in the topological universes
(¢)PsAULim, (¢)SAULim and (¢)SAUConv (and as an extra, also in (¢)AULim),
which are most useful in describing smallest possible convenient extensions (= hulls) of
(¢)AUnif, such as a cartesian closed topological hull (see [19]) or a topological universe (=
quasitopos) hull (which turns out to be the final hull of (¢) AUnif in (¢)PsAULim, see [20]).
Similar results are also obtained in non-quantified versions, which is useful in describing the
CCT hull of (¢)Unif ([18]) and in obtaining an alternative, internal characterization of
the topological universe hull of (¢)Unif (which is analogously the final hull of (¢)Unif in
(¢)PsULim, see also [20]).

2. PRELIMINARIES.

Since topological categories (or constructs) will be considerably used, first note that a topo-
logical construct will stand for a concrete category over Set which is a well-fibred topological
c-construct in the sense of [1], i.e. each structured source has an initial lift, every set carries
only a set of structures and each constant map (or empty map) between two objects is a
morphism.

A topological construct A is called CCT (cartesian closed topological) if A has canonical
function spaces, i.e. for every pair (A, B) of A-objects the set hom(A4, B) can be supplied
with the structure of an A-object, denoted by [A4, B], such that

(a) the evaluation map ev: A x [A, B] — B is an A-morphism,

(b) for each A-object C' and A-morphism f : A x C — B, the map f* : C — [A, B]
defined by f*(¢)(a) = f(a,c) is an A-morphism (f* is called the transpose of f). Note
that given f : A x C' — B, the transpose f* : C — [A, B] is the map which makes
the following diagram commute:

Ax[A B —% - B
1><f/[ 7
AxC

A topological construct A is called extensional (or hereditary) if it has representable partial
morphisms (to all A-objects), where

e a partial morphism from A to C is a morphism f : B — C, whose domain B is a
subspace (= initial subobject) of A, and
e partial morphisms to C are representable, provided C' can be embedded via the ad-
dition of a single point coc into an A-object C# (called one-point extension of C)
such that for every partial morphism f : B — C, the map f4 : A — C# defined
by fA(z) = f(z) if z € |B|, f4(x) = oco¢ if 2 € | 4| \ | B|, is an A-morphism.
In general, categorical concepts and terminology used in this paper (and possibly not recalled
here), in particular regarding categorical topology can be found in [1] and [22]. Furthermore,
a functor shall always be assumed to be concrete (unless this is clearly not the case from
its definition) and subcategories to be full and isomorphism-closed.

Next, let us turn to introducing some notations and recalling some necessities regarding
(approach) uniform spaces (and variations thereof). Given a set X, F(X) stands for the set
of all filters on X; if F € F(X), then U(F) stands for the set of all ultrafilters on X finer
than F. In particular, U(X) := U({X}) stands for the set of all ultrafilters on X. Given
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A C X, we recall that stack A := {B C X | A C B} and if A consists of a single point a,
we also denote a := stacka := stack A.

If 7 € F(X?), then F~! denotes the filter generated by {F~! | F € F}, where, given
F C X?, it holds that F~' := {(y,z) | (z,y) € F}. If F,G € F(X?), then F oG (the
composite of F and G) is defined to be the filter on X? generated by the filterbasis {F o G |
F € F,G ¢ G}, where FoG = {(x,z) € X* | 3y € X : (n,y) € G and (y,2) € F}.
Besides the “normal” product of sets, maps, filters, ... ;, we also define the following product
of filters. If F € F(X?) and G € F(Y?), then F ® G denotes the filter generated by
{F®G | F € F,G € G}, where, given F C X? and G C Y?, the set F ® G is given by
FoG:={({(z,y),,y)) ]| (x,2') € F,(y,y') € G}. Also, given a set X, Ax denotes the
diagonal of X2, that is, the set {(z,z) | z € X}.

Given F' C X, we let

S,(X,F):={F e F(X?) | F CstackAr and F x F € F}
and S(X,F) := {F € S,(X,F) | F~' = F},

elements of which are called quasi-semi-uniformities (on F') and semi-uniformities (on F')
respectively. Also let S;(X) := UpcxSq(X, F) and S(X) := UpcxS(X, F) denote the
collection of quasi-semi-uniformities (in X) and semi-uniformities (in X) respectively, and
observe that the set F' C X such that F € S,(X, F') is uniquely determined by F € S,(X),
ie. S¢(X,F)NS,(X,G) = 0 whenever F # G. Indeed, if F € S,(X, F), G € S;(X,G) and
F C G, then it follows that Ag C F'xF', hence G C F. Consequently, S;(X, F)NS,(X,G) #
() implies that F = G.

A semi-uniform convergence space is a pair (X, L), where X is a set and L is a semi-uniform

convergence structure (on X ), i.e. a set of filters on X x X such that the following conditions
are satisfied:

(SUC,) Ve e X :zx & €L
(SUCs) VFeL,VG e F(X?): FCG=>GeL.
(SUCs) VF € F(X2): FeL=FleL.

A semi-uniform convergence space (X, L) is called a semi-uniform limit space provided that
the following is satisfied:

(SUL) VF,GeL:FngGel.

A semi-uniform limit space (X, L) is called a pseudo-uniform limit space provided that the
following is satisfied:

(PsUL) VF e F(X?): FeL <+ U(F) CL.
A semi-uniform limit space (X, L) is called a uniform limit space provided that the following
is satisfied:

(UL) VF,GeL:FoGel.

It is also possible to consider related concepts of the foregoing by omitting the symmetry-
like axiom (SUCj3), which shall be indicated by using the prefix quasi (and observe that
leaving out the triangular inequality-like axiom (UL) is indicated by the prefix semi).

A map f: (X,Lx) — (Y,Ly) between semi-uniform convergence spaces is said to be
uniformly continuous provided that VF € Lx : (f x f)(F) € Ly.

Semi-uniform convergence spaces and uniformly continuous maps form the objects and
morphisms of a construct, denoted by SUConv, and its full subconstructs of semi-uniform
limit spaces, pseudo-uniform limit spaces and uniform limit spaces is denoted by SULim,
PsULim and ULim respectively, wheras the quasi-variants are denoted by ¢SUConv,
¢SULim, ¢gPsULim and ¢ULim respectively.
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The category (q)(s)Unif of (quasi-)(semi-)uniform spaces and uniformly continuous maps
(in the sense of Weil [27], Csészar [6] and Cech [3] (see also Fletcher and Lindgren [7]
and Kiinzi [9], [10]) can be nicely embedded into the category (¢)SULim, as (¢)(s)Unif
is isomorphic to the full subcategory of (¢)SULim whose objects consist of all principal
(quasi-)(semi-)uniform limit spaces, where a (quasi-)(semi-)uniform limit space (X,L) is
called a principal provided that it satisfies
(PrSUL) For any family (F;);jes € [JL: [ 7 € L.
jeJ jeJ

Indeed, observe that a (quasi-)semi-uniform limit space (X,L) is principal if and only if
there exists a (quasi-)semi-uniformity & on X such that L = {F € F(X?) | U C F}.
Furthermore, the elements of U are called entourages and we shall also let (X,U) refer to
(X,L), which satisfies (UL) if and only if U is even a (quasi-)uniformity, meaning that U
additionally satisfies VU e U,V e U : VoV C U.

Using the previous identifications of (concretely) isomorphic constructs, the following prop-
erties hold (see e.g. Lee [11, 12], Behling [2] and Preu8 [23, 24]).

2.1. Proposition. (¢)SUConv is a topological universe.
Moreover, given a source (f; : X — (X;,1;))scr, one obtains the initial lift Lx by

Lx = {F € F(X2) |Vie I:(fi x f;)(F) € Li}.

Also, given (X,Lx),(Y,Ly) € (¢)SUConv, the function space [(X,Lx),(Y,Ly)]
(in (9)SUConv) is given by (hom((X,Lx), (Y,Ly)),L), where

L:={¥ € F(hom((X,Lx), (Y,Ly))?) | VF € Lx : ¥(F) € Ly }
(where U (F) := (ev x ev)(F x ¥) and ev : X x hom((X,Lx), (Y,Ly)) — Y).
Next, let (X,Lx) € (¢)SUConv, then the (¢)SUConv-one point extension (Z, ]L?é) =
(X,Lx)# is given by Z := X# := X U{ocox} and
L% = {F € F(Z?) | (F has no trace on X?)
or (F has a trace on X” and Fix2 € Lx)}.

The following relations hold (where r (c) : A — B means that A is a bi(co)reflective
subconstruct of B):

qUnif —"— ¢sUnif ¢PsULim —"— ¢SULim " . ¢SUConv

r;
| [ ’l’w‘c T‘[\C T/{\C 1‘71 Cc
Unif ——— sUnif " . PsULim ——— SULim ——— SUConv

r

In particular, all indicated constructs are topological constructs, and furthermore, (¢)SULim
and (q)PsULim are closed under formation of initial lifts, function spaces and one-point
extensions in (q)SUConv, hence, (¢)SULim and (q)PsULim are topological universes.
|

An approach uniform space is a pair (X, (U).cr+), Wwhere (Ue).cr+ is a uniform tower on
X, meaning a family of filters (,).cr+ on X x X such that

(UT1) Vee Rt VU €U, : Ax C U.

(UT2) Vee RV, VU €U, : Ut € U,.

(UT3) Ve,e' e RT :U. ol DUt

(UT4) Ye € RT : U = s Ua-
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Thus, a uniform tower is a stack of semi-uniformities satisfying (UT3) and (UT4).
A map f: (X, Ue)eer+) — (Y, (U).cr+) between approach uniform spaces is called a
uniform contraction if it fulfills the property that

Ve e RY : f: (X,U.) — (Y,U.) is uniformly continuous (i.e. U C (f x f)(U.)).

The category AUnif of approach uniform spaces and uniform contractions is a topological
construct and is extensively studied and described in [28].

As before, one also considers related categories in [28] by leaving out the triangular inequality-
like axiom (UT3) (indicated by using the prefix semsi-) and/or the symmetry-like axiom
(UT2) (indicated by using the prefix quasi-), which leads to the categories ¢sAUnif, ¢AUnif
and sAUnif.

Note: For convenience of the reader, it should also be noted that there is a diagram at the
end of this paper which presents an overview of most of the categories to be introduced in
the sequel.

3. CONVENIENT EXTENSIONS OF (g)AUnif.

3.1. Definition. A map 7 : F(X?) — [0, 0] is called a semi-approach uniform conver-
gence structure (on X ) if it satisfies:
(SAUCS;) Vz € X : (2 x ) = 0.
(SAUCS,) VF,G € F(X2): F C G = n(G) < n(¥F).
(SAUCS;3) VF € F(X?) : n(F~1) = n(F).
The pair (X, n) is called a semi-approach uniform convergence space.
It is called a semi-approach uniform limit space if it additionally satisfies

(SAULS) VF,G € F(X?) :n(FNG) < n(F) Vn(G).
A semi-approach uniform convergence space (X, n) is called a pseudo-approach uniform limit
space provided it satisfies:
(PSAULS) VF € F(X?) :n(F) < sup nU).
UEU(F)
A semi-approach uniform limit space (X,n) is called an approach uniform limit space if it
additionally satisfies

(AULS) VF,G € F(X?) :(F o G) < n(F) +n(G).
Further, a semi-approach uniform limit space (X, 7) is called principal if it satisfies

(PrSAULS) For any family (F;)jes € H F(X ﬂ Fi| < supn (F5)-
jed jEJ

Again, it is possible to consider related concepts with the symmetry-like property (SAUCS3)
left out (indicated by the prefix quasi-). Furthermore, any meaningful combination of
the foregoing is also acceptable, such as for instance a principal quasi-approach uniform
limit space. Also observe that because of (SAUCS-), equivalent properties are obtained by
replacing inequality in (SAULS), (PsAULS) and (PrSAULS) with equality.

It should be noted here that an approach uniform limit space was introduced in Windels
[28] (and was called an approach uniform convergence space) to be able to express for every
filter F on X x X to what extent it belongs to the structure, rather than just having a
collection to which a filter either belongs or not. The change in terminology is intended to
have a corresponding one to the one recalled earlier (in the preliminaries).

As in [28], equivalent descriptions of the previous structures can be considered.
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3.2. Proposition. Let (L¢).cr+ (also shortly denoted by (L.). or even ) be a (quasi-)
semi-uniform convergence tower (on X ), i.e. a family of (quasi-)semi-uniform convergence
structures such that
(UCT) L, = ﬂ L, ie. (1x : (X,L) — (X,Ly))a>c is initial in gSUConv,
a>e
then n,(F) := min{a € RT | F € L, } defines a (quasi-)semi-approach uniform convergence
structurenr, on X . Conversely, if 1) is a (quasi-)semi-approach uniform convergence structure
on X, then L, := {F € F(X?) | n(F) < €} (¢ € R") defines a (quasi-)semi-uniform
convergence tower (L. ).cr+-
Moreover, this establishes a one-one correspondence between (quasi-)semi-approach uniform
convergence structures and (quasi-)semi-uniform convergence towers such that
e 1) satisfies (SAULS) if and only if
(SULT) Ve € R" : L. is a (quasi-)semi-uniform limit structure.
o 1) satisfies (PsAULS) if and only if
(PsULT) Ve € R" : L. is a (quasi-)pseudo-uniform limit structure,
e 1) satisfies (PrSAULS) if and only if
(PrSULT) Ve € R* : L, is a principal (quasi-)semi-uniform limit structure.
e 7 satisfies (AULS) if and only if
(ULT) Ve, e RV VF,GeF(X?): Fel.andGE€Ls = FoG € Leye .
Proof. First of all, observe that it follows from (UCT) that the mentioned minimum
definitely exists, and it is subsequently a straightforward verification to check that the
defined operations indeed yield a (quasi-)semi-approach uniform convergence structure and
a (quasi-)semi-uniform convergence tower respectively.

Let 1 be a (quasi-)semi-approach uniform convergence structure 7, then it holds for every
F € F(X?) that

n, (F) = min{a € Rt | F € Ly o} = min{a € R | n(F) < a} =n(F).
On the other hand, let (L).cr+ be a tower, then it holds for every € € Rt that

Ly, e = {F € F(X?) | n(F) < €}
={FeF(X?) |minfa e R | FelL,} <e} =L.
The remaining claims regarding the one-one correspondence of the appropriate properties
are then easily verified. =
Having considered several descriptions of (quasi-)semi-approach uniform convergence spaces
(and variations thereof), it remains to discuss morphisms between them.

3.3. Proposition. Let (X,nx) and (Y,ny) be quasi-semi-approach uniform convergence
spaces and let f : X — Y be a map, then the following are equivalent.

(1) VF € F(X?) :qy ((f x [)(F)) < nx(F).

(2) Yee Rt : f: (X,L,y ) — (Y,L,y ) is uniformly continuous.
Proof. This is an easy verification (cf. previous proposition). m
3.4. Definition. A map f : (X,nx) — (Y,ny) between quasi-semi-approach uniform
convergence spaces is called a a uniform contraction if it satisfies the foregoing equivalent
conditions.

The category (construct) of (quasi-)semi-approach uniform convergence spaces and uniform
contractions is denoted by (¢)SAUConv, and its full subconstruct of (quasi-)semi-approach
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uniform limit spaces, (quasi-)pseudo-approach uniform limit spaces and (quasi-)approach
uniform limit spaces is denoted by (¢)SAULim, (¢)PsAULim and (¢) AULim respectively.
Also note that by (PsAULS) a pseudo-approach uniform limit is completely determined
by its restriction to ultrafilters and that it is equivalent to define (¢)PsAULim as the
full subconstruct of (q)SAUConv whose objects (X,7n) satisfy (PsAULS), since (PsAULS)
implies (SAULS) (indeed, recall that U(F N G) = U(F) UU(G) (VF,G € F(X?)).

The following result justifies that the full subconstruct of gSAUConv consisting of principal
(quasi-)(semi-)approach uniform limit spaces is denoted by (g)(s)AUnif.
3.5. Proposition.
(1) Given a set X and a principal (quasi-)(semi-)uniform limit tower (L.).cr+ on X,
(Us)cer+ defined by
U, == ﬂ F  (VeeRHh)
FeL.
is a (quasi-)(semi-)uniform tower on X, and vice versa, if (U).cr+ Is a (quasi-)(semi-)
uniform tower on X, then (Ly,¢)ccr+ defined by
Ly, :={FeFX?) |UCF} (VeeR")
is a principal (quasi-)(semi-)uniform limit tower on X, such that
Ly, =L and Uy, =U.
(2) If (X, (LX)cery) and (Y, (LY ).cr+) are principal quasi-semi-approach uniform limit

spaces, then the following are equivalent for a map f: X — Y:

(1) f: (X, LX) ecr+) — (¥, (LY ).cr+) is a uniform contraction.

(2) f:(X,(Upx )eer+) — (Y, ULy )eecr+) is a uniform contraction.
Proof. Let (L), be a principal (quasi-)(semi-)uniform limit tower, then it is easily verified
that (UT1) and (UT2) (if required) are satisfied. If (L. ).cp+ satisfies (ULT), then it holds
for any €,€' € Rt that Uy oUp e € Leye, hence Uy ey C Up e o U (by construction).
Next, let € € R, then Ugs 0 € Na>ella = Le, consequently Up,  C UgselL,q- Since the
reverse inclusion obviously holds as well, it has been shown that (U ). is a (quasi-)(semi-)

uniform tower, whereas the straightforward verification of the remaining claims is left to
the reader. m

Now it is time to establish the convenience of these extensions.
3.6. Proposition. gSAUConv is a topological construct.
More precisely,
(1) given a source (f; : X — (X;,m:)):c1, one obtains the initial lift  (on X ) by

n(F) == sleu;(fz- X fi)(F),

(2) given a source (f; : X — (X;, (L})cer+))icr, the initial lift (X, (L, ).cr+) is obtained
in a “per level” way, i.e. such that

Ve € RY : (fi: (X,L) — (X;,Li))ies is initial (in gSUConv).

€

Proof. This is easily verified. m

3.7. Proposition. gSAUConv is a cartesian closed topological construct.
More precisely, let (X,nx),(Y,ny) € ¢SAUConv, then the function space (Z,n) :=
[(X,nx),(Y,ny)] (in gSAUConv) is given by (where ¥ € F(Z?))

n(¥) = min{a € [0,00] | VF € F(X?) : ny (¥(F)) < nx(F)Va}
= sup{ny(¥(F)) | F € F(X?) and ny (¥(F)) > nx (F)}.
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Proof. First of all, one easily finds that the indicated minimum exists and that both
formulas are indeed equal. It is also evident that 5(f x f) = 0 (for any uniform contraction
f) and that ¥ C & implies that n(®) < n(¥) (®,¥ € F(Z?2)), hence n is a quasi-semi-
approach uniform convergence structure.

Next, it is needed that ev : (X, nx)x(Z,n) — (Y, ny) is a uniform contraction. To this end,
let F € F((X x Z)?) and G := (pry x prx)(F) and ¥ := (pr, X pry)(F). AsG® ¥ C F,
it follows that ny ((ev x ev)(F)) < ny((ev xev)(G ® ¥)) = ny (¥(G)) < nx(9) Vn(¥) =
(mx x n)(F) (where the last inequality holds by the first formula of 7).

Further, let f : (X,nx) X (W,nw) — (Y,7ny) be a uniform contraction. To show the
uniform contractivity of f* : (W,nw) — (Z,nz), let G € F(W?). For any F € F(X2),
observe that ny (((f* x f*)(9))(F)) = ny ((f x ))(F ©G)) < (nx xnw)(F ®G) =nx(F)V
nw (G), consequently, by definition of 5, n((f* x f*)(9)) < nw(G). =

3.8. Proposition. gSAUConv is an extensional topological construct.
More precisely, let (X,n) € ¢SAUConv, then the one-point extension (Z,n%*) := (X,n)#
(in gSAUConv) is given by Z := X# := X U{cox} and

0 if F has no trace on X?

2y . o # —
VFER(Z) T (F) = {n (Fix2) otherwise.
Proof. Evidently, (Z,n#) is a quasi-semi-approach uniform convergence space having
(X, n) as a subspace (see proposition 3.6).
Furthermore, let f : (Y',n') — (X, 7n) be a partial morphism from (Y,7y). To show that
Y : (Y,ny) — (Z,n*) is a uniform contraction, let F € F(Y2). Either F has a trace on
(Y")2, hence (f¥ x f¥)(F) has a trace on X?, and since (f¥ x f¥)(F)x2 = (f % f) (Fi(v1)2),
it follows that

n* ((fY x fY)F))

n((fY x fY)F)x2) =0 ((f x £) (Fin2))

7 (Fiame) = v (Fierz) <y (F).

In case F has no trace on (Y')2, it follows that (f¥ x f¥)(F) = odx x oSx, hence n# ((f¥ x
fOF) =0<n(F). =

It remains to properly indicate the relation to “classical” constructs before presenting an
overview.

IN

3.9. Proposition. ¢gSUConv is concretely isomorphic to the subconstruct of gSAUConv
whose objects (X, n) satisfy

(SUC) VF € F(X?) : n(F) € {0,00}.
Proof. 1t is easily verified that
gSUConv — ¢SAUConv : (X,L) — (X, (L).cr+) (meaning: L on every level)

is a concrete full embedding onto the desired subconstruct of gSAUConv (note that the
corresponding quasi-semi-approach uniform convergence structure is given by

0 if FelL

n : F(X?) — [0,00] : F .
oo otherwise). m

3.10. Proposition. ¢SUConv is bicoreflective in gSAUConv and
Co : ¢SAUConv — ¢SUConv : (X,7n) = (X, (L) cer+) — (X, m0) = (X, Lo)

is the bicoreflection.
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Proof. Observing first (using proposition 3.2) that

0 ifn(F)=0

nO:F(X2)—>[O,oo]:.7-'|—>{ _
oo otherwise,

it follows that (X,n9) € ¢SUConv and 1x : (X,n9) — (X, ) is a uniform contraction.
Furthermore, let (Y,ny) € ¢gSUConv and let f : (Y,ny) — (X,n) be a uniform con-
traction. To show the uniform contractivity of f : (Y,ny) — (X,m), let F € F(Y?).
Either ny (F) = oo and then clearly, no((f x f)(F)) < gy (F). Otherwise ny (F) = 0 (since
(Y, ny) € ¢SUConv), hence (£ x /)(F)) < 1y (F) = 0, consequently also 7o((f x f)(F)) =
0 (by construction of 7). m

3.11. Proposition. The following relations hold:

gAUnif — " gAULim — " ¢SAULim

’ . ¢SAUConv

qsAUnif ¢PsAULim " ¢SAULim . ¢SAUConv

/ rT|c / T [C T [C
u qsUnif u qPsULim

T T

Unif > PsULim ——— SULim

> sUnif

> SUConv,

where all constructs on the bottom level are fully embedded in the top level by means of
the functor

gSUConv — ¢SAUConv : (X,L) — (X, (L).) (meaning: L on every level)

such that every lower level construct is the restriction of the corresponding top level one to
qgSUConv.

Also, all vertical bicoreflectors from the top level to the bottom level are restrictions of the
bicoreflector

Co : ¢SAUConv — ¢SUConv : (X, (L)) — (X,Lo)

and all diagonal bicoreflectors from the back wall to the forward wall are restrictions of the
bicoreflector

Cs : ¢$SAUConv — SAUConv : (X,n) — (X, n,)
where VF € F(X) : ns(F) = n(F) vV n(F~h).
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Regarding convenience, the three right most diagonal rectangles of the latter diagram consist
of topological universes that are closed under formation of function spaces and one-point
extensions in gSAUConv.

Proof. The claims regarding the embeddings, restrictions and Co-bicoreflector are eas-
ily seen to follow from the foregoing two propositions and proposition 3.2. The vertical
bireflectivenesses follow from the easy verification that the property (SUC) is stable under
formation of initial lifts (described in proposition 3.6) and from the horizontal bireflec-
tivenesses, which can be argued by means of initial closedness. This follows at once for
(9)SAULim from the description of initial lifts (in (¢)SAUConv) given in proposition 3.6,
which also coincides with initial lifts in (¢)AULim as given in [28] and with a “per level
(tower)” construction of initial lifts in (¢)(s)AUnif also given in [28]. The bireflectiveness
of (¢)PsAULim in (¢)SAULim has been shown in [17] in the symmetric case, and the
same argumentations work for the quasi case.
The diagonal bireflectivenesses also follow directly from the description of initial lifts given
in proposition 3.6, just as the descriptions given in propositions 3.7 and 3.8 show that
SAUConv is closed under function spaces and one-point extensions in gSAUConv (ob-
serve for instance that V¥ € F(Z2),VF € F(X?) : U=Y(F) = (¥(F~1))~! and VF €
F((X#)?): F has a trace on X2 & F ! has a trace on X?) and so is (¢)SAULim in
(¢)SAUConv. This claim regarding function spaces in case of (¢)PsAULim has also been
shown in [17] in the symmetric case, and again, analogy holds for the quasi case. As for
one-point extensions in this case, let (X,n) € (¢)PsAULim and let F € F((X#)2). Either
F has no trace on X? and then clearly, 7 (F) < supycy(r) n” (U). Otherwise, it holds
that F C F|x2, hence U(F|x2) C U(F), and for any U € U(F|x2), we have that U has a
trace on X2 and moreover U|x> = U, consequently

" (F)=n(Fixx) = sup nU)= sup n*U) < sup n*U).

UEU(F x2) UEU(F x2) UEU(F)

As (SAUC,) implies the reverse inequality, it follows that (X,n)# € (q)PsAULim.
As for the claims regarding the diagonal bicoreflectivenesses, 15 clearly yields a semi-
approach uniform convergence structure such that ns > n, hence 1x : (X,n,) — (X, n) is
a uniform contraction.
Also, let f : (Y,ny) — (X,n) be a uniform contraction where (Y,7y) € SAUConv.
To show that also f : (Y,ny) — (X,7,) is a uniform contraction, let F € F(Y?), then
0 ((f X )YF) =n((f x DE) Va((f x HEF) ) <ne(F)V iy (F1) = 1y ().
It is easily seen that the bicoreflector C; preserves the properties (SUC), (SAULS), (PrSAULS),
(PsAULS) and (AULS). Indeed, regarding (PsAULS), assume that (X,n) € ¢SAULim sat-
isfies (PsAULS), then it follows for F € F(X?) that

ns(F) = n(f)Vn(f‘1)=< sup n(U)>V< sup n(u)>
UEU(F) UEU(F-1)
= < sup n(U)>V< sup n(U1)> = sup (n)VvnU™))
UEU(F) UEU(F) UEU(F)
= sup ns(U),
UEU(F)

hence (X, 7;) also satisfies (PsAULS). Lastly, let (X,7) € ¢gSAULim satisfy (AULS), then
it follows for F,G € F(X?) that

ns(FoG) = n(FoG)vn(G 'oF ")
< F)+0@)VWF ) +nG™)
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< @F)VaFE D)+ @@ va@ )
= 778(-7'-)‘{_778(9)7
hence (X, n;) also satisfies (AULS). =

4. FINAL HULLS OF (q)(A)Unif.

4.1. Definition. Define gsaug-¢gSAUConv, also shortly denoted by g-gSAUConv, to be
the full subconstruct of gSAUConv whose objects (X, n) are quasi-semi-approach uniformly
generated, i.e. satisfy
2y . _
(gsaug) VF € F(X?) : n(F) = Helsrjx),n(?{)'
HCF
(sauga) VH C X :n(stack Ag) < oo = n(stack Ag) = 0.

4.2. Proposition. g-¢gSAUConv is bicoreflective in gSAUConv and
Cy : ¢SAUConv — g-gSAUConv : (X,n) — (X,n,)

where ng(F) := Hesir}fx " n(H) (VF € F(X?)),
HCF

S.(X,H,n) :={H € S,(X,H) | n(stack Ag) = 0}

and SQ(X7 77) = U S(I(X7 H777)7
HCX
is the corresponding bicoreflector.

Proof. Evidently, (X,n,) € gSAUConv.

Furthermore, first observe that G € Sy(X,G), H € Sy(X, H,n) and H C G implies that also
G € S,(X,G,n). Indeed, recall that H C G implies that G C H, hence stack Ay C stackAg
and therefore n(stack Ag) < n(stack Ag) = 0. Now to show (sauga), let G C X be such
that n,(stack Ag) < oo, consequently there exists # € S,(X,n) such that H C stack Ag,
hence (by the observation), stack Ag € S;(X,n), which implies that n,(stack Ag) = 0.
Next, it follows from (SAUCS,) that ny(H) = n(H) whenever H € S,;(X,n), consequently,
for any F € F(X?), it holds that

=  inf > inf .
ng(F) Hes}qu(xmn(?i) 2 ot g (H)
HCF HCF

Since (SAUCS,) again implies the reverse inequality and also 1, > 7, it follows that
(X,ng) € g-¢SAUConv and that 1x : (X,n,) — (X,n) is a uniform contraction.

Lastly, let f : (Y,ny) — (X, n) be a uniform contraction such that (Y,7y) € g-¢gSAUConv.
To show that f : (Y,ny) — (X,n,) is also a uniform contraction, let ny(F) < a
(0 < a < 00). Hence, by (gsaug), there exists H € S;(X, H) (H C X) such that # C F and
n(H) < a. Consequently, by H C stack Ay and (sauga), ny (stack Ag) = 0 and therefore
n((f x f)(stack Agr)) = n(stack Azgy) = 0. It follows that (f x f)(H) € Sy(X, f(H),n) and
since n((f % f)(H)) < «, it can be concluded that also ng((f % f)(F)) < a (by construction).
|

4.3. Definition. Define g-SAUConv to be the full subconstruct of SAUConv whose
objects (X,n) are semi-approach uniformly generated, i.e. satisfy

F(X?): = inf )
(saug) VF € F(X7) : n(F) uéé‘(X),”(%)
HCF

(sauga) VH C X : n(stack Ag) < oo = n(stack Ag) = 0.
4.4. Proposition. g-SAUConv is bicoreflective in SAUConv.
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Proof. One obtains the required bicoreflector and corresponding argumentation by re-
placing S, by S and (gsaug) by (saug) in the foregoing result. m

4.5. Proposition. (¢q)sAUnif is contained in the final hull of (¢) AUnif in (¢)SAUConv.

Proof. The proof is slightly different whether we consider the quasi case or not. Therefore,
in the following, to obtain the proof in the quasi case, disregard pieces indicated by [[ ... ]]
and use pieces indicated by [ ... ], while in the symmetric (non-quasi) case, just reverse the
previous convention.

Let (X, (Uc)ccr+) be a principal [quasi-]semi-approach uniform limit space, where (U, ) cr+
is the corresponding [quasi-]semi uniform tower. Define Z := {(z,y,4) | z,y € X, i € {1,2}}
and f : Z — X : (z,y,i) = f(=z,y,i), where f(z,y,1) —xlfz—landf(xy,) =y
if 4+ = 2, hence, f is a surjective map. Further, for ¢ € Rt and U, € U,, let 05' =
{((z,9,1),(2,9,2)) | (z,y) € U} and [U, := ULUAZ] [[Ue := UL U Az U (T) ]

It is then easily verified that U2 = U, (and clearly Az c U, [[= U, ]]), hence {U, | U, € U.}
is a filterbasis (easily checked) that generates a [quaS1 ]sem1 uniformity L{ such that U, olf, =
L{ Consequently, for €, e’ € RT, it follows that L{€+€ - Z/{evg = Ucve 0Ueyer C U OL{ Note
that the inclusions hold because of (UT4), which is also satisfied (this follows immediately
from (UT4) for (Ue).cr+), hence (U,).cr+ is a [quasi-]Juniform tower.

Also, [[if U, = U1, then]] (f x f)(U.) = U. (U € U.), hence (f x f)(U) = U, [[since
U, has a filterbasis consisting of symmetric sets (by UT2)]], which easily implies that f :
(Z,U)cer+) — (X, (U)ccr+) is a [¢]SAUConv-quotient. m

4.6. Proposition. g-(¢q)SAUConv is the final hull of (¢) AUnif in (9)SAUConv.

Proof. Let (X,n) € gsAUnif, then it follows from propositions 3.2 and 3.5 that there
exists a quasi-semi-uniform tower (U, ).cg+ such that VF € F(X?) : n(F) = min{e € R |
U. C F}. This immediately implies (gsaug) and n(stack Ag) = 0 (VH C X), hence,
qsAUnif C g-gSAUConv, consequently, by proposition 4.2, also the final hull of ¢AUnif
in gSAUConv is contained in g-gSAUConv.

Conversely, let (X,n) € g-¢gSAUConv and let F € F(X?) such that p(F) < oo. By
(gsaug) and (sauga), for any & > 0, there exists H € S4(X,H) (H C X) such that
HCF, nH) <n(F)+46 (x) and n(stack Ag) = 0 (xx). Define the quasi-semi-approach
uniform space (X,n)rs = (H, UT) cr+) by UH := stack Ay (e < n(F) +6) and UF :=H
(e > n(F) +9). Also, frs =1u : (X,n)rs — (X,n) is a uniform contraction, which
follows from propositions 3.2 and 3.5 and (x) and (*x). It now suffices to show that

(frs - (X,mFe — (X,1)) Fer(X2),n(F)<00,650
is a final (epi-)sink in ¢SAUConv. To this end, let g : X — (Y,ny) be a map (and
(Y,ny) € gSAUConv) such that all go f 5 are uniform contractions. To show the uniform
contractivity of g : (X,n) — (Y,ny), let F € F(X?). Either n(F) = oo and then clearly,
Ny ((9 x 9)(F)) < n(F). Otherwise, let § > 0, then the uniform contractivity of g o fr s
implies that

ny (g x 9)(F)) =ny(((go fr,s) x (g0 frs))(F)) <n(F)+6.

The desired result for the quasi case then follows from the arbitrariness of 6 and from the
foregoing proposition.

The symmetric case is analogous to the foregoing argumentation (just note that one should
now use H € S(X, H), which allows to construct a symmetric tower). m

Next in line is to consider final hulls in even smaller topological universes.

4.7. Definition. Define g-gSAULim := g-¢SAUConvN¢gSAULim and g-SAULim :=
g-SAUConv N SAULIm.
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4.8. Proposition. g-¢gSAULim is bicoreflective in gSAULiIm and the bicoreflector is the
restriction of the bicoreflector €, : gSSAUConv — g-¢gSAUConv.

Proof. Let (X,n) € ¢SAULim, then it suffices to show that also (X,7,) € ¢gSAULim. To
this end, let F1, F> € F(X?) and let ny(F1) V1, (F2) < a (0 < a < 00). Hence, by definition
of n,, there exist H; € Sy(X, H;,n) (¢ = 1,2) such that H; C F; and n(#H;) < a. It then
follows from (X,n) € ¢gSAULim that H1 NHa € Sy(X, Hy U Ha,m) and n(Hi N Ha) < .
Since also Hi NHa C F1 N Fo, it follows from definition of n, that also ng(FinNF2) < a. =
4.9. Proposition. g-¢gSAULim is the final hull of gAUnif in ¢SAULim.

Proof. Tt follows immediately from proposition 4.6 and the definition of g-gSAULim
that the latter contains ¢AUnif and is contained in the final hull of it in ¢SAULim. By
the previous proposition, g-gSAULim is also finally closed in ¢SAULim, which proves the
desired result. m

4.10. Proposition. g-SAULim = g-¢SAULim N SAULim.

Proof. Clearly, the inclusion C holds.

Conversely, let (X,n) belong to the right-hand side, then only (saug) remains to be shown.
To this end, let F € F(X?) and n(F) < a € RT, then it follows from (qsaug) that there
exists H € S,(X) such that H C F and n(H) < a. Consequently, HNH ! € S(X) such
that HNH 1 Cc Fandn(HNH ) =nH)Vn(H 1) =n(H) < a (as (X,n) € SAULim).

4.11. Proposition. g-SAULim is bicoreflective in SAULim and the bicoreflector can
be obtained as

(1) the restriction of the bicoreflector €, : gSAULim — g-gSAULim.
(2) the restriction of the bicoreflector SAUConv — g-SAUConv.

Proof. (1): Let (X,n) € SAULim. By the previous proposition, it will suffice to show
that also (X,n,) € SAULim. This is indeed the case, since (X C F and H € S,(X,n))
if and only if (X! c F ! and H ! € Sy(X,n)). It is then an easy consequence of the
definition of n, (and (X, 7n) € SAULim) that also (X,n,) € SAULim.

(2): Consider proposition 4.4 (and its proof) and carry out the corresponding adaptations
in the proof of proposition 4.8 (i.e. replace S; by S). =

4.12. Proposition. g-SAULim is the final hull of AUnif in SAULim.
Proof. The argument is like the one of proposition 4.9. =

4.13. Definition. Define g-gAULim := g-¢gSAULim N gAULim and g-AULim :=
g-SAULim N AULim.

4.14. Proposition. g-AULim = g-gAULim N AULim.
Proof. This follows from
g-AULim = g-SAULim N AULim
g-¢SAULim N SAULim N AULim (by proposition 4.10)
= g-gAULim N AULim (by definition). =

4.15. Proposition. g-(¢)AULim is bicoreflective in (¢)AULim and the bicoreflector is
a restriction of the bicoreflector €, : ¢SAULim — g-¢gSAULim.

Proof. Let (X,n) € gAULim, then it will suffice to show that also (X,n,) € gAULim.
To this end, let Fi,F> € F(X?) and let n,(F;) < a; (0 < a; < 00) (i = 1,2). Hence, by
definition of 7,, there exist H; € S,(X, H;,n) such that #; C F; and n(#H;) < «;. But
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then also H} := H; N stack Ay, Nstack Ap, € S,(X,H; U Ha,n), H; C F; and n(H}) =
n(H;). Consequently, H} o Hy € S,(X, H; U Ha,n), Hi o Hy, C Fy o Fp and, by (AULS),
n(H} o Hy) < a1 + az. Hence, by definition of 7, and arbitrariness of «;, it follows that
Ng(F1 o F2) <ng(F1) +ng(F2). =

4.16. Proposition. g-(¢)AULim is the final hull of (¢)AUnif in (¢)AULim.

Proof. This is analogous to the argumentation in proposition 4.9. =

4.17. Definition. Let g-¢gPsAULim := g-¢SAULimNgPsAULim and g-PsAULim :=
g-SAULim N PsAULim.
4.18. Lemma. If F € F(X) and ¥ C F(X), then the following are equivalent:

(1) YW e U(F),3G e T : G CW.

(2) For any family (6(G))gew such that o(G) € G (G € ¥), there exists a finite set ¥/ C ¥

such that U o(G) € F.
Gew'

Proof. Let (0(G))gew be a family such that o(G) € G (G € ¥). Suppose the
conclusion does not hold, then it follows that the family F U {X \ ¢(G) | G € ¥} has the
finite intersection property and is therefore contained in some ultrafilter W € U(F). By
(1), there exists G € ¥ such that G C W. This implies that both ¢(G) € G C W and
X\ 0(G) € W, which is a contradiction.
Suppose (1) does not hold, then there exists some W € U(F) such that VG € ¥ :
G ¢ W, which implies that VG € ¥,30(G) € G : 6(G) ¢ W (x). Applying (2) on the family
(0(9))gew yields a finite set ¥’ C ¥ such that Ugewo(G) € F. As F C W and W is an
ultrafilter, there is some G € ¥’ : 0(G) € W, which contradicts (x). =

4.19. Lemma. Let (X,7n) € g-¢gSAULim, then the following are equivalent:
(1) (X,n) € ¢PsAULim.

(2) VH € Sy(X) :n(H) = sup n(U).
UEU(H)

(3) VH € S¢(X,H) : (n(stackAg) =0=n(H) = sup nUf)).
UEU(H)

Proof. Clearly,|[1 = 2]and |2 = 3]
Let F € F(X?). Since it follows from (SAUCS;) that supyecy(r) nU) < n(F), it
suffices to consider the case where supycy ) n(U) < co.
Consequently, by (gsaug), for any U € U(F), there exists Hy € Sq(X, Hy) such that
Hy C U and n(Hy) < oo, hence, by (sauga), n(stack Ag,) = 0. Letting ¥ := U(F),
it follows that (1) of the previous lemma is satisfied, hence, applying (2) of the previous
lemma to the family (H7)ycu(w) leads to n € Ng and Hj U...U Hj; € F. Letting
H := Hy, U...UHy,, it follows that n(stack Ag) = n(stack Am,, N...NstackAp,, ) =0
and H x H € F. Consequently, n(F Nstack Ag) = n(F) and F Nstack Ag € S,(X, H).
Hence, by (3),

n(F) = n(F Nnstack Ag) = sup nU) = sup n(U).

UeU(Fnstack Ax) UeU(r)

Note that the latter equality follows from U(F Nstack Ag) = U(F) U U(stack Ay) and
VYU € U(stack Ag) : n(UU) < n(stack Ag) =0. =

4.20. Proposition. g-PsAULim = g-gPsAULim N PsAULim.

Proof. This follows from

g-PsAULim = g-SAULimNPsAULim
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= g-¢SAULim N SAULim N PsAULim (by proposition 4.10)
= g-¢PsAULim N PsAULim (by definition). =

4.21. Proposition. g-(¢)PsAULim is bicoreflective in (¢)PsAULim and the bicoreflec-
tor is a restriction of the bicoreflector €, : ¢SAULim — g-¢gSAULim.

Proof. Let (X,n) € gPsAULim, then it will suffice to show that also (X,n,) €
¢PsAULim. To this end, let # € S,(X, H) such that n,(stack Ag) = 0. Consequently,
n(stack Ag) =0 (as 1y > 1) and therefore H € S,(X, H,n), hence n(H) = ny(H) (cf. proof
of proposition 4.2). It then follows from (X,7) € ¢PsAULim that

ng(H) =n(H) = sup nUd) < sup nU).
UEU(H) UEU(H)

Since the reverse inequality follows from (SAUCS;) (and (X,7n,) € g-¢SAULim), it has
been shown that (3) of the previous lemma is satisfied, consequently, (X,7,) € ¢gPsAULim.
|

4.22. Proposition. g-(¢)PsAULim is the final hull of (¢)AUnif in ¢PsAULim.
Proof. This is analogous to the ¢gSAULim-case argumentation (proposition 4.9). =

It remains to consider some final hulls in a more “classical” (non-quantified) setting.

4.23. Definition. Define g-(¢)SUConv := g-(¢)SAUConv N ¢SUConv, that is,
g-(¢)SUConv is the full subconstruct of (¢)SUConv whose objects (X, L) satisfy

((q)sug) VF € F(X?),IH € S(y(X)NL:H C F.
4.24. Definition. Let

g-(¢)SULim := g-(¢)SAULimN ¢SUConv,
g-(¢)PsULim := g-(q)PsAULim N ¢SUConv,
and g-(¢)ULim g-(¢)AULim N ¢gSUConv.
4.25. Lemma. Let (X,n) € g-(¢)SAULim, then (X,n) satisfies the property

((q)saug') VF € F(X?) : n(F) = clnin n(H).
HeF

Proof. Let F € F(X?). If n(F) = oo, then it suffices to choose H := stack X x X C F
(and clearly then also n(stack X x X) = 00).

If n(F) < o0, then there exists some H € S,(X,H) (H C X) such that # C F and
n(H) < oo, hence, by (sauga), n(stack Ag) = 0. As H C F, it follows that H x H € F and
therefore G := F Nstack Ay € S,(X, H) such that G C F and n(G) = n(F), which proves
the claim in the quasi-case.

In the symmetric case, it suffices to consider G := F N F~! Nstack Ag in the previous
argumentation to show the required. =m

4.26. Proposition. The following hold:
(1) g-(¢)SULim is bicoreflective in g-(¢)SAULim.
(2) g-(q)PsULim is bicoreflective in g-(¢)PsAULim.
(3) g-(¢)ULim is bicoreflective in g-(¢)AULim.

Furthermore, each bicoreflector is a restriction of the bicoreflector €y : ¢SAULim —»
¢SULim.
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Proof. Tt follows immediately from the foregoing lemma that Co(X,n) = (X,nm0) €
g-(¢)SAULim whenever (X,7n) € g-(¢)SAULim. Combining this with proposition 3.11
then shows the required. =

4.27. Proposition. The following hold:
(1) g-(¢)SULim is the final hull of (¢)Unif in (¢)SULim.
(2) g-(q)PsULim is the final hull of (¢)Unif in (¢)PsULim.
(3) g-(¢)ULim is the final hull of (¢)Unif in (¢)ULim.

In particular, each of the far left mentioned constructs is bicoreflective in the the far
right mentioned construct and the bicoreflectors are restrictions of the bicoreflector €, :
(¢)SAULim — g-(q)SAULim.

Proof. The latter claim follows immediately from the definitions of the constructs involved
and the results of the previous section regarding the bicoreflector €,, which also preserves
the property (SUC) (given in proposition 3.9), as can easily be seen from its description in
proposition 4.2.

Using proposition 4.6, it follows that (¢)Unif C A C B (where A and B are the appropriate
far left and far right side constructs), consequently, by the latter claim, also the final hull
of (¢)Unif in B is contained in A.

Conversely, considering the constructions used in proving proposition 4.6, one observes
that starting from a space (X, n) satisfying (SUC) results into spaces also satisfying (SUC)
(modulo a few changes) (in short, the construction preserves (SUC)). The few changes are
in the proof of proposition 4.6; replace what is indicated by (x) with n(#H) = n(F) and just
consider the quasi-semi-(approach) uniform space (H,H). =

To conclude, let us gather some of the “most useful” constructs that have been considered
into a diagram indicating the appropriate relations.

4.28. Proposition. The following relations hold (for diagram; see slightly further).
Furthermore, all bicoreflectors from the 2-most left sides to the 2-most right sides are re-
strictions of the bicoreflector Cy : gSAULim — ¢SULim, all bicoreflectors from the
2-most back walls to the 2-most forward walls are restrictions of the bicoreflector C, :
¢SAULim — SAULim and all bicoreflectors from the inner rectangle to the outer rec-
tangle are restrictions of the bicoreflector €, : gSAULim — g-¢gSAULim.

All constructs in the 2-most top levels are topological universes, the inner ones being closed
under formation of function spaces and one-point extensions in ¢gSAULim and the outer
one so closed in g-gSAULim.

Proof. The required behaviour of the Cyp-bicoreflector in the inner rectangle follows im-
mediately from proposition 3.11 and for the outer rectangle from proposition 4.26, whereas
the desired behaviour of €, has already been shown in the foregoing.

As for the C,-bicoreflector, this follows from proposition 3.11 and the fact that (SUC),
(sauga) and (gsaug) are preserved by C,. Indeed, the former are clear and as for the latter,
let (X,n) € g-gSAULim, then it suffices to show that (X,7) also satisfies (gsaug). To
this end, let F € F(X?) and n(F) < a € R, then there exists % € S,(X, H) such that
n(H) < a and H C F. In particular, H x H € F and n(stack Ag) = 0. Consequently,
FNstackAg € Sq(X,H) and F Nstack Ay C F such that ny(F Nstack Ag) = n(F N
stack Ag) Vnp(F I nstack Ag) = n(F) Vp(F 1) =ns(F) < o

The convenience of the final hulls follows at once from results of Nel [21], Herrlich [8] and
Schwarz [25, 26], and so does the preserving of special structures (x) (that is, initial lifts
(bireflectiveness), function spaces and one-point extensions) as follows.

Let A be a top level construct on the outer level, A’ the corresponding inner construct,
and let B and B’ be obtained by descending one level, then it suffices to observe that () is
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g-¢SAULim

— g-SULim

\
g-¢PsULim

g-PsAULim

qAUnif \:

formed in B (respectively A) by first forming it in B’ (respectively A') and then applying
the B-bicoreflector in B’ (respectively the A-bicoreflector in A'), and to note that the
former bicoreflector is a restriction of the latter and that B is closed under formation of (x)
in A.

The remaining preservation of (x) (in particular bireflectivenesses) within each of the top
levels can be shown analogously, which justifies all such claims as stated. =
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4.29. Remark. The results obtained here show the necessity of correcting a result in
Zhang [30], specifically, the author there considers tower extensions C(L) of a topological
construct C indexed by a completely distributive lattice L, examples of which are found in
this paper in e.g. sAUnif = Unif([0, 00]’?) and PsAULim = PsULim([0, 00]") (see also
proposition 3.2). It is then (a.0.) claimed in [30] that A (L) is finally dense in C(L) whenever
A is so in C. However, it is necessary to add the minor condition that discrete C-objects
are A-objects. If this is not satisfied (as is the case in our uniform setting), additional
conditions may be needed to obtain final density, as was (sauga) needed here in addition
to the “tower version” (saug) of (sug).
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