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Abstract. The aim of this paper is to study some properties of the feasible set associ-

ated with a consistent system de�ned on a locally convex space. The consequences of

the boundedness and some aspects of the dimension of feasible set have been analyzed.

Moreover, the di�erences between the �nite dimensional and the in�nite dimensional

cases have been shown through illustrative examples.

1 Introduction and notation This paper deals with linear inequality systems of the

form

� := fhxj ; 'i � cj ; j 2 Jg ;

where J denotes an arbitrary nonempty index set, xj is a vector belonging to a given real

locally convex space X and cj is a real number for each j 2 J , whereas the unknown '

ranges on the continuous dual spaceX�. If there exists a continuous linear form ' satisfying

hxj ; 'i := '(xj) � cj for all j 2 J; then � is said to be consistent. The set of all solutions of

� will be denoted by F� and will be called the feasible set of �: Obviously, F� is a convex

and weakly closed subset of X�.

On the other hand, we associate with � the wedge

K� := cone f(xj; cj); j 2 J; (o;�1)g ;

i.e., the set of all nonnegative linear combinations of elements (xj ; cj) and the pair (o;�1) 2
X�R, where o denotes the zero-vector in X . The wedge K� is called characteristic cone of

� in [1-2]. The consistency of � is closely related to the properties of either its characteristic

cone K� or its closure clK, which is called the reference cone of � in [5]:

We shall say that a system � := fhxj ; 'i � cj ; j 2 Jg is nontrivial if there exists at least
some j 2 J such that xj 6= o and cj > 0:

The main purpose of the paper is to provide conditions for the weak boundedness of

the feasible set associated with a given system �, in the in�nite dimensional case. This

will allow us to prove that Theorem 2.1 in [2] is only valid under the assumption of X to

be �nite dimensional. Finally, we study the dimensionality of F� by means of two relevant

sets, namely, the lineality space of the reference cone and the aÆne hull of the feasible set

(see, e.g., [3, p.33] and [4] , respectively).

2 Boundedness of the feasible set Recall that, given a consistent system

� := fhxj ; 'i � cj ; j 2 Jg, its feasible set F� is convex and closed for the weak topology on

X
�.

The next theorem provides some necessary conditions for the boundedness of F� for the

mentioned topology, but its proof requires some additional notation.
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Given a convex set B, we denote by CB := fx 2 X : x+B � Bg the so-called recession

cone of B (see [3, p.34]). In other words,

(1) CB := fx 2 X : b+ tx 2 B for all b 2 B and t � 0g :

Theorem 1. Let � := fhxj ; 'i � cj ; j 2 Jg be a consistent system posed on a locally

convex space X. Consider the following conditions:

(i) F� is weakly bounded;

(ii) the unique solution of the homogeneous associated system

�0 := fhxj ; 'i � 0; j 2 Jg is o; and

(iii) clP = X; where P := cone fxj; j 2 Jg :
Then, (i) implies (ii) and the conditions (ii) and (iii) are equivalent.

Proof. (i) )(ii) Taking B = F� in 1 we have

(2) CF� := f' 2 X� :  + t' 2 F� for all  2 F� and t � 0g

and, since F� is weakly bounded, its recession cone CF� = fog :
On the other hand, from 2, it is immediate to chek that

CF� = f' 2 X� : hxj ; 'i � 0; ; j 2 Jg = F�0 :

Hence F�0 = fog.
(ii) )(iii) First, we shall prove that

(3) A := fx 2 X : hx; 'i � 0; for all ' 2 F�0g = clP:

In fact, for each x 2 A the pair (x; 0) is a consequent relation of �0 and, according to

Theorem 2 in [5], we get

(x; 0) 2 clK�0 := cl [cone f(xj; 0); j 2 J; (o;�1)g] ;

so that x 2 cl [cone fxj; j 2 Jg] = clP:

Reciprocally, let x be an arbitrary element of clP and let fyÆ : Æ 2 Dg be a net convergent
to x and contained in P . Then, for any ' 2 F�0 we have hyÆ; 'i � 0 and consequently,

hx; 'i � 0: Thus x 2 A:
Now, since F�0 = fog, the set A = X . Hence, from 3, we obtain clP = X:

(iii))(ii) Assume the existence of '0 2 F�0 such that '0 6= 0. Then there exists x0 6= o

satisfying hx0; '0i 6= 0: We shall obtain a contradiction in both possible cases:

If hx0; '0i < 0, then x0 =2 clP, with clP = X; and this is a contradiction. If, alternatively,

hx0; '0i > 0, we obtain the same contradiction just replacing x0 with �x0:
Therefore, F�0 = fog and the theorem follows.

We have just seen that Theorem 1 is valid for locally convex spaces but it is important

to remark that, in �nite dimension, the three conditions of the statement are equivalent

to each other (see [2, p. 80]). The next example provides a consistent systems � whose

feasible set F� is not bounded whereas the unique solution of its corresponding homogeneous

systems �0 is 0: This shows that the equivalence between conditions (i) and (ii) (or (iii))

does not hold for in�nite dimensional spaces.
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Example 2. Consider, in the Hilbert space X = l
2 , the set

A =
�
� = (yn)n=1;2;::: 2 l

2 : jynj � n
	
:

It can be easily realized that A is not bounded by taking the sequence (�n)n=1;2;:::
de�ned as �n = (1; 2; :::; n; 1

n+1
;

1
n+2

; :::); with norm k�nk > n for each n = 1; 2; ::: On the

other hand, it is obvious that A is a closed and convex set, so it can be expressed as the

intersection of all closed halfspaces containing it (see, for instance, Theorem 20.7.5 in [4]).

Since the dual space X� = X , each halfspace is de�ned by a vector, say { , and a real

number c
{
.Therefore, denoting by B the set of all the characteristic vectors {, we have

A = \
{2B f� : h{; �i � c

{
g :

In this way, A is nothing else than the feasible set of the system

� := fh{; �i � c
{
;{ 2 Bg :

We have just to show that F�0 reduces to zero. In fact, as we have shown in Theorem

1, the recession cone of the feasible set is CF� = F�0 . Moreover, since F� = A, we get

CA = f� : � + t� 2 A for all � 2 A and t � 0g :

Taking an arbitrary element � in CA, then �+ t� 2 A for all � 2 A and for all real t � 0:

If � = (yn)n=1;2;::: and � = (xn)n=1;2;::: then, for each n = 1; 2; ::: we must have

(4) jxn + tynj � n;

with yn being �xed, and this for all (xn)n=1;2;::: 2 A and for all t � 0: Inequality 4

clearly implies that yn = 0 for each n and so � = 0: Hence F�0 = CA = f0g :

3 Codimension Given a nonvoid closed and convex set A its lineality space LA is de�ned

as LA := fx 2 X : x+A = Ag : In particular, given a consistent system �, the lineality

space of clK� will be merely denoted by L, i.e., L := LclK�
. On the other hand, the aÆne

hull of a convex set A is the minimal aÆne subspace which contains A; so that it can

be expressed as a�(A) = x + [A�A], where [A�A] represents the linear span of the set

A � A and x is an arbitrary element of A. Finally, the weak closure of [F� � F� ] will be

denoted by M . The next result shows that both sets L and M are complementary from a

dimensional point of view.

Theorem 3. Let � be a consistent system posed on a locally convex space X. If

codimM < +1, then dimL = codimM.

Proof. Assume codimM = n: Then, according to Theorem 15.8.2 in [4], there exists

a �nite dimensional subspace, say F , which is the topological complement (for the weak

topology on X�) of M . Thus, X� =M � F and the orthogonals M? and F? constitute a

topological decomposition for the weak topology in X (recall [4, 20.5.4]). Moreover, by [4,

9.2.7a], the subspace M? has dimension n and so, if fy1; y2; :::; yng is a basis of M?
; then

(5) [F� � F� ] �M �M
?? = \ni=1 [yi; 0] ;

where [yi; 0] denotes the hyperplane de�ned by the linear form yi and the scalar 0.
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From 5 we deduce that there exist real numbers fd1; d2; :::; dng such that the hyperplanes
[yi; di] ; i = 1; :::; n; satisfy F� � \ni=1 [yi; di], i.e., �(yi; di); i = 1; :::; n; are consequent

relations of �: Hence, applying again Theorem 2 in [5], we get �(yi; di) 2 clK�; so that

f(yi; di) : i = 1; :::; ng � L:

On the other hand, since fy1; y2; :::; yng is a basis ofM
?, the vectors f(yi; di) : i = 1; :::; ng

are linearly independent and consequently,

(6) dimL � n:

Now, consider p linearly independent vectors f(zj ; ej) : j = 1; :::; pg from L . Clearly the

weak closure of a�(F�) is included in \pj=1 [zj ; ej ] and so

codimM = codim(cla�(F�)) � codim(\pj=1 [zj; ej]) = p:

Hence n � p , which entails n � dimL which combined with 6 yields n = dimL: The

proof is complete.

Notice that, by de�nition, the dimension of an arbitrary convex set A is given by

dimA := dim [A�A] (see [3, p.9]), i.e., the dimension (codim) of A is the dimension

(codim) of the subspace associated with its aÆne hull. Thus, under the hypothesis of

Theorem 3, we have

Corollary 4. If codimF� = 0, then L = f(o; 0)g.

Moreover, since in �nite dimensional spaces all subspaces are closed, we get the following

result:

Corollary 5. If dimX = n, then dimL = codimF� = n � dimF�. In particular, if

dimF� = n, then K� is a cone.

Remark 6. Theorem 3 generalizes the �rst statement in Corollary 5, which was proved

by Zhu in [5] for the �nite case. Next, we shall show that the hypothesis codimM < +1
(i.e., the �nite dimension of the weak closure of a�(F�)) in Theorem 3 is essential.

Example 7. Consider the space X = l
1 and its dual X� = l

1. De�ne the set

B =
�
x 2 l1 : x = (0; b2; 0; b4; :::) with b2n = 0 except for a �nite quantity

	
;

and let J be an index set having the same cardinality as B. This means that each element

of B can be denoted as xj for a unique index j 2 J .
Consider the system � = fhxj ; 'i � 0; j 2 Jg ; whose feasible set is

F� = f' 2 l1 : ' = ('1; 0; '3; 0; :::)g :

It can be easily realized that clK� � B�]�1; 0]. Moreover, since the maximal subspace

contained in B � ]�1; 0] is B � f0g, the lineality space L associated with clK� satis�es

L � B � f0g and so

(7) dimL � dimB = @0:
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On the other hand, since F� is a closed subspace of l
1, the quotient space l1=F�

veri�es

(8) codimF� = dim(l1=F�) > @0:

From 7 and 8 we conclude that dimL 6= codimF� and this proves that Theorem 3 can

fail for those systems � whose feasible sets F� have in�nite codimension.
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