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Abstract. The optimal stopping rules with multiple selections of m � 1 objects with the ob-

jective of maximizing the probability of obtaining the best object are studied for two problems

with an unknown number of objects:the problem with a random number of objects, and the

problem where the objects arrive according to a homogeneous Poisson process with unknown

intensity �. These two problems are variation of the so-called secretary problem. This article

introduces an easier method based on the one-stage look-ahead function (de�ned herein) de-

pending on m and its recursive relation to the number m, to �nd the optimal stopping rule for

all m, without a direct solution of equations suggested by a common dynamic programming

approach.

1. Introduction. A man observes a sequence of rankable objects in a completely ran-

dom order. He must decide after each observation whether or not to select that object using

only the relative ranks of the objects seen. He is allowed to select at most a predetermined

number, m � 1, of the objects. His objective is to select the very best object (the object of

absolute rank 1). When m = 1 and the number of objects to be seen is known beforehand,

this is the classical secretary problem, whose history is reviewed in the papers of Ferguson

(1989) and Samuels (1991). When the number of objects is known beforehand, the case

of arbitrary m was treated in Gilbert and Mosteller (1966), and the case with a random

number of objects with m = 1 was treated in Presman and Sonin (1972). The problem with

a random number of objects and arbitrary m was introduced by Tamaki (1979) and solved

for m = 2. In this paper, we treat the general problem of a random number of objects and

arbitrary m � 2. Ano and Sakaguchi (1987) studied the setting of the random duration

time. We also consider multiple selections in the related problem treated by Bruss (1987),

where the objects arrive at times of a homogeneous Poisson process whose rate has a prior

exponential distribution.

For two selections, Haggstrom (1967) has studied the general stopping problems, and

various aspects of the secretary problem with a �xed number of objects have been treated

by Nikolaev (1977), Sakaguchi (1979), Tamaki (1980) and Rose (1982). Various multiple

selection secretary problems have been studied in Glaser et al. (1983), Preater (1993a,b),

Stadje (1980,1985), Sakaguchi (1989) and Wilson (1991). The asymptotically optimal rule

for a large �xed number of objects withm(� 1) selections, as found by Gilbert and Mosteller,

can be summarized as follows: stop and select the �rst relatively best object which appears

on or after stage s�m, where s
�
m is a determined sequence of integers, non-increasing in m.

For large n, we have s�1 � ne
�1, s�2 � ne

�3=2, s�3 � ne
�47=24, and s

�
4 � ne

�2761=1152, and
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for large n, the maximum probability of obtaining the best object with m selections under

the optimal rule is s�1=n+ s
�
2=n+ � � �+ s

�
m
=n.

Proving optimality of rules for the stopping rule problem with m � 3 selections seems

to be quite diÆcult employing the one-stage look-ahead approach suggested by a standard

dynamic programming principle. This article introduces an easier method based on the

one-stage look-ahead function (de�ned later) depending on the number of selections, and

its recursive relation to m to �nd the optimal stopping rules for all m � 1, without direct

solutions of the optimality equations. Ano and Tamaki (1991) seems to have been the �rst

to use this method.

In Section 2, we apply this method to the problem where the number of objects is a

random variable with known distribution Æk = P (N = k); k = 0; 1; � � � and �0 = 1; �k =P
s�k Æs. In the case with a single selection, Presman and Sonin (1972) have shown that

the one-stage look-ahead rule is optimal if the following condition holds,

(PS): di � 0 implies di+1 � 0.

where

di � Æi �
X
j�i+1

Æj=j for i = 0; 1; � � �

and d�1 � �1. In other words, Condition (PS) requires that fdig1i=�1 changes sign at most
once from negative to non-negative. However, the sequence, di, cannot be negative for all i

(since
P1

0 di = Æ0 � 0) so the condition is also that it change sign exactly once from negative

to nonnegative. We show under condition (PS) that the optimal rule for the problem with

m selections is the same form as the one for the no-information secretary problem with m

selections. As an example, we investigate in detail the case in which the total number, N , of

objects is uniformly distributed on [1; N0]. In this case, we see that as N0 !1, s�1=N0 !
e
�2 � :135335, s�2=N0 ! e

�(1+
p
21=3) � :079856 and s

�
3=N0 ! e

�(1+(
p
135+42

p
21)=9) �

:04951742 and for largeN0 the maximum probability of obtaining the best under the optimal

stopping rule is �((s�1=N0) log(s
�
1=N0) + (s�2=N0) log(s

�
2=N0) + � � �+ (s�m=N0) log(s

�
m=N0)).

Section 3 contains consideration of another problem with an unknown number of objects.

Here the objects arrive according to a homogeneous Poisson process with unknown intensity

� which has a prior exponential distribution, a expf�a�gI(� > 0) where a is a known

nonnegative parameter. The objective is to maximize the probability of obtaining the best

object from those (if any) available in the given interval [0; T ]. The no-information version

with single selection is the problem studied by Bruss (1987), which complements results

of Cowan and Zabczyk (1978) with known intensity �. Bruss (1987) has shown that the

optimal rule for single selection is stationary, accepting (if possible) the �rst relatively

best object after time (T + a)=e� a. Using our approach, based on his developments and

results for single selection to which we refer in detail, we see that the optimal stopping

rules with multiple selections have the following stationary form: if there are m selections

remaining, the optimal rule is to accept (if possible) the �rst relatively best object after

time s�m = (T + a)=eC
(m) � a, where the C(m) are constants. For a = 0, it is interesting

to see s�1 = T=e, s
�
2 = T=e

3=2, s�3 = T=e
47=24

; : : : compared with the values n=e, n=e3=2,

n=e
47=24, n=e2761=1152 of the no-information secretary problem.

2. Random number of objects. Let Xi be the relative rank of the ith object among

the �rst i objects (rank 1 being best) under the assumption that the objects are observed
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sequentially in random order. Then the Xi are independent random variables and for

i = 1; 2; : : : , the distribution of Xi is given by P (Xi = j) = 1=i for j = 1; 2; � � � ; i.
For the problem with a random number, N , of objects, let W

(m)

i
be the maximum prob-

ability of obtaining the best object among all N objects when we confront a relatively best

object at the ith observation, and we can make more m selections thereafter. Similarly,

when we can make more m selections in the future, let U
(m)
i

(resp. V
(m)
i

) be the cor-

responding probability when we accept (resp. reject) the relatively best object at the ith

observation. Suppose that the ith object is a relatively best object (Xi = 1). Then the

conditional probability that the ith object is best among N given N � i is

(2.1)
X
j�i

P (Xi+1 > 1; � � � ; Xj > 1jN = j)P (N = jjN � i) =
X
j�i

i

j

Æj

�i
:

Therefore

(2.2) U
(m)
i

=
X
j�i

iÆj

j�i
+ V

(m�1)
i

;

where V
(0)
i

= 0 for all i. The conditional probability that the jth object is the �rst relatively

best object after the ith object given N � i is (i�j)=(j(j � 1)�i), so that

(2.3) V
(m)
i

=
X
j>i

i�j

j(j � 1)�i
W

(m)
j

:

By the principle of optimality, we get the dynamic programming equation

(2.4) W
(m)
i

= maxfU (m)
i

; V
(m)
i

g; for i = 1; 2; � � � , and m � 1:

The one-stage look-ahead rule is the rule that calls for selecting when selecting immediately

is at least as good as waiting for the next relatively best to appear and then selecting. Thus

for i = 1; � � � ; n� 1 and m � 1, it requires us to select the ith object if

(2.5) g
(m)
i

� U
(m)
i

�
NX

j=i+1

i�j

j(j � 1)�i
U
(m)
j

� 0:

We also de�ne g
(0)
i

= 0 for all i and g
(m)
�1 � �1 for all m � 1. We call g

(m)
i

the one-stage

look-ahead function. It is well-known that if for �xed m, fg(m)
i
g1
i=�1 changes sign exactly

once from negative to non-negative, then the problem is monotone in the sense of Chow

et al. (1971), and the one-stage look-ahead rule is optimal having the following form of a

threshold stopping rule with threshold sm � minfi � 1 : g
(m)
i

� 0g given any m:

(2.6) �
(m)
sm

� minfk � sm : Xk = 1g:

A stopping problem is de�ned as monotone if the sets for a �xed m, G
(m)

i
= fg(m)

i
� 0g,

are monotone non-decreasing, i.e., G
(m)
0 � G

(m)
1 � � � � a.s. When the PS condition holds,

the Presman & Sonin problem with single selection is monotone, and the one-stage look-

ahead rule, which is a threshold rule �
(1)

s
�

1
with threshold s

�
1 = minfi � 1 : g

(1)

i
� 0g is
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optimal. The following theorem tells us that under the PS condition, the Presman & Sonin

problem with multiple selections is also monotone.

Theorem 1. If the PS condition holds, the optimal rule for the problem with a random

number of objects when we make m more selections is a threshold rule �
(m)
s�
m

, where s
�
m

can

be speci�ed as s
�
m
= minfi � 1 : g

(m)
i

� 0g. Moreover, s
�
m

is non-increasing in m.

Proof. We carry out an induction on m. The induction hypotheses consist of the two

statements, (A1): g
(m)
i

� 0 implies g
(m)
i+1 � 0, and (A2): g

(m+1)
i

� g
(m)
i

for all i. These are

the hypotheses that �
(m)
s�
m

is the optimal rule and s
�
m
� s

�
m+1. They imply that

W
(m)
i

= U
(m)
i

; V
(m)
i

=
X
j>i

(i�j=(j(j � 1)�i))U
(m)
j

for i � s
�
m
;

and

W
(m)

i
= V

(m)

i
for i < s

�
m
:

Hence,

(2:7)

W
(m)

i
� V

(m)

i
= (U

(m)

i
�
X
j>i

i�j

j(j � 1)�i
U
(m)

j
)I(i � s

�
m
)

= g
(m)
i

I(i � s
�
m
) for i = 1; 2; � � � ;

where I(A) represents the indicator function of the event A. On the other hand, from (2.5)

g
(m+1)
i

=
X
j�i

iÆj

j�i
+
X
j>i

i�j

j(j � 1)�i
W

(m)
j

�
X
j>i

i�j

j(j � 1)�i
f
X
k�j

jÆk

k�j
+ V

(m)
j

g

= g
(1)
i

+
X
j>i

i�j

j(j � 1)�i
fW (m)

j
� V

(m)
j

g;

where g
(1)
i

=
P

j�i(idj)=(j�i). Inserting (2.7) into the above equation,

(2:8) g
(m+1)
i

= g
(1)
i

+
X

j�max(i+1;s�
m
)

i�j

j(j � 1)�i
g
(m)
j

:

It is convenient for the induction to consider the function h
(m)
i

= (�i=i)g
(m)
i

for i � 1

and m � 1. The induction hypotheses then reduce to (AR1): h
(m)
i

� 0 implies h
(m)
i+1 � 0,

and (AR2): for all i � 1, h
(m+1)
i

� h
(m)
i

. Note that s�
m
can be written as s�

m
= minfi � 1 :

h
(m)

i
� 0g and s

�
m
� s

�
m+1. Now equation (2.8) reduces to

(2:9) h
(m+1)
i

= h
(1)
i

+
X

j�max(i+1;s�
m
)

1

j � 1
h
(m)
j

;

where h
(1)
i

=
P

j�i dj=j and h
(m)
�1 � �1 for all m � 1.

When m = 1, since

(2:10) h
(1)
i+1 � h

(1)
i

= �di=i;
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Condition (PS) shows that the di�erences change from positive to non-positive at most

once, so the h
(1)
i

are unimodal. Since h
(1)
i

! 0 as i ! 1, hypothesis (AR1) holds. By

virtue of (2.9) we �nd

(2.11) h
(2)

i
� h

(1)

i
=

X
j�max(i+1;s�1)

1

j
h
(1)

j
� 0;

because h
(1)
j

is non-negative for j � s
�
1. Hence, the hypothesis (AR2) holds for m = 1.

We continue the induction. We �rst show that the �rst hypotheses holds with m

replaced by m + 1. If i + 1 > s
�
m
, then h

(m)
i

� 0 from the de�nition of s�
m
, so h

(m+1)
i

� 0

from AR2. Suppose that i+ 1 � s
�
m
. Then from (2.9)

(2:12)

h
(m+1)
i

� h
(m+1)
i�1 = h

(1)
i

+
X
j�s�

m

1

j � 1
h
(m)
j

� fh(1)
i�1 +

X
j�s�

m

1

j � 1
h
(m)
j
g

= h
(1)
i
� h

(1)
i�1 = �di�1=(i� 1):

Therefore, we have from the PS condition, that h
(m+1)
i

is unimodal on i + 1 � s
�
m
by the

argument of (2.10). Since it is positive from i = s
�
m

on, the �rst hypothesis is therefore

satis�ed. Also, s�
m+1 is such that s�

m+1 = minf1 � i � s
�
m
: h

(m)

i
� 0g.

We now show that the second hypothesis holds with m replaced by m+ 1. From (2.9)

(2:13)

h
(m+2)
i

� h
(m+1)
i

=
X

j�max(i+1;s�
m+1)

1

j � 1
h
(m+1)
j

�
X

j�max(i+1;s�
m
)

1

j � 1
h
(m)
j

�
X

j�max(i+1;s�
m+1)

1

j � 1
fh(m+1)

j
� h

(m)
j
g � 0;

The �rst inequality follows from s
�
m
� s

�
m+1, and the last one follows from the hypothesis

(AR2). Hence, the proof is complete.

Poisson, geometric, and uniform distributions satisfy the PS condition (see Presman

and Sonin [14]). As an example, we study the uniform distribution in detail.

Uniform case: The total number N of objects is assumed to be uniformly distributed

on [1; N0]. Thus for k = 1; 2; � � � ; N0, Æk = 1=N0 and �k = (N0 � k + 1)=N0. Then the

condition (PS) is easily veri�ed, since di = (1=N0)(1 �
P

N0

j=i+1(1=j)) is increasing in i for

i = 0; 1; � � � ; N0. To �nd approximate formulas for large N0, We need another modi�cation.

Let H
(m)
i

= (N0�i=i)g
(m)
i

= N0h
(m)
i

for all m. Then from (2.9)

(2.14) H
(m+1)

i
= H

(1)

i
+

N0X
j=max(i+1;s�

m
)

1

j
H

(m)

j
;

where H
(1)

i
=
P

N0

j=i(1=j)(1 �
P

N0

k=j+1(1=k)). This expression for H
(1)

i
is a Riemann ap-

proximation to an integral. In particular, if we let N0 !1 and i=N0 ! x, we have

(2.15) H
(1)

i
! H

(1)(x) :=

Z 1

x

1

y
(1�

Z 1

y

1

z
dz)dy = �1

2
log2 x� logx:
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De�ne �s�1 = inffx > 0 : H(1)(x) � 0g. Since H(1)(x) is strictly increasing to its maximum,

it is negative to the left of �s�1 and positive to the right of �s�1. Therefore, s�1=N0 ! �s�1 as

N0 !1. By induction on m, we have as N0 !1 and i=N0 ! x,

(2.16) H
(m+1)
i

! H
(m+1)(x) := H

(1)(x) +

Z 1

max(x;�s�
m
)

1

y
H

(m)(y)dy:

Moreover, each H
(m+1)(x) is continuous and increasing on the interval (0; �s�

m
], so that

s
�
m+1=N0 ! �s�

m+1 := inffx > 0 : H(m+1)(x) � 0g. In fact, �s�
m

is a unique solution of the

equation H
(m)(x) = 0 in [0; �s�

m�1]. From (2.15) and (2.16), its value may be expressed as

(2.17) �s�
m
= expf�(1 +

p
1 + 2C(m))g;

where C(1) � 0 and

(2.18) C
(m) =

Z 1

�s�
m�1

1

y
H

(m�1)(y)dy:

Therefore we have �s�1 = e
�2 � :135335 and

(2.19) C
(2) =

Z 1

e�2

1

y
(�1

2
log2 y � log y)dy =

2

3
:

Then by (2.17),we see �s�2 = e
�(1+

p
21=3) � :079856. Using (2.15) and (2.16), we have

H
(2)(x) =

(
� 1

2
log2 x� logx+ 2

3
; x � e

�2

1
6
log3 x� logx; x � e

�2
:

Inserting H(2)(x) into (2.18),

C
(3) =

Z e
�2

�s�2

1

y
(�1

2
log2 y � log y +

2

3
)dy +

Z 1

e�2

1

y
(
1

6
log3 y � log y)dy

=
1

3
+

7

27

p
21;(2.20)

where we use the relation �(1=2) log2 �s�2 � log �s�2 + 2=3 = 0. By (2.17), we have �s�3 =

expf�(1 + (
p
35 + 42

p
21)=9)g � :04951742.

Corollary 2. When the total number of objects has a uniform distribution on [1; N0],

the limiting maximum probability of obtaining the best object under the optimal rule for the

problem with m selections is given by �(�s�1 log �s�1 + �s�2 log �s
�
2 + � � �+ �s�m log �s�m):

Proof. Let v
(m)
i

= (N0�i=i) = ((N0 � i+1)=i)V
(m)
i

and u
(m)
i

= (N0�i=i) = ((N0 � i+

1)=i)U
(m)

i
, then we have

(2.21) v
(m)
i

=

N0X
j=i+1

1

j � 1
maxfu(m)

j
; v

(m)
j

g and u
(m)
i

=

N0X
j=i

1

j
+ v

(m�1)
i

:
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The optimal rule with a threshold s
�
m
gives

v
(m)
i

=

( Ps
�

m
�1

j=i+1
1

j�1v
(m)
j

+
P

N0

j=s�
m

1
j
u
(m)
j

; i � s
�
m
� 1;P

N0

j=s�
m

1
j
u
(m)
j

; i � s
�
m
� 1:

Then we can show

(2.22) v
(m)
1 = 2v

(m)
2 = 3v

(m)
3 = � � � = (s�

m
� 1)v

(m)
s�
m
�1:

Thus the maximum probability, V
(m)
i

, is given by

(2.23) V
(m)
1 =

1

N0

v
(m)
1 =

s
�
m
� 1

N0

v
(m)
s�
m
�1:

By the same approximation for v
(m)
i

as H
(m)
i

of (2.16), we have

v
(m)(x) =

8<
:
R �s�

m

x

1
y
v
(m)(y)dy +

R 1
�s�
m

1
y
u
(m)(y)dy; x � �s�

m
;R 1

�s�
m

1
y
u
(m)(y)dy; x � �s�

m
;

where

u
(m)(x) =

Z 1

x

1

y
dy + v

(m�1)(x):

From (2.23), the limiting probability is given by �s�
m
v
(m)(�s�

m
)(� a

(m)
; a

(0) � 0) and so we

have

(2.24) a
(m) = �s�

m

Z 1

�s�
m

1

y
u
(m)(y)dy:

On the other hand, since s�
m

is determined by OLA stopping rule, s�
m
= minfi � 0 :

u
(m)

i
� P

N0

j=i+1(1=(j � 1))u
(m)

j
g = minfi � 0 :

P
N0

j=i(1=j) + v
(m�1)
i

� P
N0

j=i+1(1=(j �
1))u

(m)
j
g (= minfi � 0 : H

(m)
i

� 0g). Thus �s�m satis�es the equation

(2.25)

Z 1

�s�
m

1

y
dy + v

(m�1)(�s�
m
)�
Z 1

�s�
m

1

y
u
(m)(y)dy = 0:

Now we know from (2.22) that v(m�1)(0+) = xv
(m�1)(x) for x 2 (0; �s�

m�1]. Hence

(2.26) a
(m�1) = �s�

m�1v
(m�1)(�s�

m�1) = � � � = �s�
m
v
(m�1)(�s�

m
):

Inserting (2.24) into (2.25) and using (2.26),

a
(m) = a

(m�1) � �s�m log �s�m;

which yields the desired result.

From this corollary, as N0 !1 we see that the maximum probabilities satisfyW
(1)
1 !

:270670; W
(2)
1 ! :472509; and W

(3)
1 ! :621329 for the problem with one, two, and three

selections, respectively.
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3. Poisson arrival model. Let �1; �2; � � � denote the arrival times of a Poisson

process in chronological order and let fN(t)gt�0 be the corresponding counting process.

For the unknown intensity � of the process, we suppose a prior exponential distribution,

a expf�a�gI(� > 0) where a is a known nonnegative parameter. The corresponding con-

ditional density given �i = s can be straightforwardly computed and yields f(�j�i = s) =

(�i=i!)(s + a)i+1 expf�(s + a)�gI(� > 0) for s 2 [0; T ]. Bruss (1987) has succeeded in

showing that the optimal stopping rule, which maximizes the probability of obtaining the

best object in the given time interval [0; T ] with single selection, is to accept (if possible)

the relatively best object after time (T + a)=e � a. Here we consider the Bruss' problem

with multiple selections. As is shown in Bruss (1987), the posterior distribution of N(T )

generated by �1; � � � ; �i only depends on the values of i and �i and equals a negative binomial
(Pascal) distribution with parameters (i; (s+ a)=(T + a)), that is, for 0 � s � T ,

P (N(T ) = nj�1 = t1; � � � ; �i�1 = ti�1; �i = s) = P (N(T ) = nj�i = s)

=

�
n

i

�
(
s+ a

T + a
)i+1(1� s+ a

T + a
)n�i:(3.1)

LetW
(m)

i
(s) denote the maximum probability of obtaining the best object when we confront

the relatively best object which is the ith object arriving at time s (0 < s � T ), and we

can select more m (� 1) objects thereafter. Similarly if m more selections are allowed, let

U
(m)

i
(s) (resp. V

(m)

i
(s)) be the corresponding probability when we accept (resp. reject) the

relatively best object, which is the ith object arriving at time s. Using Bruss' result, we

have

U
(m)
i

(s) =
X
n�i

(i=n)P (N(T ) = nj�i = s) + V
(m�1)
i

(s)

=
s+ a

T + a
+ V

(m�1)
i

(s):(3.2)

Let p
(k;u)

(i;s)
denote the transition probability given prior exponential distribution that (i+k)th

object arriving at time s+ u is the �rst relatively best object after ith object which is the

relatively best arrived at time s, then we have

(3.3) V
(m)
i

(s) =

Z
T�s

0

X
k�1

p
(k;u)

(i;s)
W

(m)

i+k (s+ u)du

and for k � 1; 0 < u < T � s,

p
(k;u)

(i;s)
=

Z 1

0

�e
��u(�u)k�1

(k � 1)!

i

(i+ k � 1)(i+ k)

e
��(s+a)(�)i(s+ a)i+1

i!
d�

=
s+ a

(s+ a+ u)2

�
i+ k � 2

k � 1

�
(

s+ a

s+ a+ u
)i(

u

s+ a+ u
)k�1;(3.4)

where we apply the equation
R1
0

�
k+i expf��(s+a+u)gd� = �(k+ i+1)=(s+a+u)k+i+1

to the right-hand side of the �rst equation above. Then we have the dynamic programming

equation for i;m � 1; 0 < s � T;

(3.5) W
(m)
i

(s) = maxfU (m)
i

(s); V
(m)
i

(s)g;
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with boundary conditions W
(m)
i

(T ) = 1 for i;m � 1 and W
(0)
i

(s) = 0 for all i and s. Let

g
(m)
i

(s) be the one-stage look-ahead function, that is,

g
(m)
i

(s) � U
(m)
i

(s)�
Z T�s

0

X
k�1

p
(k;u)

(i;s)
U
(m)

i+k (s+ u)du

=
s+ a

T + a
�
Z

T�s

0

X
k�1

p
(k;u)

(i;s)
(
s+ a+ u

T + a
)du

+

Z
T�s

0

X
k�1

p
(k;u)

(i;s)
fW (m�1)

i+k (s+ u)� V
(m�1)
i+k (s+ u)gdu

= (
s+ a

T + a
)f1 + log(

s+ a

T + a
)g

+

Z
T�s

0

X
k�1

p
(k;u)

(i;s)
fW (m�1)

i+k (s+ u)� V
(m�1)
i+k (s+ u)gdu;(3.6)

where we use
P

k�1 p
(k;u)

(i;s)
= (s + a)=(s + a + u)2 (independently of i), since p

(k;u)

(i;s)
=

(s+ a)=(s+ a+ u)2 �fnegative binomial distribution with parameters (k; u=(s+ a+ u))g.
Theorem 3. The optimal rule for the problem with random arrivals on [0; T ] following

a Poisson process at intensity � > 0 having an exponential distribution with rate parameter

a � 0 when we can select m more objects thereafter is to accept (if possible) the �rst relatively

best object after time s
�
m = (T + a)=eC

(m) � a (s�0 � T ), where C(m)
is constant. Moreover,

s
�
m

is non-increasing in m

Proof. Let h
(m)
i

(s) = ((T + a)=(s + a))g
(m)
i

(s). As induction hypotheses, we assume

that h
(m)
i

(s) is independent of i and for �xed m

(AP1) h
(m)(s) � 0) h

(m)(s+ u) � 0 for u 2 [0; T � s];

h
(m)(s) for s 2 (0; s�

m�1] has the following form,

(AP2) h
(m)(s) = C

(m) + log(
s+ a

T + a
);

where C(m) is constant, and for all m

(AP3) h
(m+1)(s) � h

(m)(s):

These are the hypotheses that �
(m)
s�
m

is the optimal rule and s
�
m�1 � s

�
m = inff0 < s �

s
�
m�1 : h

(m)(s) � 0g = (T + a)=eC
(m) � a. They imply that

W
(m)

i+k (s+ u)� V
(m)

i+k (s+ u) = g
(m)(s+ u)I(s+ u � s

�
m
);

= (
s+ u+ a

T + a
)h(m)(s+ u)I(s+ u � s

�
m
);(3.7)

which follows from (3.3) for s+ u � s
�
m

W
(m)

i+k (s+ u) = U
(m)

i+k (s+ u); and

V
(m)

i+k (s+ u) =

Z T�s

0

X
k�1

p
(k;u)

(i;s)
U
(m)

i+k (s+ u)du
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Inserting (3.7) into (3.6),

h
(m+1)
i

(s) = h
(1)(s) + (

T + a

s+ a
)

Z T�s

(s�
m
�s)+

X
k�1

p
(k;u)

(i;s)

s+ u+ a

T + a
h
(m)(s+ u)du

= h
(1)(s) + (

T + a

s+ a
)

Z
T�s

(s�
m
�s)+

s+ a

(s+ u+ a)2
s+ u+ a

T + a
h
(m)(s+ u)du

= h
(1)(s) +

Z
T�s

(s�
m
�s)+

1

s+ u+ a
h
(m)(s+ u)du(� h

(m+1)(s));(3.8)

being independently i, where

(3.9) h
(1)(s) = 1 + log(

s+ a

T + a
);

which is increasing in s. Therefore h(1)(s) satis�es the hypotheses (AP1) and (AP2) with

C
(1) � 1: Because h(1)(s) is non-negative for s � s

�
1, by virtue of (3.8)

h
(2)(s)� h

(1)(s) =

Z
T�s

(s�1�s)+

1

s+ u+ a
h
(1)(s+ u)du � 0:

Thus the hypothesis (AP3) holds for m = 1.

To complete the induction, we shall show that these hypotheses hold for m replaced

by m+ 1. Recalling (3.8), for s � s
�
m
= (T + a)=eC

(m) � a

h
(m+1)(s) = h

(1)(s) +

Z
T�s

(T+a)=eC
(m)�a�s

1

s+ u+ a
h
(m)(s+ u)du

= log(
s+ a

T + a
) + C

(m+1)
;(3.10)

where

(3.11) C
(m+1) = 1 +

Z 1

e�C
(m)

1

v
h
(m)((T + a)v � a)dv;

where we change the variable from (s+u+a)=(T +a) to v in the integrand in (3.10). (3.10)

states that (AP2) holds with m replaced by m+ 1 and that h(m+1)(s) is non-decreasing in

s 2 (0; s�m]. On the other hand, for s 2 [s�m; T ], h
(m+1)(s) is non-negative because by the

hypothesis (AP3)

0 � h
(m)(s) � h

(m+1)(s):

Hence we have

(3.12) h
(m+1)(s) � 0) h

(m+1)(s+ u) � 0 for u 2 [0; T � s];

which states that (AP1) holds with m replaced by m+ 1.

Now h
(m+2)(s) can be written as

(3.13) h
(m+2)(s) = h

(1)(s) +

Z
T�s

(s�
m+1�s)+

1

s+ u+ a
h
(m+1)(s+ u)du:
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Taking the di�erence in the above equation from (3.8)

h
(m+2)(s)� h

(m+1)(s) �
Z

T�s

(s�
m+1�s)+

1

s+ u+ a
fh(m+1)(s+ u)� h

(m)(s+ u)gdu � 0;

where the �rst inequality comes from s
�
m � s

�
m+1 and the second one comes from the

hypothesis (AP3). Thus (AP3) holds for all m and the proof is complete.

As shown in the proof, s�1 = (T + a)=e� a: Then, from (3.11),

(3.14) C
(2) = 1 +

Z 1

e�1

1

v
h
(1)((T + a)v � a)dv = 1 +

Z 1

e�1

1

v
f1 + log vgdv = 1 +

1

2
:

So s�2 = (T + a)=e3=2 � a: By virtue of (3.8),

h
(2)(s) =

(
3
2
+ log( s+a

T+a
); 0 < s � s

�
2;

1� 1
2
log2( s+a

T+a
); s

�
2 � s � T:

Inserting the above into (3.11), for s � s
�
2

(3.15) C
(3) = 1 +

Z
e
�1

e�3=2

1

v
(
3

2
+ log v)dv +

Z 1

e�1

1

v
(1� 1

2
log2 v)dv = 1 +

23

24
:

Thus s�3 = (T + a)=e47=24 � a:

For a! 0, it is of interest to compare the values s�1 = T=e � :367879T; s�2 = T=e
3=2 �

:22313T; s�3 = T=e
47=24 � :141093T; with the threshold values n=e � :367879n; n=e3=2

� :22313n; n=e47=24 � :141093n, of the well-known no-information case, where T�1s�
k
=

e
�1
; e
�3=2

; e
�47=24

; e
�2761=1152 for k = 1; 2; 3; 4 respectively are the same as in the non-

informative prior �0(�) � 1 case (Bruss(1987)),
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