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Abstract. We give a partial representation of ring homomorphisms between two com-

mutative Banach algebras. To this end, we characterize non-zero ring homomorphisms

whose kernels are regular maximal ideals.

1. Introduction

We say that a map between two algebras is a ring homomorphism, if the map preserves

both addition and multiplication. By de�nition, ring homomorphisms need not preserve

scalar multiplication. Homomorphisms are ring homomorphisms which also preserve scalar

multiplication.

In this paper, we consider ring homomorphisms between two commutative Banach alge-

bras (not necessarily unital). Let A and B be unital commutative Banach algebras, MA

and MB the maximal ideal spaces of A and B, respectively. It is well-known that each

homomorphism ' on A into B is induced by a continuous map between two maximal ideal

spaces: there exist a closed and open subsetM0 ofMB and a continuous map � onMB nM0

into MA so that '(f )̂ = 0 on M0 and '(f )̂ = f̂ Æ� on MB nM0 for every f 2 A, where �̂
denotes the Gelfand transform (cf. [2, 4, 12]). In this paper, we will use the same symbol

�̂ for the Gelfand transform on A and B. It seems natural to predict that a similar result

holds for ring homomorphisms between unital commutative Banach algebras, while in the

simplest case where A = B = C , the complex number �eld, ring homomorphisms on C into

C are very complicated. For ring homomorphisms on C into C , we simply say ring homo-

morphisms on C . Typical examples of ring homomorphisms on C are �(z) = 0, �(z) = z
and �(z) = �z for every z 2 C , where �� denotes the complex conjugate. We call them trivial

ring homomorphisms on C , or simply trivial. Other ring homomorphisms on C are called

non-trivial. Indeed, there exists a non-trivial ring homomorphism on C (cf. [7]) and it is

well-known that the cardinal number of the set of all automorphisms of C is 2c, where c

denotes the cardinal number of continuum. In fact, Charnow [3] proved that every alge-

braically closed �eld F has 2jF j automorphisms, where jF j denotes the cardinal number of
the set F . On the other hand, with some additional condition ring homomorphisms happen

to be linear or conjugate linear. Indeed, Arnold [1] proved that a ring isomorphism between

two Banach algebras of all bounded operators on in�nite dimensional Banach spaces is linear

or conjugate linear. It is generalized by Kaplansky [6] as follows: if � is a ring isomorphism
from one semisimple Banach algebra A onto another, then A is a direct sum A1 �A2 �A3
with A3 �nite-dimensional, � linear on A1 and � conjugate linear on A2. Therefore, we are
interested in ring homomorphisms which need not be bijective. One of such examples is a

�-ring homomorphism on an involutive Banach algebra into another. The author [8] proved

that if � is a �-ring homomorphism on an involutive commutative Banach algebra A into a
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symmetrically involutive commutative Banach algebra B, then there exist a decomposition

fM�1;M0;M1g ofMB, the maximal ideal space of B, and a continuous map � onM�1[M1

into MA such that �(f )̂ = f̂ Æ� on M�1, �(f )̂ = 0 on M0 and �(f )̂ = f̂ Æ � on M1 for

every f 2 A (cf. [10]).

Takahasi and Hatori [11] proved the following result for a ring homomorphism � on a

regular commutative Banach algebra A into a commutative Banach algebra B. Let MA

and MB be the maximal ideal spaces of A and B, respectively. If f�(f )̂ (') : f 2 Ag = C

holds for every ' 2 MB, then there exist a decomposition fM�1;M1;Mdg of MB and a

continuous map � on MB into MA with the following properties: (i) �(f )̂ = f̂ Æ� on M�1

and �(f )̂ = f̂ Æ � on M1 for every f 2 A. (ii) For each ' 2 Md there corresponds a

non-trivial ring homomorphism �' on C so that �(f )̂ (') = �'(f̂(�('))) for every f 2 A
(cf. [9]).

In this paper, we consider a ring homomorphism between two commutative Banach

algebras, which satis�es a certain condition, say (m). Many ring homomorphisms satisfy

the condition (m), for instance, �-ring homomorphisms between involutive algebras and a

ring homomorphism � : A ! B satisfying �(A)̂ (') = C for every ' 2 MB. Applying the

methods used in [5], we show that if � is a ring homomorphism between two commutative

Banach algebras, then � is induced by a continuous map between the maximal ideal spaces.

As a corollary, Theorem 2.1 in [8] and Theorem 1 in [11] are proved. Moreover if we consider

a ring isomorphism, then two maximal ideal spaces are homeomorphic.

Finally we note that if � is a ring homomorphism on C , then the following are equivalent:

(i) � is non-trivial. (ii) � is unbounded. (iii) � is discontinuous. (iv) There exists a sequence
fwng

1
n=1 � C so that wn converges to 0, while j�(wn)j tends to in�nity as n!1.

2. Main results

Let A be a commutative Banach algebra. We say that A is a radical algebra, if there is

no non-zero complex-valued homomorphism on A. Then we de�ne the radical of A to be

A. Unless A is a radical algebra, we say that A is non-radical for the convenience, then MA

denotes the maximal ideal space of A. In this case, we de�ne the radical of A to be the

intersection of all the regular maximal ideals in A.
It is well-known that the kernels of non-zero complex homomorphisms on a non-radical

commutative Banach algebra are regular maximal ideals. On the other hand, the kernels

of complex ring homomorphisms need not be maximal (cf. [10, Example 5.4]). We give a

characterization of ring homomorphisms whose kernels are regular maximal ideals.

Lemma 2.1. Let A be a non-radical commutative Banach algebra, B a commutative Ba-

nach algebra and � a non-zero ring homomorphism on A into B. Then the following con-

ditions are equivalent.

(i) The kernel ker � = ff 2 A : �(f) = 0g is a regular maximal ideal in A.
(ii) There exists a ring homomorphism ~� on Ae into B such that ~�jA = � and ~�(C e) =

�(A), where Ae denotes the commutative Banach algebra obtained by adjunction of a

unit e to A.
(iii) There exist a unique ring isomorphism � on C onto �(A) and a unique  2MA such

that � = � Æ  .

Proof. (i) ) (ii) There exists a ' 2 MA such that ker � = ker', by hypothesis. Since

'(A) = C , for every � 2 C there exists a g� 2 A such that � = '(g�). We de�ne ~� on Ae
into B as

~�((f; �)) = �(f) + �(g�); ((f; �) 2 Ae):
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Then ~� is well-de�ned. In fact, let g� and h� be elements of A so that '(g�) = � = '(h�),
hence g� � h� 2 ker'. Since ker � = ker', we have �(g�) = �(h�) and this implies that

~� is well-de�ned. By de�nition ~� is an extension of �. We show that the map ~� is a ring

homomorphism on Ae into B. In fact, let (fj ; �j) be any element of Ae and gj an element

of A so that '(gj) = �j for j = 1; 2. By a simple calculation we have

~�((f1; �1) + (f2; �2)) = ~�((f1; �1)) + ~�((f2; �2)):

Next we show that ~� is multiplicative. To do this, note that the equality

�(�2f1) = �(g2f1) = �(f1)�(g2)

holds, since �2f1 � g2f1 2 ker' = ker �. Therefore,

~�((f1; �1)(f2; �2)) = ~�((f1f2 + �2f1 + �1f2; �1�2))

= �(f1)�(f2) + �(�2f1)

+ �(�1f2) + �(g1)�(g2)

= f�(f1) + �(g1)gf�(f2) + �(g2)g

= ~�((f1; �1)) ~�((f2; �2)):

That is, ~� is a ring homomorphism on Ae into B. Finally, we show that ~�(C e) = �(A). It
is easy to see that ~�(C e) = ~�((0; C )) � �(A), by the de�nition of ~�. Conversely, for every
f 2 A

�(f) = ~�(0; '(f)) = ~�('(f)e) 2 ~�(C e):

Thus, we proved that ~�(C e) = �(A).
(ii)) (iii) Let ~� be a ring homomorphism on Ae into B so that ~�jA = � and ~�(C e) = �(A).

Let � be a restriction of ~� to C e. That is,

�(�) = ~�(�e); (� 2 C ):

Then we show that � is a ring isomorphism on C onto �(A). In fact, � is surjective, since

~�(C e) = �(A). Suppose that � is not injective. Then there exist �1; �2 2 C such that

�1 6= �2 and �(�1) = �(�2). Put �3 = �1 � �2. Since ~� is an extension of �, we have

�(f) = �(�3) �

�
f

�3

�
= 0

for every f 2 A. Since � is non-zero, we arrived at a contradiction. That is, we proved that �
is a ring isomorphism on C onto �(A). Therefore, ��1 is a ring isomorphism on �(A) onto C .
Put 	 = ��1 Æ ~�, then it is easy to see that 	 is a non-zero complex homomorphism on Ae.
In this case, ~� = � Æ	 holds. Put  = 	jA, then  is a non-zero complex homomorphism

on A since � is non-zero. Hence,  2MA and � = � Æ holds. Finally we show that both �
and  are unique. In fact, suppose that �1 Æ  1 = � = �2 Æ  2 holds for ring isomorphisms

�j on C onto �(A) and  j 2 MA for j = 1; 2. Since both �1 and �2 are injective, it follows
that ker 1 = ker 2. By a simple calculation we see that  1 =  2, then �1 = �2 is trivial

since  j(A) = C .

(iii)) (i) If � is a ring isomorphism on C onto �(A) and  is an element ofMA such that

� = � Æ  , then ker � = ker . Hence, ker � is a regular maximal ideal in A. This completes
the proof.

De�nition 2.1. Let A be a commutative Banach algebra, B a non-radical commutative

Banach algebra and � a ring homomorphism on A into B. For every element ' of MB we

de�ne the induced ring homomorphism �' on A into C as

�'(f) = �(f )̂ ('); (f 2 A):
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De�nition 2.2. Let A be a commutative Banach algebra, B a non-radical commutative

Banach algebra and � a ring homomorphism on A into B. We say that � satis�es the

condition (m), if ker �' is a regular maximal ideal in A or ker �' = A for every ' 2MB.

De�nition 2.3. Let A be a commutative Banach algebra, B a non-radical commutative

Banach algebra and � a ring homomorphism on A into B, which satis�es the condition

(m). We denote

M0 = f' 2MB : ker �' = Ag:

If A is non-radical, for every ' 2 MB nM0 we can write �' = �' Æ  ' for a unique ring

homomorphism �' on C and a unique  ' 2MA, by Lemma 2:1. Then we de�ne the subsets

M�1;M1 and Md of MB as

M�1 = f' 2MB nM0 : �'(z) = �z; (z 2 C )g;

M1 = f' 2MB nM0 : �'(z) = z; (z 2 C )g;

Md = f' 2MB nM0 : �' is non-trivial g:

It is easy to see that M�1;M0;M1 and Md are mutually disjoint and MB =M�1 [M0 [
M1 [Md holds. Thus, fM�1;M0;M1;Mdg is a decomposition of MB.

De�nition 2.4. Let fM�1;M0;M1;Mdg be the decomposition of MB as in De�nition 2:3.
We de�ne the map � on MB nM0 into MA as

�(') =  '; (' 2MB nM0);

where  ' is a unique element of MA so that �' = �' Æ ' for a unique ring homomorphism

�' on C .

Note that for every ' 2MB nM0 we have

�(f )̂ (') = (�' Æ  ')(f) = �'(f̂(�(')))

for every f 2 A. Under the assumptions above, we show the following lemmas on topological

structures of M�1;M0;M1 and Md.

Lemma 2.2. M0 is a closed subset of MB.

Proof. Let f'�g be any net in M0 converging to '. By de�nition �(f )̂ ('�) = 0 holds for

every f 2 A. Since �(f )̂ is continuous on MB , we have �(f )̂ (') = 0 for every f 2 A. This
implies ' 2M0, hence M0 is a closed subset of MB.

Lemma 2.3. M�1 [M0 and M0 [M1 are closed subsets of MB.

Proof. Since M0 is closed, it is enough to show that �Mj �M0 [Mj for j = �1; 1, where ��
denotes the closure in MB . For this end, let ' be any point of �Mj and f'�g a net in Mj

converging to '. We show that ' belongs to M0 [Mj . Since M�1;M0;M1 and Md are

mutually disjoint, it suÆcies to show that ' 62 M�j [Md. Suppose that ' is an element

of Md, then there exist a non-trivial ring homomorphism �' on C and a �(') 2 MA such

that �(f )̂ (') = �'(f̂(�('))) holds for every f 2 A. Choose an element f0 2 A with

f̂0(�(')) = 1, and since �' is non-trivial, there exists a non-zero sequence f�ng in C such

that j�nj < 1=n and j�'(�n)j > n for every n 2 N, the space of all natural numbers. On

one hand

j�(�nf0)̂ ('�)j = j�nf̂0(�('�))j < kf̂0k1=n;

since '� 2 Mj , where k � k1 denotes the supremum norm on MA. On the other hand, we

have

j�(�nf0)̂ (')j = j�'(�n)j > n
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for every n 2 N. This contradicts with the continuity of the function �(�nf0)̂ on MB, for

a suÆciently large n 2 N. Therefore, ' does not belong to Md.

Suppose that ' is an element of M�j . As a �rst step, we consider the case where �('�)

converges to �('). In this case f̂(�('�)) converges to f̂(�(')) for every f 2 A, since f̂

is continuous on MA. Choose an element f1 of A so that f̂1(�(')) = i, then f̂1(�('�))
converges to i, since �('�) ! �('). Therefore, �(f1)̂ ('�) converges to ji. On the other

hand, �(f1)̂ ('�) converges to �ji, since �(f1)̂ is continuous and since ' 2 M�j . We

arrived at a contradiction, hence we proved that ' does not belong to M�j , in case where

�('�) converges to �(').
Next we consider the case where �('�) does not converge to �(') (as we will prove later,

such a case does not occur). Hence, there exists an f2 2 A such that f̂2(�('�)) does not

converge to f̂2(�(')). In particular, f̂2(�(')) 6= f̂2(�(')), since �(f2)̂ is continuous on

MB. Put

f3 =
f̂2(�('))

jf̂2(�('))j
f2 2 A;

then we obtain f̂3(�(')) = f̂3(�(')). Therefore, f̂3(�('�)) converges to f̂3(�(')), since
�(f3)̂ is continuous on MB. On the other hand, the equality

jf̂3(�('�))� f̂3(�('))j = jf̂2(�('�))� f̂2(�('))j

holds, and this contradicts with the assumption that f̂2(�('�)) does not converge to

f̂2(�(')). Hence, we proved that ' does not belong to M�j in case where �('�) does

not converge to �('). This implies �Mj �M0 [Mj for j = �1; 1.

Lemma 2.4. The range �(Md) is at most �nite subset of MA.

Proof. Assume to the contrary that the range �(Md) is not a �nite set. Then �(Md) has a

countable subset f ng
1
n=1 so that  n 6=  m if n 6= m. By de�nition, for every n 2 N there

exists a 'n 2 Md such that  n = �('n), then 'n 6= 'm if n 6= m. Since 'n is an element

of Md, there corresponds a non-trivial ring homomorphism �n on C such that

�(f )̂ ('n) = �n(f̂(�('n))) = �n(f̂( n))

holds for every f 2 A. Since �1 is non-trivial, there exists an f1 2 A so that

kf1k < 1=2; j�1(f̂1( 1))j > 2:

Inductively we can �nd an fn 2 A such that

kfnk < 2�n; j�n(f̂n( n))j > 2n +

������n
 
n�1X
k=1

f̂k( n)

!�����
and also

f̂n( 1) = f̂n( 2) = � � � = f̂n( n�1) = 0:

Therefore,
P1
n=1 fn converges to some element f0 2 A. Note that, for every k 2 N,

f̂j( k) = 0 if j > k, then f̂0( k) =
Pk

n=1 f̂n( k), since the Banach norm on A dominates

the supremum norm on MA. Thus we have the inequality

j�(f0)̂ ('k)j = j�k(f̂0( k))j =

������k
 

kX
n=1

f̂n( k)

!����� > 2k;

and this implies that �(f0)̂ is unbounded on MB . We arrived at a contradiction, hence we

proved that the range �(Md) is at most �nite subset of MA.
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Lemma 2.5. Put �(Md) = f 1;  2; � � � ;  ng. For every j 2 f1; 2; � � � ; ng the set Md; j =

f' 2Md : �(') =  jg is open in MB.

Proof. For each j 2 f1; 2; � � � ; ng we can �nd an fj 2 A such that

f̂j( j) = 1; f̂j( k) = 0; (k 6= j):

Suppose that Md; j is not an open subset of MB, then there exist an element 'j of Md; j

and a net f'�g in MB nMd; j such that '� converges to 'j . Since M�1 [M0 [M1 is

closed in MB, by Lemma 2.3, Md = MB n (M�1 [M0 [M1) is an open subset of MB.

Therefore, without loss of generality we may assume that the net f'�g consists of elements

of Md nMd; j . Then �('�) 6=  j , hence we have f̂j(�('�)) = 0 by de�nition. On the other

hand, we have �(fj )̂ ('j) = �'j (f̂j(�('j))) = 1 and �(fj )̂ ('�) = �'�(f̂j(�('�))) = 0,

where �� denotes the non-trivial ring homomorphism on C corresponding to � 2 Md. This

is a contradiction, since �(fj )̂ is continuous on MB . This completes the proof.

Theorem 2.6. Let A be a commutative Banach algebra, B a non-radical commutative Ba-

nach algebra and � a ring homomorphism on A into B, which satis�es the condition (m).

Then the radical of A is mapped into the radical of B. Moreover if A is non-radical, let

fM�1;M0;M1;Mdg be the decomposition of MB as in De�nition 2:3. Then the map �

is continuous on MB nM0 into MA with the following property: for every ' 2 Md there

corresponds a non-trivial ring homomorphism on C so that the equality

�(f )̂ (') =

8>>>><
>>>>:

f̂(�(')); ' 2M�1;

0; ' 2M0;

f̂(�(')); ' 2M1;

�'(f̂(�('))); ' 2Md

holds for every f 2 A.

Proof. If A is a radical algebra, we have MB = M0 by the condition (m). Therefore, �'
is identically zero for every ' 2 MB. By de�nition, the radical of A is mapped into the

radical of B, if A is a radical algebra.

If A is non-radical, we have the equality

�(f )̂ (') =

(
0; ' 2M0;

�'(f̂(�('))); ' 2MB nM0

=

8>>>><
>>>>:

f̂(�(')); ' 2M�1;

0; ' 2M0;

f̂(�(')); ' 2M1;

�'(f̂(�('))); ' 2Md

for every f 2 A. In particular, for every f 2 radA we have �(f )̂ (') = 0 for every ' 2MB.

That is, we proved that the radical of A is mapped into the radical of B.
We show that the map � on MB nM0 into MA is continuous. By Lemma 2.4 we can

write �(Md) = f 1;  2; � � � ;  ng. As a �rst step, we show that � is continuous at each

point of Md. For every '0 2 Md there exists a  j 2 �(Md) such that �('0) =  j . Since
Md; j = f' 2 Md : �(') =  jg is open in MB, by Lemma 2.5, we see that � is continuous

at '0 2Md.

Next we show that � is continuous on Mj for j = �1; 1. Let 'j be any point of Mj and

f'�g�2I any net inMB nM0 converging to 'j . SinceM0[M�j is closed inMB , by Lemma

2.3, we see thatMj [Md =MB n (M0[M�j) is an open subset ofMB . Hence, without loss
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of generality we may assume that the net f'�g�2I consists of elements of Mj [Md. Then

we show that there exists an �0 2 I such that '� belongs toMj [f' 2Md : �(') = �('j)g
for every � 2 I with � � �0. In fact, since �(Md) is at most �nite, we can �nd an element

f0 of A so that f̂0(�('j)) = 1 and f̂0( k) = 0 for every element  k of �(Md) n f�('j)g. By
the continuity of �(f0)̂ there exists an �0 2 I such that j�(f0)̂ ('�) � 1j < 1=2 holds for

every element � of I with � � �0. In particular we have f̂0(�('�)) 6= 0, hence �('�) does

not belong to �(Md) n f�('j)g if � � �0, since f̂0 = 0 on �(Md) n f�('j)g. Therefore,

we proved that '� is an element of Mj [ f' 2 Md : �(') = �('j)g for every � 2 I with

� � �0. Hence, we have the inequality

jf̂(�('�))� f̂(�('j))j � j�(f )̂ ('�)� �(f )̂ ('j)j

for every element f of A, if � � �0. We conclude that �('�) converges to �('j), hence
� is continuous on Mj for j = �1; 1. Thus we proved that the map � is continuous on

MB nM0 and this completes the proof.

As a corollary, we have the following results.

Corollary 2.7. [8, Theorem 2.1] Let A be a commutative Banach algebra with an involution

�, B a non-radical commutative Banach algebra with a symmetric involution ?. If � is a

�-ring homomorphism on A into B, then the radical of A is mapped into the radical of B.

Therefore

�(f )̂ = 0 (f 2 A)

holds on MB, if A is a radical algebra. If A is non-radical, there exist a decomposition

fM�1;M0;M1g of MB and a continuous map � on M�1 [ M1 into MA such that the

equality

�(f )̂ (') =

8><
>:
f̂(�(')); ' 2M�1;

0; ' 2M0;

f̂(�(')); ' 2M1

holds for every f 2 A.

Proof. We consider the case where A is non-radical. If A is unital, then we de�ne the ring

homomorphism �';e on C as

�';e(�) = �'(�e); (� 2 C );

for each ' 2 MB . Since � preserves the involution, we see that �';e is trivial. Thus,

�' 2MA or �' 2MA or �' = 0.

If A has no unit, then we consider the commutative Banach algebra Ae obtained by

adjunction of a unit e to A. Unless �' is identically zero, there exists a g 2 A so that

�'(g) 6= 0. Then we de�ne ~�' on Ae to C by

~�'((f; �)) = �'(f) +
�'(�g)

�'(g)
; ((f; �) 2 Ae):

Then it is easy to see that ~�' is a �-ring homomorphism on Ae with respect to the involution
(f; �) 7! (f�; ��) on Ae. Thus, we have the conclusion by Theorem 2:6.

Takahasi and Hatori [11] proved the following result in case where A is regular and

satis�es a certain condition, while we can prove the result without such assumptions.

Corollary 2.8. Let A and B be non-radical commutative Banach algebras, � a ring homo-

morphism on A into B so that

f�(f )̂ (') : f 2 Ag = C ;
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for every ' 2MB. Then there exist a decomposition fM�1;M1;Mdg of MB and a contin-

uous map � on MB into MA with the following property: for every ' 2 Md there exists a

non-trivial ring homomorphism �' on C such that

�(f )̂ (') =

8><
>:
f̂(�(')); ' 2M�1;

f̂(�(')); ' 2M1;

�'
�
f̂
�
�(')

��
; ' 2Md

holds for every f 2 A.

Proof. By Theorem 2:6, it is enough to show that ker �' is a regular maximal ideal in A for

every ' 2 MB . As a �rst step, we consider the case where A has a unit element e. Since
ker�' is a proper algebra ideal, there exists a  2MA so that ker �' � ker . Suppose that
g does not belong to ker �', then there corresponds an h 2 A such that �'(g) �'(h) = 1

since f�(f )̂ (') : f 2 Ag = C . Therefore �'(gh� e) = 0. Since ker�' is contained in ker ,
we have  (gh) = 1 hence  (g) 6= 0. Thus, we proved that ker�' is a maximal ideal in A.

Next we consider the case where A does not have a unit element. Let Ae be the commuta-
tive Banach algebra obtained by adjunction of a unit e to A. Since f�(f )̂ (') : f 2 Ag = C ,

there exists a g' 2 A such that �'(g') = 1. De�ne the map ~�' on Ae to C by

~�'((f; �)) = �'(f) + �'(�g'); ((f; �) 2 Ae):

Then it is easy to see that ~�' is a ring homomorphism on Ae onto C . As proved above,

ker ~�' is a maximal ideal in Ae. Since ~�' is an extension of �', we have that �' is a regular

maximal ideal in A.

Corollary 2.9. Let A and B be non-radical commutative Banach algebras with the maximal

ideal spaces MA and MB, respectively. If � is a ring isomorphism on A onto B, then MA

is homeomorphic to MB.

Proof. Since � is surjective, f�(f )̂ (') : f 2 Ag = C holds for every ' 2MB. By Corollary

2:8, there exists a continuous map � onMB intoMA with the following property: for every

' 2 MB there corresponds a non-zero ring homomorphism �' on C so that �(f )̂ (') =

�'(f̂(�('))) for every f 2 A. Since � is a ring isomorphism, we can write ��1(x)̂ ( ) =
� (x̂(	( ))) for every x 2 B and every  2 MA, where 	 is the continuous map on MA

into MB and � is a non-zero ring homomorphism on C . Put x = �(f) for each f 2 A and

 = �(') for each ' 2MB. Then we have the equality

x̂(') = �(f )̂ (') = �'(f̂(�(')))

= �'(�
�1(x)̂ ( ))

= �'(� (x̂(	( )))):

If x̂(	( )) = 0, we have x̂(') = 0. Unless x̂(	( )) = 0, put y = x=x̂(	( )). Then we

obtain the equality

ŷ(') = �'� (ŷ(	( ))) = 1;

that is, x̂(') = x̂(	( )). Therefore, ' = 	( ) = 	 Æ �(') holds for every ' 2 MB. In a

way similar to the above, we have  = � Æ 	( ) holds for every  2 MA. Hence MA is

homeomorphic to MB and this completes the proof.
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