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ABSTRACT. In pattern analysis and image management, the information of an objec-
tive image can be recovered from a sequence approximate images. In mathematical
form of expression we need to consider some types of continuity. In [3], W.Gong defined
the upper limit and lower limit of a sequence, and the concepts are used to characterize
the convergency and continuity in the space consisting of images. In the present paper,
we shall give first some examples to show that there are some theoretical shortcomings
in [3], and furthermore we shall prove some corresponding correct results.

1 Preliminaries Let R™ be the n-dimensional Euclidean space, and for z,y € R™, p(z,y)
is the distance between the points x and y. If € is a positive real number and x € R", then
we denote U(z,e) = {y € R™ : p(z,y) < €} which is called to be open ball centred at x of
radius e. If x = O is the origin of R", we denote U(z,€) by eD.

In general, for the subset A of a space X, A means the closure of A in X. We denotes the
set of natural numbers by letter Q. For a topological space (X, T), if a sequence {z; : i € Q}

converges to z* in X, then we write it by z; X, 2*. When (X, p) is a metric space, and a

sequence {z; : i € 2} converges to z* in X, then z; X, 2* will be denoted for simplicity
by the symbol z; — z* or p(z;,z*) — 0.

If y is a point in R™ and A, B are subsets of R", we let A[y] be its translation by the
point y, i.e., A[y] = {a+y :a € A}, and A be the symmetric set of A with respect to the
origin, i.e., A ={-a:a€ A}. A®@B={a+b:a€ Abec B} is called the dilation of
set A by set B, and A © B = N,z A[b] is the erosion of set A by set B. It is clear that
A9 (BaC)=(AdB)®C,and U(A,e) = A® €D, and Ac B = {z: B[z] C A}.

Let Y C R™ be a ’very big’ bounded closed set which contains the origin as its interior
point. We shall construct four families as follows.

F={FCR":F #0,F isclosed}, K = {K C R* : K # 0,K is compact} and
P={KCY:K #0,K is compact}, and P* ={K CY &Y : K # 0, K is compact}.

It is clear that X C Fand P={KNY : K € K and KNY # 0}.

Definition 1.1 ([3]). Let G1,G2, - ,Gn be finite non-empty open sets, and K1, Ka,--- , K,
finite compact sets of R™ (K; can be empty). We set

N{G:} {K;}) ={F € F:FNG; #0 for each i =1,2,--- , m;FNK; =0 for each
j: 1727"' 7p}

B(F) = {N{G:},{K;}) : {G;} is a finite family of non-empty open sets in R"”, and
{K;} is a finite family of compact sets in R™}, and T (F) = {UB* : B* C B(F)}.

It can be easily proved that (F,T(F)) is a topological space. Similarly we know that
(K, T(K)), (P, T(P)) and (P*, T (P*)) are topological spaces.

2. Some Lemmas
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Lemma 2.1 ([3,4]). Topological spaces (F, T (F)) (K, T(K)), (P, T(P)) and (P*, T (P*)))

are Hausdorff spaces with countable bases.

From Lemma 2.1 we know that the convergency can be characterized by sequence in
above spaces.

Lemma 2.2 ([3]). Let {F; :i € Q} be a sequence in F. Then F; 2 F if and only if the
following two conditions are satisfied:

1). If G is an open set of R™ and GNF # (), then G intersects eventually with {F; : i € Q}
(that is, there is an N € Q, such that G N F; # () for each i > N ),

2). If K is a compact set of R™ with K N F = (), then K does not cofinally intersect
with {F; : i € Q} (that is, there is an N € Q, such that K N F; = () for each i > N ).

Lemma 2.3 ([4]). If F; Ly Fin (F, T(F)), i € Fi(i € Q) and y; — y in R", then
yeF.

Lemma 2.4 ([4]). If F; Ly Fin (F, T(F)) andy € F, then we can pick y; € F;(i € Q)
with y; = y.

It is clear that the arguments of Lemma 2.3 and Lemma 2.4 are also true for spaces

(K, T(K)), (P, T(P)) and (P*,T(P")).
Lemma 2.5 ([4]). The spaces (P,T(P)) and (P*,T (P*))are compact spaces.

3. Two counterexamples

In the section we shall give some examples which imply that some results are not true
in [3].

Definition 3.1 ([3,6]). Let {F; : i € Q} be a sequence in the space F. The upper limit
limF; and lower limit imF; of {F; : i € Q} are defined respectively as follows:

HFZ' = ﬂi>0U]’>iFj limF; = Uiso Nj>i Fj

As concerns the upper limit and the lower limit, there are the following results in [3]:

a). Let {F; : i € Q} be a sequence in the space F. Then F; L piff limF; = limF; = F
(13,p-18]).

b). The set limF; is the intersection of the limits of all converging subsequence of
{F; i € Q}. That means imF; = N{F* : 3{F,, :i € Q} C {F, : i € Q} with F,,, 2 F*}.
([3,p-18]).

c). Let {F; : i € Q} be a sequence in F. If F' € F satisfies condition *) as follows:

*) When an open set U of R" intersects with F', then U intersects eventually with
{Fi 11 € Q},
then F' C limF;. That is limF; is the biggest closed set satisfying condition *) ([3,p.18.
Th.1.2.4]).

The following example 3.2 shows that a), b) and c) are not true.
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Example 3.2. Let F; = {($,0,---,0)} for each i € @ and F = {(0,0,---,0)}. Then it is
clear that F; - F. But TImF; = Ni»oU;o:F; = F, and imF; = Upso Nyo; F; = 0 # F.
Hence a) is not true. It is not difficult to prove that b) and c) are not true.

Definition 3.3 ([3]). Suppose that E is a separable space, and ¥ : E — F is a map.
We call U to be upper semi-continuous (resp. lower semi-continuous), if for any convergent

sequence {x; : i € O} of E with z; L a, U(z) D Lim¥(x;) (resp. ¥(x) C im¥(z;)) holds.

There are some results concerning with upper semicontinuity and lower semicontinuity
in [3]. They are following:

d). A map ¥: E — F is continuous iff ¥ is upper semicontinuous and lower semicon-
tinuous ([3,p.19]).

e). The map ¥ : F x K — F with ¥(F,K) = F & K is continuous, and the map
®: K x K — K with ®(B,K) = B® K is continuous, where F' € F and, K and B are in
K ([3,p-17, Th.1.2.3]).

Unfortunately we find that the argument d) is not true according as Definition 3.1. In
fact, if we let ¥ be the identity map from K to K, F; = {(,0,---,0)} for each i € Q

and F' = {(0,---,0)} € K, then ¥ is continuous, and ¥(F;) = F; L F= U (F), but
lmP(F;) = imF; = 0 # F = limF; = lim¥(F}). (see Example 3.2).

The following example implies that the argument e) is not true too.

Example 3.5. Let n = 1, that is R" = R, set F; = {0,i}, K; = {0,—i + 1}, and
F = K = {0}. Then we have that F; - F and K; - K by Lemma 2.2. In this case,
F, oK, ={0,1,—i+1,i} and F & K = {0}. Also we get that F; & K; N {0,1} € K by
Lemma 2.2. But F & K = {0} # {0,1}. Hence the dilation is not a continuous map from
K x K to K.

4. The continuity on the erosion and dilation.

Firstly we shall give the following definition which is important for the main results of
this section.

Definition 4.1. For a sequence {F; :i € Q} of F, let

F= {x: For each neighborhood U, of x, there is a subsequence {Fj; : j € Q} such that
U.NF;; #0.} and
F = {x: For each neighborhood U, of x, U, intersects eventually with {F; :i € Q}},

where U, is the neighborhood of © in R™. We call F upper closed limit and F lower closed
limit.

By use of }?‘ and F, we have already proved the following;:
Theorem 4.2 ([4]). Let {F; :i € Q} be a sequence in F. Then F; 2 F iff F =F=F.
Next we shall have the following characterizations of F.

Theorem 4.3. Let {F; : i € Q} be a sequence in P. Then F is the intersection of the
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limits of all converging subsequence of {F; :i € Q}, that is, F = N{F* : {F;; : j € Q} C
(F; i € Q} with F;, =5 F*}.

Proof. Suppose that x € F and {F;; : j € Q} C {F; : i € Q} with F}; L, F*. We shall
prove z € F*. Let {U;(z) : i € Q} be a decreasing neighborhood base of  in Y.

For Uy (x), we have a sequence {z} € Ui(z) N Fj; : j € Q and j > k;} for some k;.
Similarly for Uz (), we have a sequence {z} € Us(z) N F;; : j € Q and j > ky} for some
ks > k. By induction, we have a sequence {} € Ui(z) N F;; : j € Q and j > k;} for some
ki > ki—y. Hence {a} :1€Q} — x, that is z € F* by Lemma 2.3.

On the other hand, let z € N{F* : I{F;, : j € Q} C {F; : i € Q} with F}, N F*},
we shall prove that x € F. That is, we must prove that U, intersects eventually with
{F; i € Q} for each neighborhood U, of z in Y.

Suppose not, there were a neighborhood U of z, and a subsequence {F} : i € Q} C
{F; :i € Q} with UN F}! = (for each i € Q). Since P is a compact space (see Lemma
2.5), we have a subsequence {F}. : j € Q} C {F} : i € Q} with F}. L4 F*. We know that
UNF* =0 by Lemma 2.2, i.e., z ¢ F*. This contradicts to that 2 € N{F* : {F;; : j €
O} C {F; :i € Q} with F;, 25 F*}. Hence z € F.

Theorem 4.4. Let {F; : i € Q} be a sequence in F. If F € F satisfies condition *) as
follows:

¥). When an open set U of R"™ intersects with F, then U intersects eventually with
{Fi 11 € Q},
then F C F. That is F is the biggest closed set satisfying condition *).

Proof. Suppose z € F and F satisfies condition *). Then U, intersects eventually with
{F; : i € Q} for each neighborhood U, of z in R"™. By Definition 4.1, x € F , i.e., F C F.
It is clear that F is closed.

Theorems 4.2, 4.3 and 4.4 show that a), b) and c) in section 3 are true by Definition 4.1.

Definition 4.5. For A and B C R", let p(A,B) =inf{e: B CU(A,¢)}, and H(A,B) =
maz{p(A, B), p(B, A)}.

Lemma 4.6 ([4]). The topological spaces P and P* are metrizable, and H(A, B) is their
metric.

The following theorem is interesting in comparison with Example 3.5.
Theorem 4.7. The map ¥ : P x P — P* with (K, B) = K ® B is a continuous map.

Proof. We prove first that, if K and B are compact, then K @& B is compact. In fact, if
zi€e K@B={zx+y:z € K,y € B}, then 3z; € K and y; € B with z; = x; + y;. Since
K and B are compact, we can get a converging subsequences {z;, : j € Q} C {z; : i € Q}
and {y;;, :k € Q} C{y;, :j € Q}, hence {2;;, :k € Q} C{z :i€ Q} is converging. That
is K @ B is compact.

Suppose that B; N B, and K; P, K. Then we have that H(B;,B) — 0 and
H(K;,K) — 0 by Lemma 4.6. Therefore for each € > 0, there is an N € Q, such that
B;CB®eD,BCB;®eD, K; C K®eD and K C K; ® €D for each i > N. Then

BiaK;C(B®eD)d (K®eD)=B& K & 2D
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and
B@KC(Bi@GD)@(KiEBED):Bi@Ki@QED.

Hence H(B; ® K;,B® K) — 0, i.e.,B; ® K; LNy @ K, and hence ¥ is continuous.

Lemma 4.8. If {F, : n € Q} is a sequence in F, then }Nv"': limF,.
Proof. It is clear by Definitions 3.1 and 3.4.
Theorem 4.9. The map ® : P x P — P* with ®(K,F) = K S F is upper semicontinuous.

Proof. If F, K and K are in P, then F © K = N,z F[k] is compact, and it is clear that
FoK ={z:K[z] C F}. For F; =5 F, and K; = K, we have F; o K; = {z : K;[z] C F;}
and F o K = {z : K[z] C F}. We shall prove that F & K D lim(F; © K;) (see Lemma 4.8).

For z € lim(F; © K;), let {U;(2) : j € Q} be a decreasing neighborhood base of z in
Y @Y. For each j € Q, U;(2) intersects infinitely many elements of {F; © K; : i € Q}.
Then we pick out 2; € U;(z) N (F}, © K;,), where i; < i1, then K;,[z;] C Fy,, i.e., for any
ki, € K;;, ki, + z; = f;; for some f;. € F;,. Furthermore it is seen that z; — z.

We need to prove that z € F & K, that is, K [2] C F. Equivalently we shall prove that

for each k € K, there is some f € F with k 4+ z = f. For each k € K, since K; N K, we
can get a sequence {k; : i € Q} with k; — k by Lemma 2.4, where k; € K;. We know that
if ki, € {k; i € Q}, then k;, +z; = f;, for some f;; € F;,. Because z; — z and k;; — k, we
have f;; = ki, +2z; = k+z. Hence k+2 = f € F' by Lemma 2.3. Therefore we have proved
that for each k € K, and k+ z = f € F, that is K[z] C F. i.e., F© K D lim(F; © K;). So
® is upper semicontinuous.

5. The conclusions

In [4] we proved that the topological space P is a compact metric space with a countable
base, and H(A, B) is a metric on P. The metric H(A, B) coincides with our physical
intuition. In this paper we proved the dilation operation is a continuous map and the
erosion operation is a upper semicontinuous map on the space P. From the erosion and
dilation we can get all other operations of mathematical morphology. In actual pattern
recognition, the treated pattern is always limited in a large scope, and a pattern can be
considered as a compact set in mathematics. Hence we deem that the space P is a good
mathematical space for pattern recognition.
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