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Abstract. Let Y be a sequentially complete,locally convex linear-topological space,(E;�; �)

a non-atomic measure space and ' a real nondecreasing and continous for u � 0 func-

tion,equal to 0 for u = 0.We prove the identity of the class of linear and pseudomodular

continous operators from the Orlicz space L
�'

� (E;�; �) into Y with the class of similar

operators from the Orlicz space L
�'

� (E;�; �) into Y ,where

'(u) =

uZ

0

p(t)dt for u � 0 and p(t) = inf
t<s

'(s)

s
for t � 0:

Also,we show that the class of linear and pseudonorm continous operators from the

space of �nite elements Lo'(E;�; �) into Y is the same as from the space Lo'(E;�; �)

into Y .The other proof of this fact, using Rademacher functions one can �nd in [1](th.2.2

b).Our result is a little bit more general than the one mentioned above.But �rst of all,our

proof is simple and esentially di�erent from that in [1].

1. The Orlicz Space

De�nition 1.1 A ~'-function we call a real,nondecreasing and continous for u � 0 func-

tion,equal to 0 for u = 0.A ~'-function ' is called convex,if it satisties the Jensen inequality

'(�u+ �v) � �'(u) + �'(v) for u; v; �; � � 0 ;where �+ � = 1:

As usual in the theory of the Orlicz spaces ([2],[3],[4]),a '-function we call a real,nondecreasing

and continous for u � 0 function,equal to 0 only for u = 0 and tending to 1 as u!1.In

this paper the use of the ~'-functions instead of the '-functions simpli�es our considerations.

1.2.Let (E;�; �) denote a measure space.Obviously,we assume that the measure � is �-

�nite on E.By S = S(E;�; �) we denote the space of �-measurable,real or complex-valued

functions de�ned on E.The measure space (E;�; �) we call non-atomic,if for every set G 2 �

there exists a set F � G, F 2 � with �(F ) =
1

2
�(G).Then we say also that the measure �

and the space S are non-atomic.

1.3.Let ' be a ~'-function and (E;�; �) a measure space.For f 2 S we write

�'(f) =

Z

E

'(jf(x)j)d�:
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In the space S the functional �'(�) is a pseudomodular in the Musielak-Orlicz sense [6].

By L�'
�

= L
�'

�
(E;�; �) we denote the class of those functions f 2 S for which �'(�f) <

1 for some � = �(f) > 0 and by Lo' = L
o'(E;�; �) the class of those functions f 2 S

for which �'(�f) <1 for all � > 0.The classes L�'
�

and Lo' are linear subspaces of S and

L
o' � L

�'

�
.

The class L�'
�

we call the Orlicz space and the class Lo' the space of �nite elements ([2],[3]).

The spaces L�'
�

and Lo' we call non-atomic if the measure space (E;�; �) is non atomic.

1.4.In the Orlicz space L�'
�

the functional jj � jj' de�ned by the formula

jjf jj' = inff" > 0 : �'(
f

"
) � "g (f 2 L�'

�
);

is an F -pseudonorm.In the case,when ' is a convex ~'-function,the formula

jjf jj�
'
= inff" > 0 : �'(

f

"
) � 1g (f 2 L�'

�
);

determines a B-pseudonorm in L�'
�

equivalent to jj � jj',([2],[3],[6]).

De�nition 1.5 We say that the sequence (fn) in L
�'

�
is pseudonorm convergent to f in

L
�'

�
,if jjfn � f jj' ! 0 as n!1.

It is easily veri�ed that the sequence (fn) in L
�'

�
is pseudonorm convergent to f in L�'

�

if and only if for any � > 0 there holds �'(�(fn � f)) ! 0 as n ! 1. The space Lo' is a

closed subspace of the Orlicz space L�'
�

with respect on the pseudonorm convergence.

Also,we say that the sequence (fn) in L
�'

�
is pseudomodular convergent or '-convergent to

f 2 L
�'

�
,and write fn

'

! f , if �'(�(fn � f)) ! 0 as n ! 1 for some � > 0,dependent on

(fn),([3]).

1.6.In the case,when ' is a '-function,the suÆx "pseudo" in 1.3,1.4 and 1.5 we omit,because

then we have the classical Orlicz spaces ([2],[3]).

2. Convex ~'-functions ' and ' generated by '.

2.1.Let ' be a ~'-function.We de�ne

'(u) =

uZ

0

p(t)dt for u � 0 ;where p(t) = inf
t<s

'(s)

s
for t � 0:

Since the function p is non-negative and nondecreasing for t � 0, so the function ' is

a convex ~'-function,([2]).Also,we observe that if ' is such that lim
u!1

inf
'(u)

u
= 0,then

'(u) = 0 for u � 0,and if ' is a '-function with the property lim
u!1

inf
'(u)

u
> 0, then ' is

a convex '-function.

Further,by 	' we denote the class of those convex ~'-function  for which the inequality

 (u) � '(u) for u � 0 holds.The class 	' is not empty,because the function  0(u) = 0 for

u � 0 belongs to 	'.We de�ne
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'(u) = supf (u) :  2 	'g for u � 0:

Obviously,' is a function satisfying the inequality 0 � '(u) � '(u) for u � 0.The function

' is nondecreasing and convex for u � 0,because it is a supremum of nondecreasing and

convex functions for u � 0.The Jensen inequality for ' guarantees the continuity of ' for

u > 0 and the inequality 0 � ' � ' the continuity of ' for u = 0.Hence ' is the greatest

convex ~'-function satisfying the inequality '(u) � '(u) for u � 0.

Theorem 2.2 For any ~'-function ' the following inequality holds

'(u) � '(u) � '(2u) for u � 0:

Proof. From the de�nition of ' we get for u > 0

'(u) � up(u) = u inf
u<s

'(s)

s
� u

'(u)

u
= '(u):

Since ' is a convex ~'-function,so it must be '(u) � '(u) for u � 0.

On the other hand,from the Jensen inequality for ' and the fact that '(0) = 0 it follows

that the quotient
'(u)

u
is a nondecreasing function for u > 0.Therefore by virtue of the

inequality ' � ' we have for u > 0

'(u) = u
'(u)

u
= u inf

u<s

'(s)

s
� u inf

u<s

'(s)

s
= up(u) �

2uZ

u

p(t)dt � '(2u):

Hence the inequality '(u) � '(2u) for u � 0 is also true.

2.3 If the ~'-function ' satis�es the condition lim
u!1

'(u)

u
= 1 then the following equality

holds ' = ('�)�, where

'
�(v) = supfuv � '(u) : u � 0g for v � 0:

This theorem for '-functions one can �nd in [4].Since the proof of our theorem is ana-

logical,we omit it.

2.4 For arbitrary ~'-function ' the following equality holds

(�) '(u) = inf

mX
k=1

�k'(uk) (u � 0);

where in�mum is taken over all convex combinations

u =

mX
k=1

�kuk; where �k; uk � 0 for k = 1; : : : ;m and

mX
k=1

�k = 1:

Proof. By ~' we denote the function de�ned by the right side of the equality (*).Let us take

u =

mX
k=1

�kuk; where �k; uk � 0 for k = 1; : : : ;m and

mX
k=1

�k = 1:
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Then by virtue of the inequality ' � ' and the convexity of ' we have

'(u) �

mX
k=1

�k'(uk) �

mX
k=1

�k'(uk):

From this we deduce that '(u) � ~'(u) dla u � 0:

On the other hand,from the de�nition of ~' we get immediately the inequality ~'(u) �

'(u) for u � 0.We shall show that ~' is a convex ~'-function.Let us take arbitrary " > 0,

u
0
; u
00
; �; � � 0; �+ � = 1: We observe that there exist �0

k
; u
0

k
� 0,where k = 1; : : : ;m0,such

that

m
0X

k=1

�
0

k
= 1 ; u0 =

m
0X

k=1

�
0

k
u
0

k
; and

m
0X

k=1

�
0

k
'(u0

k
) � ~'(u0) + ";

and �00
k
; u
00

k
� 0,where k = 1; : : : ;m00 such that

m
00X

k=1

�
00

k
= 1 ; u00 =

m
00X

k=1

�
00

k
u
00

k
; and

m
00X

k=1

�
00

k
'(u00

k
) � ~'(u00) + ":

Let us denote m = m
0 +m

00
; �k = ��

0

k
; uk = u

0

k
for k = 1; : : : ;m0

and �m0+k = ��
00

k
; um0+k = u

00

k
for k = 1; : : : ;m00

: Since �k; uk � 0 for k = 1; : : : ;m,

mX
k=1

�k = �

m
0X

k=1

�
0

k
+ �

m
00X

k=1

�
00

k
= 1 and

mX
k=1

�kuk = �

m
0X

k=1

�
0

k
u
0

k
+ �

m
00X

k=1

�
00

k
u
00

k
= �u

0 + �u
00
;

so we get

~'(�u0 + �u
00) �

mX
k=1

�k'(uk) = �

m
0X

k=1

�
0

k
'(u0

k
) + �

m
00X

k=1

�
00

k
'(u00

k
)

� �( ~'(u0) + ") + �( ~'(u00) + ") = � ~'(u0) + � ~'(u00) + ":

From this we obtain the Jensen inequality for ~' and thus the function ~' is convex for

u � 0.Now,the convexity of ~' implies the continuity of ~' for u > 0 and the inequality

' � ~' � ' the continuity of ~' for u = 0 and ~'(0) = 0.The function ~' is also nondecreasing

for u � 0,because for 0 � u1 < u2 we have

~'(u1) = ~'(
u1

u2

u2 + (1�
u1

u2

)0) �
u1

u2

~'(u2) � ~'(u2):

Hence ~' is a convex ~'-function.This fact and the inequality ' � ~' � ' imply �nally the

equality ' = ~'.

2.5.Remark In 2.4 we may assume that the numbers �k are of �nite binary representation.

Proof. According to the formula 2.4 (*) for arbitrary u � 0 and " > 0 there exist such

�k; uk � 0,where k = 1; : : : ;m that

mX
k=1

�k = 1 ; u =

mX
k=1

�kuk i '(u) �

mX
k=1

�k'(uk) � '(u) +
"

2
:
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If m = 1,then �1 = 1.Therefore let us suppose m > 1.Since �k � 0 for k = 1; : : : ;m and

�1+ � � �+�m = 1,so it must be �k0 �
1

m
for some index k0.We may assume that k0 = m.Let

M be a positive number such that uk � M and '(uk) � M for k = 1; : : : ;m.Since the

function ' is continous in the point um, so there exists Æ satisfying 0 < Æ � " and such that

j'(um) � '(v)j �
"

4
if v � 0 and jum � vj � Æ.We choose numbers �k, k = 1; : : : ;m � 1,of

�nite binary representation such that 0 � �k � �k and �k � �k �
Æ

2m2M
for k = 1; : : : ;m.

We observe that the number �m = 1� (�1 + � � �+ �m�1) is of �nite binary representation

and satis�es the inequalities

1

m
� �m � �m � 1 and �m � �m =

m�1X
k=1

(�k � �k) �
Æ

2mM
:

Let us put vk = uk for k = 1; : : : ;m� 1 ,

vm =
1

�m

�m�1P
k=1

(�k � �k)uk + �mum

�
.

We see that vk � 0 for k = 1; : : : ;m,
mP
k=1

�kvk =
mP
k=1

�kuk = u;

jum � vmj �
1

�m

�m�1X
k=1

(�k � �k)uk + (�m � �m)um
�
�

� m(m
Æ

2m2M
M +

Æ

2mM
M) � Æ:

Therefore

mX
k=1

�k'(vk) �

mX
k=1

�k'(vk)�

mX
k=1

�k'(uk) + '(u) +
"

2

� �m'(vm)� �m'(um) + '(u) +
"

2
� �m('(vm)� '(um))

+(�m � �m)'(um) + '(u) +
"

2
�
"

4
+

"

2mM
M + '(u) +

"

2
� '(u) + "

and we see that the remark is true.

3. Lemmas on simple functions.

De�nition 3.1 A simple function we call a function g 2 S of the form

(+) g =

nX
i=1

ai�Ei
;

where ai denote numbers and �Ei
characteristic functions of sets Ei 2 �

with �nite measures.We will assume that the sets Ei are pairwise disjoint.

It is well known that for every function f 2 S there exists a sequence of simple functions

(gn) convergent to f everywhere on E and such that
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jgn(x)j � jf(x)j and jf(x)� gn(x)j � jf(x)j for x 2 E and n = 1; 2; : : : : From this fact we

get immediately the following lemma.

Lemma 3.2 For every function f 2 L�'
�

with �'(f) <1 there exists a sequence of simple

functions (gn) such that �'(gn) � �'(f) for n = 1; 2; : : : and �'(f � gn)! 0 as n!1:

Moreover,for every function f 2 L
o' there exists a sequence of simple functions (gn) such

that jjgnjj' � jjf jj' for n = 1; 2; : : : and jjf � gnjj' ! 0 as n!1:

Now we prove our fundamental lemma.

Lemma 3.3 Let (E;�; �) be a non-atomic measure space, ' a ~'-function, Æ > 0 and g a

simple function such that �
'
(g) � Æ.Then there exist simple functions g1; : : : ; g2k such that

�'(gl) � 2Æ for l = 1; : : : ; 2k and

g =
1

2k
(g1 + � � �+ g2k ):

Proof. Let the simple functions g be of the form 3.1 (+).We denote ui = jaij for i = 1; : : : ; n:

By virtue of 2.4 for every i there exist ui;j � 0 and �i;j > 0, where j = 1; : : : ;mi, such that

miX
j=1

�i;j = 1 ui =

miX
j=1

�i;jui;j

and
miX
j=1

�i;j'(ui;j) � '(ui) + Æ
� nX
i=1

�(Ei)
�
�1
:

On virtue of 2.5 we may assume that the the numbers �i;j are of �nite binary representa-

tion.Let k be a non-negative integer such that all numbers

ki;j = 2k�i;j ; (j = 1; : : : ;mi; i = 1; : : : ; n);

are positive integers.Next,we denote by Ki;j;l, where the indices may assume the values

j = 1; : : : ;mi; i = 1; : : : ; n and l = 1; : : : ; 2k,the set of those positive integers r � 2k for

which there holds

ki;j�1;l < r � ki;j;l or ki;j�1;l < r + 2k � ki;j;l;

where ki;0;l = l and ki;j;l = l +

jX
v=1

ki;v :

The measure space (E;�; �) is non-atomic,therefore every set Ei may be divided on 2k

pairwise disjoint sets Ei;r with measures �(Ei;r) =
1

2k
�(Ei) for r = 1; : : : ; 2k.

We set

gl =

nX
i=1

miX
j=1

ui;j signai
X

r2Ki;j;l

�Ei;r
for l = 1; : : : ; 2k:

The set Ki;j;l posesses ki;j elements and therefore we have
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�'(gl) =

nX
i=1

miX
j=1

'(ui;j)
X

r2Ki;j;l

�(Ei;r) =

nX
i=1

miX
j=1

'(ui;j)ki;j
1

2k
�(Ei) =

=

nX
i=1

miX
j=1

�i;j'(ui;j)�(Ei) �

nX
i=1

'(ui)�(Ei) + Æ = �
'
(g) + Æ � 2Æ:

Finally,let us observe that

1

2k

2kX
l=1

gl =
1

2k

nX
i=1

miX
j=1

ui;j sign ai

2kX
l=1

X
r2Ki;j;l

�Ei;r
=

=
1

2k

nX
i=1

miX
j=1

ki;jui;j�Ei
sign ai =

nX
i=1

miX
j=1

�i;jui;j�Ei
sign ai =

=

nX
i=1

ui�Ei
signai = g:

3.4 Let (E;�; �),',Æ be as in 3.3 and let g be a simple function such that jjgjj
'
� Æ.Then

there exist simple functions g1; : : : ; g2k such that jjgljj' � 2Æ for l = 1; : : : ; 2k and g =
1

2k
(g1 + � � �+ g2k):

Proof. Let us observe that the inequality jjgjj
'
� Æ implies �

'
(
g

Æ
) � Æ.

We apply 3.3 to the simple function h =
g

Æ
.So,there exist simple functions h1; : : : ; h2k such

that

�'(hl) � 2Æ for l = 1; : : : ; 2k and h = 2�k(h1 + � � �+ h2k):

We set gl = Æhl for l = 1; : : : ; 2k and observe that gl are simple functions such that g =

2�k(g1 + � � �+ g2k) and jjgljj' � 2Æ, because �'(
gl

2Æ
) = �'(

hl

2
) � �'(hl) � 2Æ.

4. The locally convex spaces

De�nition 4.1 Let X be a linear space over �eld K real or complex numbers and let � be a

topology in the set X.A space hX; �i is called a linear-topological space,when the operations

+ : X � X ! X and � : K � X ! X are continous functions from X � X into X and

K �X into X respectively.

The linear-topological spaces with a topology de�ned by the metric in linear spaces are

normed spaces,countable-normed spaces and F �-spaces, because we have

j(x+ y)� (x0 + y0)j � jx� x0j+ jy � y0j and jax� a0x0j �

� ja(x� x0)j+ j(a� a0)x0j;

and it implies the continuity of the operators + and �.
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4.2.A neighbourhood base of the point 0 of linear-topological space has the following prop-

erties:

a) for every V 2 V0 there exists U 2 V0 such that U + U � V

b) if V 2 V0, � 2 K and j�j � 1, then �V � V

c) if V 2 V0 and x 2 X , then there exists a number �0 > 0 such that �0x 2 V .

4.3.Let hX; �i be a linear-topological space and let x0 2 X .If V 2 V0 is a neighbourhood

base of the point 0 in the linear-topological space hX; �i and x0 2 X , then a family Vx0 of

the sets of the form Vx0 = V0 + x0,when V 2 V0 is the neighbourhood base of the point x0
in hX; �i.

4.4.For any subset A of linear-topological space X and any base of the neighbourhood V0
of 0 2 X the formula A =

T
V 2V0

(A+ V ) de�nes the closure of the set A.

The proof of this fact one can �nd in [8].

From 4.4 and the property (1) of base of the neighbourhood of 0 it follows that for every

V 2 V0 there exists U 2 V0 such that

U =
\

W2V0

(U +W ) � U + U � V:

From this it follows that there exists a neighbourhood base of 0 which consists of closed

sets.

De�nition 4.5 The set A of the linear space X is called a convex set if from the conditions

x; y 2 A,�; � � 0; �+ � = 1 it follows that �x+ �y 2 A.

4.6.If the sets A and B are convex in a linear space over the �eld K of the real or complex

numbers and a 2 K,then the sets aA,A+B,A�B are convex in X .

De�nition 4.7 The linear-topological space hX; �i is called a locally convex if there exists

a neighbourhood base V0 in X of the point 0 which consists of convex sets.

5. Linear operators from the Orlicz spaces into locally convex

linear-topological spaces

5.1.In the Orlicz space L
�'

�
and also in its subspace L

o' we have two types of con-

vergences,one is the pseudonorm convergence and the other the pseudomodular conver-

gence.Therefore let us denote by �(Lo'; Y ) the class of pseudonorm continous linear opera-

tors from L
o' into Y ,where Y is a locally convex linear-topological space and by �(L�'

�
; Y )

the class of pseudomodular continous linear operators from L
�'

�
into Y .Obviously,the linear

operator A from L
o' into Y is pseudonorm continous,i.e. belongs to �(Lo'; Y ), if and only

if for every V 2 V0 there exists Æ > 0 such that the conditions f 2 Lo' and jjf jj' � Æ imply

A(f) 2 V .Let us observe that the linear operator A from L
�'

�
into Y is pseudomodular

continous,i.e. belongs to �(L�'
�
; Y ), if and only if for every V 2 V0 there exists Æ > 0 such

that the conditions f 2 S and �'(f) � Æ imply A(f) 2 V .
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5.2.Let ' be a ~'-function and ' its convex ~'-function as in 2.1.For these functions the

inequality '(u) � '(u) for u � 0 holds.Hence we have �
'
(f) � �'(f) for f 2 S and next

the inclusions L�'
�
� L

�'

�
; L

o' � L
o' and the inequality jjf jj

'
� jjf jj' for f 2 L�'

�
.

From this follows immediately

5.3.IfA 2 �(L�'
�
; Y ), then the restrictionAjL�'

�
belongs to �(L�'

�
; Y ) and if A 2 �(Lo'; Y ),then

AjLo' 2 �(Lo'; Y ).

Now we present two main theorems

Theorem 5.4 If the Orlicz space L�'
�

is non-atomic,then for every linear operator A 2

�(L�'
�
; Y ) there exists a linear operator B 2 �(L�'

�
; Y ) such that A = Bj

L
�'
�
.

Proof. On virtue of 4.4 one can assume that in the space Y there exists a neighbourhood

base V0 of the point 0 which consists of convex and closed sets.Let A 2 �(L�'
�
; Y ) and let

us take V 2 V0.Then there exists Æ > 0 such that the conditions f 2 S and �'(f) � 2Æ

imply A(f) 2 V .Let us take an arbitrary simple function g such that �
'
(g) � Æ. On virtue

of 3.3 there exist simple functions g1; : : : ; g2k such that �'(gl) � 2Æ for l = 1; : : : ; 2k and

g = 2�k(g1 + � � � + g2k).Therefore one can write A(gl) 2 V for l = 1; : : : ; 2k and next on

virtue of convexity of the set V there is A(g) 2 V .

Thus we have proved the following remark:

(R) If A 2 �(L�'
�
; Y ), then for every V 2 V0 there exists Æ > 0 such that the inequality

�
'
(g) � Æ for any simple function g implies A(g) 2 V .

Now we shall prove the theorem.Let A 2 �(L�'
�
; Y ).We take an arbitrary f 2 L�'

�
.Then

�
'
(�f) <1 for some � > 0 and on virtue of 3.2 there exists a sequence of simple functions

(gn) such that �
'
(�(f � gn))! 0 as n!1.Since

�
'
(
1

2
�(gn � gm)) � �

'
(�(f � gn)) + �

'
(�(f � gm));

so we have �
'
(
1

2
�(gn � gm))! 0 as n;m!1.Whence,by virtue of the remark (R),we get

A(
1

2
�(gn � gm)) =

1

2
�(A(gn)�A(gm))! � ; as n;m!1:

This shows that the sequence (A(gn)) satis�es the Cauchy condition.Since Y is a sequen-

tially complete space,then the sequence (A(gn)) is convergent;we denote B(f) = lim
n!1

A(gn).

Further,let (hn) be an arbitrary sequence of simple functions such that hn
'

!! f .Then

�
'
(�1(f � hn))! 0 as n!1 for some �1 > 0.From this,on virtue of the inequality

�
'
(
1

2
�2(gn � hn)) � �

'
(�(f � gn)) + �

'
(�1(f � hn));

where �2 = inff�; �1g, we get �
'
(
1

2
�2(gn � hn)) ! 0 as n ! 1.Whence,in view of the

remark (R),it follows that

A(
1

2
�2(gn � hn)) =

1

2
�2(A(gn)�A(hn))! � as n!1:
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Hence the sequence (A(hn)) is convergent and

B(f) = lim
n!1

A(gn) = lim
n!1

A(hn):

This means that the value B(f) is independent on the choice of a sequence of simple func-

tions (hn) satisfying hn
'

! f .

Let us take f1; f2 2 L
�'

�
and numbers a and b.Then from 3.2 it follows the existence

of sequences of simple functions (g1;n) and (g2;n) such that g1;n
'

! f1 and g2;n
'

! f2.This

implies ag1;n + bg2;n
'

! af1 + bf2 and therefore

B(af1 + bf2) = lim
n!1

A(ag1;n + bg2;n) = a lim
n!1

A(g1;n) + b lim
n!1

A(g2;n) =

= aB(f1) + bB(f2):

Next,let us take f 2 L
�'

�
.On virtue of 3.2 there exists a sequence of simple functions (gn)

such that gn
'

! f .From 5.2 it follows that the convergence gn
'

! f holds too. Therefore,in

this case,we have

B(f) = lim
n!1

A(gn) = A(f):

Further,let V 2 V0; Æ > 0 be such that the condition �
'
(g) � Æ for simple function g

implies A(g) 2 V and let f 2 L
�'

�
be such that �

'
(f) � Æ.Then,from 3.2 it follows the

existence of a sequence of simple functions (gn) such that �
'
(gn) � �

'
(f) for n = 1; 2; : : :

and �
'
(f � gn)! 0 as n!1. Hence there holds B(f) = lim

n!1

A(gn) 2 V = V .

Thus we have proved the existence of a operator B 2 �(L�'
�
; Y ) with the property

Bj
L
�'
�

= A.Such operator is only one.Namely if B and B1 are operators with the required

properties,then taking an arbitrary f 2 L�'
�

and more,on virtue of 3.2,a sequence of simple

functions (gn) such that gn
'

! f we see that

B(f) = lim
n!1

B(gn) = lim
n!1

A(gn) = lim
n!1

B1(gn) = B1(f):

5.5 If the space Lo' is non-atomic,then for every operator A 2 �(Lo'; Y ) there exists a

unique operator B 2 �(Lo'; Y ) such that A = BjLo' .

Since the proof is similar to the previous one,we omit it.

5.6.On virtue of 2.2 for the convex ~'-functions ' and ' generated by ' the inequality

'(u) � '(u) � '(2u) for u � 0 holds,therefore we may replace in the statements 5.2,5.3,5.4

and 5.5 the function ' by the function '.Moreover,we observe that the results 5.3,5.4 and

5.5 may be formulated in the form announced in the abstract.Namely,

If (E;�; �) is a non-atomic measure space,then

�(L�'
�
; Y ) = �(L�'

�
; Y ) and �(Lo'; Y ) = �(Lo'; Y ):

The �rst equality is closely connected with the theorem of W.Orlicz in [7].The other proof

of the second equality one can �nd in [1](th.2.2 b).Our result is a little bit more general

than the one mentioned above.But �rst of all,our proof is esentially di�erent from that in

[7].
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In the particularity,from our results one can obtain the following theorem with the �rst part

known from [7].

Theorem 5.7 If the ~'-function ' is such that lim
u!1

inf
'(u)

u
= 0, then only trivial linear

operator from the non-atomic Orlicz space L�'
�

into locally convex space Y is pseudomodular

continous and only trivial linear operator from the non-atomic space of �nite elements Lo'

into Y is pseudonorm continous.

Proof. In this case we have '(u) = 0 for u � 0.This implies �'(f) = 0 for all f 2 S, and next

L
�'

�
= L

o' = S and jjf jj' = 0 for all f 2 S.Whence we get �(L�'
�
; Y ) = �(Lo'; Y ) = f0g,

because only the trivial operator satis�es the inequality A(f) 2 V for all f 2 S and all

V 2 V0.Thus,by virtue of 5.6 we obtain �(L�'
�
; Y ) = �(Lo'; Y ) = f0g.

The other proof of this theorem one can �nd in [1](th. 2.2 a).
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