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ON LINEAR OPERATORS FROM ORLICZ SPACES INTO LOCALLY
CONVEX LINEAR-TOPOLOGICAL SPACES
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ABSTRACT. Let Y be a sequentially complete,locally convex linear-topological space,(E, X, 1)
a non-atomic measure space and ¢ a real nondecreasing and continous for u > 0 func-
tion,equal to 0 for u = 0.We prove the identity of the class of linear and pseudomodular
continous operators from the Orlicz space L;‘,‘o(E, 3, ) into Y with the class of similar

operators from the Orlicz space Lf?(E, 3, p) into Y,where

u

D(u) = /p(t)dt for w>0 and p(t) = t11<1f (s) for t>0.
s s
0

Also,we show that the class of linear and pseudonorm continous operators from the
space of finite elements L°?(E,%, 1) into Y is the same as from the space L°%?(E,X, 1)
into Y. The other proof of this fact, using Rademacher functions one can find in [1](th.2.2
b).Our result is a little bit more general than the one mentioned above.But first of all,our
proof is simple and esentially different from that in [1].

1. THE ORLICZ SPACE

Definition 1.1 A @-function we call a real,nondecreasing and continous for v > 0 func-
tion,equal to 0 for u = 0.A @-function ¢ is called convex,if it satisties the Jensen inequality

plau + pv) < ap(u) + Bp(v) for u,v,a,B3 >0 ,where a+ 8 =1.
As usual in the theory of the Orlicz spaces ([2],[3],[4]),a ¢-function we call a real,nondecreasing
and continous for u > 0 function,equal to 0 only for « = 0 and tending to co as u — co.In
this paper the use of the ¢-functions instead of the p-functions simplifies our considerations.

1.2.Let (E,X, ) denote a measure space.Obviously,we assume that the measure p is o-
finite on E.By S = S(E, X, u) we denote the space of u-measurable,real or complex-valued
functions defined on E.The measure space (E, X, 1) we call non-atomic,if for every set G € X

1
there exists a set F C G, F € ¥ with u(F) = iu(G).Then we say also that the measure u

and the space S are non-atomic.

1.3.Let ¢ be a ¢-function and (E, X, u) a measure space.For f € S we write

po(f) = /80(|f(:n)|)d,u.

E
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In the space S the functional p,(-) is a pseudomodular in the Musielak-Orlicz sense [6].

By L3% = L;?(E, X, u) we denote the class of those functions f € S for which p,(Af) <
oo for some A = A\(f) > 0 and by L°? = L°?(E, X, u) the class of those functions f € S
for which p,(Af) < oo for all A > 0.The classes L;# and L°¢ are linear subspaces of S and
L% C L*¥.

The class L7# we call the Orlicz space and the class L°? the space of finite elements ([2],[3]).

The spaces L# and L°? we call non-atomic if the measure space (E, X, i) is non atomic.

1.4.In the Orlicz space L;? the functional || - ||, defined by the formula

17l =intfe > 0:ppDy <) (re)

is an F-pseudonorm.In the case,when ¢ is a convex @-function,the formula

* M f *
ity =infge > 0: pp(Dy <1} (F o),
determines a B-pseudonorm in L}? equivalent to || - ||,,([2],[3],[6])-

Definition 1.5 We say that the sequence (fy) in L% is pseudonorm convergent to f in
Lx2if | fa — fllo = 0 as n — .

It is easily verified that the sequence (f,) in L7# is pseudonorm convergent to f in L7¥
if and only if for any A > 0 there holds p,(A(fn — f)) = 0 as n — oo. The space L°? is a
closed subspace of the Orlicz space L7¥ with respect on the pseudonorm convergence.
Also,we say that the sequence (f,) in L7? is pseudomodular convergent or p-convergent to

f € L;?,and write f, L f,if po(M(fn — f)) = 0 as n — oo for some A > 0,dependent on

(f),(13])-

1.6.In the case,when ¢ is a ¢p-function,the suffix ”pseudo” in 1.3,1.4 and 1.5 we omit,because
then we have the classical Orlicz spaces ([2],[3]).

2. CONVEX @-FUNCTIONS @ AND $ GENERATED BY .

2.1.Let ¢ be a ¢-function. We define

u

p(u) = /p(t)dt for w>0 ,where p(t) = %gf @ for t>0.
0

Since the function p is non-negative and nondecreasing for ¢ > 0, so the function P is

a convex @-function,([2]).Also,we observe that if ¢ is such that lim inf plw) = 0,then
u—00 uw
®(u) = 0 for u > 0,and if ¢ is a p-function with the property lim inf 20 > 0, then @ is
u— 00 u

a convex -function.

Further,by ¥, we denote the class of those convex @-function 1 for which the inequality
¥(u) < p(u) for u > 0 holds.The class ¥, is not empty,because the function ¢ (w) = 0 for
u > 0 belongs to ¥,.We define
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P(u) =sup{y(u) : € ¥,} for u > 0.
Obviously,p is a function satisfying the inequality 0 < p(u) < ¢(u) for w > 0.The function
® is nondecreasing and convex for u > 0,because it is a supremum of nondecreasing and
convex functions for u > 0.The Jensen inequality for p guarantees the continuity of @ for
u > 0 and the inequality 0 < @ < ¢ the continuity of p for u = 0.Hence P is the greatest

convex @-function satisfying the inequality p(u) < ¢(u) for u > 0.

Theorem 2.2 For any @-function ¢ the following inequality holds
) < Fu) <P(20) for u>0.

Proof. From the definition of @ we get for u > 0

_ L epls) _p(w)
< = f — <u——= = .
Pu) < up(u) =uinf == <u="=¢(u)
Since P is a convex @-function,so it must be P(u) < p(u) for u > 0.
On the other hand,from the Jensen inequality for ® and the fact that $(0) = 0 it follows

P(u)

that the quotient —— is a nondecreasing function for u > 0.Therefore by virtue of the

_ u
inequality @ < ¢ we have for u > 0

_ _ 2u
— ?(u) . p(s) o p(s) / =
=u—-> = f—=< f —= = < t)dt < p(2u).
Plu) =u=—=uinf == <winf == =up(u) < [ p(t)dt <P(2u)
Hence the inequality p(u) < p(2u) for u > 0 is also true. O
2.3 If the ¢-function ¢ satisfies the condition lim M = oo then the following equality
UuU—r 00 u

holds @ = (¢*)*, where
©*(v) = sup{uv — p(u) :u >0} for v >0.

This theorem for p-functions one can find in [4].Since the proof of our theorem is ana-
logical,we omit it.

2.4 For arbitrary ¢-function ¢ the following equality holds

(%) Pu) =inf ) app(ur) (u>0),
k=1

where infimum is taken over all convexr combinations

m m
u = E apug, where ap,ur >0 for k=1,...,m and E ap = 1.
k=1 k=1

Proof. By ¢ we denote the function defined by the right side of the equality (*).Let us take

m m
u = E apug, where ap,ur >0 for k=1,...,m and E ap = 1.
k=1 k=1
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Then by virtue of the inequality ¥ < ¢ and the convexity of @ we have

?(u <Zak¢ ur) Szak

From this we deduce that p(u) < cp(u) dla u > 0.

On the other hand,from the definition of ¢ we get immediately the inequality @(u) <
p(u) for u > 0.We shall show that ¢ is a convex @-function.Let us take arbitrary ¢ > 0,
u',u",a,8 > 0,a+ 3 = 1. We observe that there exist o}, u}, > 0,where k =1,...,m',such
that

’ r
m

Zak =1, Zakuk) and Zak‘ﬂ (up) < P(u') +e,
:1 k=1
and of ,ufl >0, Where kE=1,. " such that
m” m”
Za% =1,u" = Za'k'u;c', and Zakcp (uy) < @u") +e.
k=1 k=1
Let us denote m = m' + m', ay = aaj, ur, = uj, for k=1,...,m'
and amryr = B}, Unrpr = u for k=1,...,m". Since ax,ur > 0for k=1,...,m,

m m/ m//
E ak:ag a'k+ﬁz af =1 and
k=1 k=1 k=1

m ml mf’

1o mn, ! "
E akuk:ag akuk+ﬁz apu, = ou' + Pu”,
k=1 k=1 k=1

so we get

m!

Plau’ + pu”) < ZOéMP uy) = azakSO uy,) +ﬂzak¢ uy)
k=1 = -
< a(p(u) +e) + (e’ )+8) = ag(u') +ﬂ<ﬁ(u )+8-
From this we obtain the Jensen inequality for ¢ and thus the function ¢ is convex for
u > 0.Now,the convexity of ¢ implies the continuity of ¢ for u > 0 and the inequality

» < ¢ < p the continuity of ¢ for v = 0 and $(0) = 0.The function ¢ is also nondecreasing
for u > 0,because for 0 < u; < uy we have

Plur) = @(Z—;w +(1- Z—;m < B (uz) < @lus).
<

)
Hence ¢ is a convex @-function.This fact and the inequality < @ < ¢ imply finally the
equality @ = @. O

2.5.Remark In 2.4 we may assume that the numbers oy, are of finite binary representation.

Proof. According to the formula 2.4 (*) for arbitrary « > 0 and & > 0 there exist such
ag,ur > 0,where k = 1,...,m that

Zakzl, u:;akuk i P(u) kz:: o(ur) <p(u) + g
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If m = 1,then a; = 1.Therefore let us suppose m > 1.Since oy > 0 for £ = 1,...,m and
a1+ - -+ am, = 1,80 it must be ag, > — for some index ko.We may assume that kg = m.Let
m

M be a positive number such that up, < M and ¢(ug) < M for k = 1,...,m.Since the
function ¢ is continous in the point wu,,, so there exists § satisfying 0 < § < ¢ and such that

lo(um) — p()| < Z if v > 0 and |uy, — v| < 6.We choose numbers S, k =1,...,m — 1L,of

0
finite binary representation such that 0 < g < ap and ap — B < I fork=1,...,m.

We observe that the number 3, =1 — (81 + -+ + Bm—_1) is of finite binary representation
and satisfies the inequalities

m—1
1 0
—<an<fn<1 and fn-a k}jjl(ak Be) < 57
Letusput vgp =up fork=1,...,m—1,
1 m—1
Um = _( E (ak - 6k)uk + amum)-
ﬂm k=1
We see that v > 0for k=1,...,m, Y Bror = > apug = u,
k=1 k=1
1 m—1
Um — Um| < ﬂ_( Z (ak - ﬁk)uk + (ﬁm - am)um) <
Mmoo k=1
0 0
< mlmas M+ ™M) <9
Therefore
m m m o 8
Zﬁkﬂp(vk) < Zﬁk@(vk) - Zak‘ﬂ(uk) +o(u) + 3
k=1 k=1 k=1
— €
< ﬂmw(vm) - am‘P(um) + ‘P(U) + 5 < ﬂm(@(vm) - ‘P(Um))
_ e € € — e —
- % - <= % - <3
+(ﬁm am)‘p(um) + ‘10(“) + 5 =17 + QmMM + ‘10(“) + 5 = ‘10(“) +e
and we see that the remark is true. O

3. LEMMAS ON SIMPLE FUNCTIONS.

Definition 3.1 A simple function we call a function g € S of the form
(+) 9= Z ;i XE; >
i=1

where a; denote numbers and xg, characteristic functions of sets E; € ¥
with finite measures. We will assume that the sets E; are pairwise disjoint.

It is well known that for every function f € S there exists a sequence of simple functions
(gn) convergent to f everywhere on E and such that
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lgn(z)| < |f(x)] and |f(z) — gn(z)| < |f(x)| for x € E and n =1,2,.... From this fact we
get immediately the following lemma.

Lemma 3.2 For every function f € L;? with po(f) < oo there exists a sequence of simple
functions (gn) such that p,(gn) < po(f) forn=1,2,... and p,(f —gn) = 0 as n = oco.
Moreover,for every function f € L°? there exists a sequence of simple functions (g,) such
that ||gnll, < |Iflle forn=1,2,... and ||f — gnll, = 0 as n — .

Now we prove our fundamental lemma.

Lemma 3.3 Let (E,X, u) be a non-atomic measure space, @ a p-function, § > 0 and g a
simple function such that pg(g) < §.Then there exist simple functions gy, ..., gox such that

po(gr) <26 forl=1,...,2% and

1
g= ﬁ(gl‘i‘"“*‘gzk)-

Proof. Let the simple functions g be of the form 3.1 (+).We denote u; = |a;| fori =1,...,n.
By virtue of 2.4 for every ¢ there exist u; ; > 0 and a; ; > 0, where j = 1,...,m;, such that

m; my
> =1 up =Y i
j=1 7j=1

and
n

_2 (i) < Fus) +0( 3 u(E)

i=1

-1

On virtue of 2.5 we may assume that the the numbers «; ; are of finite binary representa-
tion.Let k£ be a non-negative integer such that all numbers

kij=2%;, (G=1,...,myi=1,...,n),

are positive integers.Next,we denote by K; ;;, where the indices may assume the values
j=1,...,msi=1,....n and [ =1,...,2" the set of those positive integers r < 2* for
which there holds

kijo1g<r<kij or kij1;<r+2" <k,

J
where kigs =1 and kiji=1+) ki,
v=1

The measure space (E,X,u) is non-atomic,therefore every set E; may be divided on 2*

pairwise disjoint sets E; . with measures u(E; ) (E;) forr =1,...,2%

We set,

n

m;
gl:Z u;,j signa; Z Xg;, for I=1,...,2"%

i=1 j=1 TEKZ',]'J

The set K; ;; posesses k; ; elements and therefore we have
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n m; n m;

polgr) =D D puig) > w(Ei,) = ZZ@(Ui,j)ki,jQLku(Ei) =
i=1 j=1 re€K; ;1 i=1 j=1
=3 sl n(E) < 3 F@u(E) +0= plg) +5 < 2

Finally,let us observe that

1 2k 1 2k
ok E 9= 5% E E :Ui,j Sign a; E E XEi» =
I=1 i=1 j=1 I=1reK;
1 n m; n m;
= Q—kE E kijuijXE, signa; = E E QUi jX E; SIg a; =
=1 j=1 i=1 j=1

n
= E uiXE, sigha; =g.
i=1

O

3.4 Let (E,X, un),p,0 be as in 3.3 and let g be a simple function such that ||g||5 < 8.Then
there exist simple functions gi,...,go such that ||gi||l, < 20 for I = 1,...,2% and g =

1
o (g1 -+ gar).

Proof. Let us observe that the inequality ||g||5 < & implies pg(%) <.

We apply 3.3 to the simple function h = %.So,there exist simple functions hq, ..., her such
that

po(hy) <25 for 1=1,...,2% and h=2""%(hy +---+ hy).

We set g; = dhy for [ = 1,...,2% and observe that g; are simple functions such that g =

g1 hy

) = ps(5) < polhn) < 25. 0

2% (gy + -+ ga) and [lgrll, < 20, because p,( -

4. THE LOCALLY CONVEX SPACES

Definition 4.1 Let X be a linear space over field K real or complex numbers and let T be a
topology in the set X.A space (X, T) is called a linear-topological space,when the operations
+:XxX > X and-: K xX — X are continous functions from X x X into X and
K x X into X respectively.

The linear-topological spaces with a topology defined by the metric in linear spaces are
normed spaces,countable-normed spaces and F*-spaces, because we have

(@ +y) — (20 +yo)| < |z — x| + [y —yo| and ez —aozo| <

< la(z — zo)| + |(a = ao)zo],

and it implies the continuity of the operators + and -.
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4.2.A neighbourhood base of the point 0 of linear-topological space has the following prop-
erties:

a) for every V € Vp there exists U € Vy such that U + U C V

b) ifVeV,a€K and |a| <1, thenaV CV

¢) ifV eVyand x € X, then there exists a number ap > 0 such that agz € V.

4.3.Let (X, 7) be a linear-topological space and let o € X.If V' € V) is a neighbourhood
base of the point 0 in the linear-topological space (X, 7) and zo € X, then a family V,, of
the sets of the form V,, = Vo + xo,when V € V) is the neighbourhood base of the point z
in (X, 7).

4.4.For any subset A of linear-topological space X and any base of the neighbourhood Vo
of 0 € X the formula A = (] (A + V) defines the closure of the set A.
VeV

The proof of this fact one can find in [8].

From 4.4 and the property (1) of base of the neighbourhood of 0 it follows that for every
V €V, there exists U € V, such that

U= (\U0+W)cU+UCV.
WeVvy

From this it follows that there exists a neighbourhood base of 0 which consists of closed
sets.

Definition 4.5 The set A of the linear space X is called a convez set if from the conditions
z,y € A,a, 8 >0, + 8 =1 it follows that ax + By € A.

4.6.If the sets A and B are convex in a linear space over the field K of the real or complex
numbers and a € K ,then the sets aA,A + B,A — B are convex in X.

Definition 4.7 The linear-topological space (X, 7) is called a locally convex if there exists
a neighbourhood base Vy in X of the point 0 which consists of convex sets.

5. LINEAR OPERATORS FROM THE ORLICZ SPACES INTO LOCALLY CONVEX
LINEAR-TOPOLOGICAL SPACES

5.1.In the Orlicz space L7¥ and also in its subspace L°? we have two types of con-
vergences,one is the pseudonorm convergence and the other the pseudomodular conver-
gence.Therefore let us denote by a(L?%,Y") the class of pseudonorm continous linear opera-
tors from L°% into Y,where Y is a locally convex linear-topological space and by a(L:‘)‘p, Y)
the class of pseudomodular continous linear operators from L7¥ into ¥".Obviously,the linear
operator A from L°% into Y is pseudonorm continous,i.e. belongs to a(L°%,Y), if and only
if for every V' € V) there exists 6 > 0 such that the conditions f € L°% and ||f||, < ¢ imply
A(f) € V.Let us observe that the linear operator A from L%¥ into Y is pseudomodular
continous,i.e. belongs to a(L3#,Y), if and only if for every V' € Vp there exists § > 0 such
that the conditions f € S and p,(f) < 6 imply A(f) € V.
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5.2.Let ¢ be a ¢-function and @ its convex (@-function as in 2.1.For these functions the
inequality P(u) < ¢(u) for u > 0 holds.Hence we have p=(f) < p,(f) for f € S and next

the inclusions L3¥ C L;g, L% C L°? and the inequality ||f||s < ||f|], for f € Lee.

From this follows immediately

5.3.IfA € a(in, Y"), then the restriction A
A|wa € a(L°?,Y).

z¢ belongs to a(L,;?,Y) andif A € a(L°?,Y) then

Now we present two main theorems

Theorem 5.4 If the Orlicz space L;# is non-atomic,then for every linear operator A €
a(L3y#,Y) there exists a linear operator B € a(L;?,Y) such that A = B

*p o,
L,

Proof. On virtue of 4.4 one can assume that in the space Y there exists a neighbourhood
base Vp of the point 0 which consists of convex and closed sets.Let A € a(L;?,Y) and let
us take V' € Vy.Then there exists § > 0 such that the conditions f € S and p,(f) < 26
imply A(f) € V.Let us take an arbitrary simple function g such that pg(g) < 4. On virtue

of 3.3 there exist simple functions gi,...,gsx such that p,(g) < 28 for I = 1,...,2% and
g = 27%(gy + - -+ + gox ). Therefore one can write A(g;) € V for I = 1,...,2% and next on
virtue of convexity of the set V there is A(g) € V.

Thus we have proved the following remark:
(R) If A € a(L;?,Y), then for every V' € Vj there exists § > 0 such that the inequality
pz(g) < 6 for any simple function g implies A(g) € V.

Now we shall prove the theorem.Let A € a(L}#,Y).We take an arbitrary f € L;?Then
pg(/\f) < oo for some A > 0 and on virtue of 3.2 there exists a sequence of simple functions
(gn) such that p=(A(f — gn)) — 0 as n — oco.Since

p5(5M0n — 0)) < =N = ) + p5(MT = ).

1
so we have /’5(§>‘(gn —gm)) — 0 as n,m — co.Whence,by virtue of the remark (R),we get

A(%A(gn ) = %)\(A(gn) _ A(gn)) = 8, as m,m — oo,

This shows that the sequence (A(gn)) satisfies the Cauchy condition.Since Y is a sequen-
tially complete space,then the sequence (A(g,)) is convergent;we denote B(f) = lim A(gy,).
n—oo

Further,let (h,) be an arbitrary sequence of simple functions such that h, QN f.Then
pz(A1(f = hn)) = 0 as n — oo for some A; > 0.From this,on virtue of the inequality

P50 (00— 1) < o5 = g0)) + o500 (F = ),

1
where Ay = inf{\, A1}, we get p$(§A2(gn — hy)) = 0 as n — co.Whence,in view of the
remark (R),it follows that

A(%)\Q(gn _hy) = %)\Q(A(gn) _ A(hy)) = 0 as 1 — oo,
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Hence the sequence (A(h,)) is convergent and
B(f) = lim A(g,) = lim A(hn).
This means that the value B(f) is independent on the choice of a sequence of simple func-

tions (h,) satisfying h, 4 f

Let us take fi, fo € L;5 and numbers a and b.Then from 3.2 it follows the existence
of sequences of simple functions (g1,,) and (g2,,) such that g; , 2 f1 and g2, 2 f2.This

implies agi n + bga,n 2 afi + bfs and therefore

Blafi +bf2) = lim A(agi,n +bg2,n) = a lim A(gi,n) +b lim A(gan) =
= aB(f1) +bB(f2).

Next,let us take f € L7?.0n virtue of 3.2 there exists a sequence of simple functions (g,)

such that g, = f.From 5.2 it follows that the convergence gy, A f holds too. Therefore,in
this case,we have

B(f) = lim Ag,) = A().
Further,let V' € Vy,d > 0 be such that the condition pg(g) < ¢ for simple function g

implies A(g) € V and let f € L;j5 be such that p=(f) < 0.Then,from 3.2 it follows the
existence of a sequence of simple functions (g,) such that pﬁ(gn) < pﬁ(f) forn=1,2,...
and p=(f — gn) = 0 as n = oo. Hence there holds B(f) = 1i_>m Algn) €V =V.

Thus we have proved the existence of a operator B € a(L:‘,i,Y) with the property

Blp:e = A.Such operator is only one.Namely if B and B; are operators with the required

properties,then taking an arbitrary f € L:‘,5 and more,on virtue of 3.2,a sequence of simple

functions (g,) such that g, % f we see that
B(f) = lim B(gn) = lim A(gn) = lim Bi(gn) = Bi(f).
O
5.5 If the space L°¥ is non-atomic,then for every operator A € a(L°?,Y) there exists a
unique operator B € a(L°?,Y) such that A = B|pos.

Since the proof is similar to the previous one,we omit it.

5.6.0n virtue of 2.2 for the convex @-functions ® and P generated by ¢ the inequality
?(u) <P(u) < P(2u) for u > 0 holds,therefore we may replace in the statements 5.2,5.3,5.4
and 5.5 the function P by the function p.Moreover,we observe that the results 5.3,5.4 and
5.5 may be formulated in the form announced in the abstract.Namely,

If (E,%, p) is a non-atomic measure space,then
a(Ly?,Y) =a(L}?,Y) and o(L°?Y) = a(L?,Y).
The first equality is closely connected with the theorem of W.Orlicz in [7].The other proof

of the second equality one can find in [1](th.2.2 b).Our result is a little bit more general
than the one mentioned above.But first of all,our proof is esentially different from that in

7).
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In the particularity,from our results one can obtain the following theorem with the first part
known from [7].

Theorem 5.7 If the ¢-function ¢ is such that lim inf M = 0, then only trivial linear

u—00 u
operator from the non-atomic Orlicz space Ly? into locally convez spaceY is pseudomodular
continous and only trivial linear operator from the non-atomic space of finite elements L°¥
into Y is pseudonorm continous.

Proof. In this case we have $(u) = 0 for w > 0.This implies pz(f) = O for all f € S, and next
L? = L% = S and ||f|lz = 0 for all f € S.Whence we get a(L};?,Y) = a(L°?,Y) = {0},
because only the trivial operator satisfies the inequality A(f) € V for all f € S and all
V' € Vy.Thus,by virtue of 5.6 we obtain a(L}?,Y) = a(L°?,Y) = {0}.

The other proof of this theorem one can find in [1](th. 2.2 a). O
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