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CHAOTIC ORDER AND FURUTA INEQUALITY
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Abstract. We show a satellite theorem of chaotic Furuta inequality. For positive

invertible operators A and B, if logA � logB, then
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for p � 1 and r � 0:

1. Introduction. Throughout this note, we use a capital letter as an operator on a

Hilbert space H . An operator A is said to be positive (in symbol: A � 0) if (Ax; x) � 0

for all x 2 H , and also an operator A is strictly positive (in symbol: A > 0) if A is positive

and invertible.

For positive opretors A and B, Kubo-Ando [13] have established operator meantheory.

Especialy, the �-power mean ]� which is de�ned as follows:
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In [2], we have de�ned the relative operator entropy S(AjB) for positive invertible op-

erators A, B as follows:
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The case where A and B commute, this coincides with the relative entropy introduced

by Umegaki [17]. Moreover S(AjI) = �A logA is the operator entropy which is introduced

by Nakamura and Umegaki [14]. On the other hand, we interprete S(I jA) = logA is the

"chaos" of A itself. So we have called logA � logB the chaotic order and denoted it by

A � B ([5],[6]). Ando's exponential inequality of [1] inspired us a practical tool of the

chaotic order as the following Theorem A [4].

Theorem A (Chaotic Furuta inequality). Let A and B be positive invertible oper-

ators. Then the followings are equivalent.
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Very recently, Uchiyama [16] has given an excelent proof of (i) ) (ii) of this theorem

only using the Furuta inequality, whose tool is just the fact that

lim
n!1

(1 +
X

n
)n = eX for selfadjoint operator X:

In this formula, if we put logA � logB, Theorem A is easily obtained.

It seems that Furuta's assertion in [9] says inferiority of the chaotic order to the usual

operator order. The purpose of this note says some clarify the di�erence between the chaotic

order and usual one.

2. Furuta inequality. The original form of the Furuta inequality is the following

[7](cf.[8]):

Furuta inequality:

If A � B � 0, then for each r � 0,
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holds for p and q such that p � 0

and q � 1 with

(1 + r)q � p+ r:
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Figure 1

In this inequality, the case where r = 0 is the L�owner-Heinz inequality. The best possi-

bility of the domain for p; q and r in the Figure 1 is proved by Tanahashi [15].

From our view point of operator mean, we can rewrite the Furuta inequality as follows

(cf. [3],[10],[11],[12] etc.):

(F ) A�r ] 1+r
p+r

Bp � A and B � B�r ] 1+r
p+r

Ap

for p � 1 and r � 0.

Moreover, we have given a proof of these inequalities by using �-power mean ]� and

succeeded to arrange these inequalities in one line as follows [10]:

Satellite theorem of the Furuta inequality: If A � B � 0, then

A�r ] 1+r
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for all p � 1 and r � 0.

The satellite theorem can be written without use of operator means as follows:
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3. Results. Under the chaotic order A � B, we can transform the Furuta inequality

(F) as follows:

Theorem 1 (Satellite theorem of chaotic Furuta inequality). Let A and B be

positive invertible operators. If A� B, then
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for p � 1 and r � 0:

To prove this theorem, we need the following Furuta's lemma (cf.[4]).

Lemma(Furuta). Let A and B be positive invertible operators. Then for any real

number r,
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Proof of Theorem 1. Using Theorem A, we have
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The �rst equality is obtained by Furuta's lemma.

From this theorem, we can obtain the Furuta inequality since A � B implies A � B.

As a generalization of this theorem, we can show the next characterizatins of the chaotic

order which will be useful in our preparing paper.

Theorem 2. Let A and B be positive invertible operators. Then the followings are

equivalent:

(1) A� B (i:e:; logA � logB):
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(4) (A
r

2BpA
r

2 )
�Æ+r

p+r � Ar�Æ for 0 � Æ � r and 0 � p:

(5) (B
r

2ApB
r

2 )
�Æ+r

p+r � Br�Æ for 0 � Æ � r and 0 � p:

Proof. We �rst prove the equivalence of the formulas from (2) to (5). (2) is represented

as follows:
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