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Abstract. In this paper we introduce two new classes of BCI-algebras, namely the

class of branchwise positive implicative BCI-algebras and the class of branchwise im-

plicative BCI-algebras. The class of branchwise positive implicative BCI-algebras

contains the class of positive implicative BCK-algebras [10], the class of medial BCI-

algebras, the class of positive implicative BCI-algebras [1, 4, 13] and the class of

branchwise implicative BCI-algebras contains the class of implicative BCK-algebras

[10], the class of weakly implicative BCI-algebras [1] and the class of quasi-implicative

BCI-algebras [17]. Necessary and suÆcient condition for a BCI-algebra to be a

branchwise implicative BCI-algebra have been investigated.

1 Introduction K. Iseki and S. Tanaka [10] introduced the notions of positive implica-

tive, implicative and commutative BCK-algebras. Further, K. Iseki [8, 11] introduced

the notion of a BCI-algebra, which is a generalization of the concept of a BCK-algebra.

K. Iseki [11] and K. Iseki and A.B. Thaheem [12] have shown that if the de�nitions of

the above-mentioned classes of BCK-algebras are adopted for the corresponding classes of

BCI-algebras, then no proper classes of such BCI-algebras exist, that is, suchBCI-algebras

are BCK-algebras of the corresponding type. Thus a natural question arises whether it

is possible to introduce such generalizations of these notions for BCI-algebras which not

only give proper classes of such BCI-algebras but also contain the corresponding classes of

BCK-algebras. During the past ten years, M.A. Chaudhry [1, 3, 4], J. Meng and X.L. Lin

[13, 14], C.S. Hoo [6, 7] and S.M. Wei, et. al. [17] have discussed this problem.

In this paper we introduce two new classes of BCI-algebras, the class of branchwise

positive implicative BCI-algebras and the class of branchwise implicative BCI-algebras

. The class of branchwise positive implicative BCI-algebras contains positive implicative

BCK-algebras [9, 10], medial BCI-algebras [6, 7, 16], weakly positive implicative BCI-

algebras [1] as well as positive implicative BCI-algebras [13]. The class of branchwise

implicative BCI-algebras contains implicative BCK-algebras [9, 10], weakly implicative

BCI-algebras [1] and quasi-implicative BCI-algebras [17]. Our classes of BCI-algebras

are so general that they contain all the corresponding BCI-algebras introduced so far. We

also establish necessary and suÆcient conditions for a BCI-algebra to be a branchwise

implicative BCI-algebra, which give a generalization of the following well-known result of

K. Iseki [10].

Theorem A. A BCK-algebras is implicative if and only if it is positive implicative and

commutative.
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2 Preliminaries In this section we describe certain de�nitions and known results which

will be used in the sequel.

DeÆnition 1 [11]. A. BCI-algebras is an algebra (X; �; 0) of type (2; 0) satisfying the

following axioms for x; y; z 2 X :

(1)
�
(x � y) � (x � z)

�
�(z � y) = 0;

(2)
�
x(x � y)

�
�y = 0;

(3) x � x = 0;

(4) x � x = 0 and y � x = 0 imply x = y;

(5) x � 0 = 0 implies x = 0:

A partial ordering � on X is de�ned by \x � y if and only if x � y = 0":

If (5) is replaced by 0�x = 0; then the algebra is called a BCK-algebra [10]. It is known

that every BCK-algebra is a BCI-algebra but the converse is not true [11].

In a BCI-algebra the following hold [11]:

(6) (x � y) � z = (x � z) � y;

(7) x � 0 = x;

(8) x � y implies x � z � y � z and z � y � z � x;

(9) x �
�
x � (x � y)

�
= x � y;

(10) 0 � (x � y) = (0 � x) � (0 � y);

(11) (x � z) � (y � z) � x � y:

De�nition 2 [10]. A BCK-algebra is called positive implicative if it satis�es

(12) (x � y) � z = (x � z) � (y � z):

De�nirion 3 [10]. A BCK-algebra is called commutative if it satis�es

(13) x � (x � y) = y � (y � x):

De�nition 4 [9, 10]. A BCK-algebra is called implicative if it satis�es

(14) x � (y � y) = x:

Theorem B [10]. A BCK-algebra X is positive implicative if and only if it satis�es

(15) x � y = (x � y) � y for all x; y 2 X:

It has been shown in [11, 12] that no proper classes of positive implicative BCI-algebras,

commutative BCI-algebras and implicative BCI-algebras exist. This has led to the follow-

ing generalizations of these notions. Each generalization contains the corresponding class

of BCK-algebras.

De�nition 5 [1]. A BCI-algebra X satisfying

(16) (x � y) � z =
�
(x � z) � z

�
�(y � z) for all x; y; z 2 X;

is called a weakly positive implicative BCI-algebra.
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Theorem C [1]. A BCI-algebra X is weakly positive implicative if and only if

(17) x � y =
�
(x � y) � y

�
�(0 � y) for all x; y 2 X:

De�nition 6 [13]. A BCI-algebra X is said to be positive implicative if it satis�es

(18)
�
x � (x � y)

�
�(y � x) = x �

�
x �

�
y � (y � x)

��
for all x; y 2 X:

The following theorem shows that the notions of weak positive implicativeness and

positive implicativeness for BCI-algebras are equivalent.

Theorem D [4,Theorems 1 and 2]. A BCI-algebra X is weakly positive implicative if

and only if it is positive implicative.

A BCI-algebra satisfying (x�y)�(z�u) = (x�z)�(y�u) is called a medial BCI-algebra.

Let X be a BCI-algebra and M = fx : x 2 X and 0 � x = 0g: Then M is called its

BCK-part. If M = f0g; then X is called p-semisimple.

It has been shown in [5], [6], [7] and [16] that in a BCI-algebra X , the following are

equivalent:

(19) X is medial,

(20) x � (x � y) = y for all x; y 2 X;

(21) 0 � (0 � x) = x for all x 2 X;

(22) X is p-semisimple.

We now describe the notions of branches of a BCI-algebra and branchwise commutative

BCI-algebras de�ned and investigated in [2] and [3].

DeÆnition 7 [2]. Let X be a BCI-algebra, then the set Med(X) = fx : x 2 X and 0 �

(0 � x) = xg is called the medial part of X .

Obviously, 0 2 Med(X): It is known that Med(X) is a medial subalgebra of X [2].

Further, for each x 2 X; there is a unique x0 = 0 � (0 � x) 2 Med(X) such that x0 � x

[2]. This is because 0 � (0 � x0) = 0 � (0 � (0 � (0 � x))) = 0 � (0 � x) = x0: Obviously, for a

BCK-algebra X , Med(X) = f0g: In the sequel the elements of Med(X) will be denoted by

x0; y0; : : :

De�nition 8 [2]. Let X be a BCI-algebra and x0 2 Med(X); then the set

B(x0) = fx : x 2 X and x0 � x = 0g

is called a branch of X determined by the element x0:

Remark 1. A BCK-algebra X is a one-branch BCI-algebra and in this case X = B(0):

The following theorem proved in [2] and [3] shows that the branches of a BCI-algebra X

are pairwise disjoint and form a partition of X . So the study of branches of a BCI-algebra

X plays an important role in the investigation of the properties of X .
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Theorem E [2, 3]. Let X be a BCI-algebra with medial part Med(X); then

(i) [
n
B(x0) : x0 2 Med(X)

o
= X;

(ii) B(x0) \ B(y0) = ; for x0; y0 2 Med(X) and x0 6= y0;

(iii) if x; y 2 B(x0); then 0 �x = 0 � y = 0 �x0 = 0 � y0 and x � y 2M; y �x 2 M;

that is,

0 � (x � y) = 0 = 0 � (y � x):

De�nition 9 [3]. A BCI-algebra X is said to be branchwise commutative if and only if

for x0 2 Med(X) and x; y 2 B(x0) the equality

(23) x � (x � y) = y � (y � x) holds.

Since a BCK-algebra is a one-branch BCI-algebra, therefore it is commutative if and

only if it is branchwise commutative.

Theorem F [3]. A BCI-algebra X is branchwise commutative if and only if

(24) x � (x � y) = y �
�
y �

�
x � (x � y)

��
for all x; y 2 X:

3 Branchwise Positive implicative BCI-algebras. In this section we de�ne branch-

wise positive implicative BCI-algebras and show that this proper class of BCI-algebras

contains the class of positive implicative BCK-algebras, the class of medial BCI-algebras

and the class of weakly positive implicative BCI-algebras.

De�nition 10. A BCI-algebra X is called a branchwise positive implicative BCI-algebra

if, for all x0 2 Med(X) and x; y beloging to the same branch B(x0), it satis�es

(25) x � y = (x � y) �
�
y �

�
0 � (0 � y)

��
:

Example 1. Let X = f0; 1; 2; 3g in which � is de�ned by

� 0 1 2 3

0 0 0 0 3

1 1 0 0 3

2 2 2 0 3

3 3 3 3 0 u

u

u

0

1

2

u3

It is easy to verify that X is branchwise positive implicative. This shows that proper

branchwise positive implicative BCI-algebras exist.

Remark 2. (i) A BCK-algebra X is a one-branch BCI-algebra and X = B(0): If x; y 2

X = B(0); then 0 � y = 0 gives 0 � (0 � y) = 0: Further, if X is positive implicative, then

x � y = (x � y) � y or x � y = (x � y) �
�
y �

�
0 � (0 � y)

��
: Thus X is a branchwise positive

implicative BCI-algebra.

(ii) It is known that every branch of a medial BCI-algebra is singleton. Let X be

a medial BCI-algebra and x0 2 Med(X); then B(x0) = fx0g: Hence x0 � x0 = 0 =
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(x0 � x0) � (x0 � x0) = (x0 � x0) �
�
x0 �

�
0 � (0 � x0)

��
: Thus X is branchwise positive

imlplicative.

We now show that every weakly positive implicative BCI-algebra [1] is branchwise

positive implicative.

Theorem 1. If X is a weakly positive implicative BCI-algebra, then it is a branchwise

positive implicative BCI-algebra.

Proof. Let X be a weakly positive implicative BCI-algebra, then (17) gives

(a) p � q =
�
(p � q) � q

�
�(0 � q) for all p; q 2 X:

Let x0 2 Med(X) and x; y 2 B(x0): Then

h
(x � y) �

�
y �

�
0 � (0 � y)

��i
�(x � y)

=
�
(x � y) � (x � y)

�
�

�
y �

�
0 � (0 � y)

��
(by (6))

= 0 �
�
y �

�
0 � (0 � y)

��
= (0 � y) �

�
0 �

�
0 � (0 � y)

��
(by (10))

= (0 � y) � (0 � y) (by (9))

= 0

Thus

(b) (x � y) �
�
y �

�
0 � (0 � y)

��
� x � y:

Since X is weakly positive implicative, therefore using (a), we get

(x � y) �
h
(x � y) �

�
y �

�
0 � (0 � y)

��i

=
h�
(x � y) � y

�
�(0 � y)

i
�

h
(x � y) �

�
y �

�
0 � (0 � y)

��i

=
h�
(x � y) � [(x � y) �

�
y �

�
0 � (0 � y)

��
]
�
�y
i
�(0 � y) (using (6) twice)

�

��
y �

�
0 � (0 � y)

��
�y
�
�(0 � y) (by (2))

=
�
(y � y) �

�
0 � (0 � y)

��
�(0 � y) =

�
0 �

�
0 � (0 � y)

��
�(0 � y)

= (0 � y) � (0 � y) (by (9))

= 0

Hence

(c) x � y � (x � y) �
�
y �

�
0 � (0 � y)

��
:

Using (b) and (c), we get x � y = (x � y) �
�
y �

�
0 � (0 � y)

��
for all x; y 2 B(x0): Hence X

is a branchwise positive implicative BCI-algebras. This completes the proof.
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The following example shows that the converse of the above theorem is not true.

Example 2 [15]. Let X = f0; 1; 2; 3g in which � is de�ned by

� 0 1 2 3

0 0 0 2 2

1 1 0 2 2

2 2 2 0 0

3 3 2 1 0 u

u

0

1

u

u

2

3

Routine calculations give that X is branchwise positive implicative but not weakly positive

implicative because 3 � 2 = 1 and
�
(3 � 2) � 2

�
�(0 � 2) = (1 � 2) � (0 � 2) = 2 � 2 = 0: Thus

3 � 2 6=
�
(3 � 2) � 2

�
�(0 � 2):

4 Branchwise Implicative BCI-algebras In this section we de�ne branchwise im-

plicative BCI-algebras and show that this proper class of BCI-algebras contains the class

of implicative BCK-algebras [10], the class of medial BCI-algebras [7] and the class of

quasi-implicative BCI-algebras [17]. We also investigate necessary and suÆcient conditions

for a BCI-algebra to be a branchwise positive implicative BCI-algebra.

Since no proper class of implicative BCK-algebras exists, therefore the following gener-

alizations of this notion have been made during the past ten years.

De�nition 11 [1]. A BCI-algebra X is called weakly implicative if and only if

(26) x =
�
x � (y � x)

�
�
�
0 � (y � x)

�
for all x; y 2 X:

De�nition 12 [17]. A BCI-algebra X is called quasi-implicative if and only if

(27) y �
�
y �

�
x � (x � y)

��
=

��
x � (x � y)

�
�(x � y)

�
�
�
0 � (x � y)

�
for all x; y 2 X:

We further generalize this concept and prove a generalization of Theorem A, a well-

known result of K. Iseki [10].

De�nition 13. A BCI-algebra X is said to be a branchwise implicative BCI-algebra if

and only if

(28) x � (y � x) = x; for all x0 2 Med(X) and for all x; y 2 B(x0):

Example 3 [15]. The set X with the binary operation � de�ned as

� 0 1 2 3

0 0 0 2 2

1 1 0 3 2

2 2 2 0 0

3 3 2 1 0 u

u

0

1

u

u

2

3

is a branchwise implicative BCI-algebra. Thus there exist proper branchwise implicative

BCI-algebras .
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Remark 2. (i) A BCK-algebra X is one-branch BCI-algebra and X = B(0): If x; y 2

X = B(0) and X is an implicative BCK-algebra, then x � (y � x) = x for x; y 2 X = B(0):

Hence X is a branchwise implicative BCI-algebra.

(ii) Let X be a medial BCI-algebra, then each beanch is a singleton. Thus B(x0) =

fx0g: Further, x0 = x0 � 0 = x0 � (x0 � x0): Hence X is branchwise implicative.

(iii) Let X be a weakly implicative BCI-algebra, then x =
�
x � (y � x)

�
�
�
0 � (y � x)

�
:

Let x0 2 Med(X) and x; y 2 B(x0); then Theorem E part (iii) implies 0 � (y �x) = 0: Hence

x =
�
x � (y � x)

�
� 0 = x � (y � x) for all x; y 2 B(x0): Thus X is branchwise implicative.

But the following example shows that the converse is not true.

Example 4. Let X = f0; 1; 2g in which � is de�ned by

� 0 1 2

0 0 0 2

1 1 0 2

2 2 2 0
u

u

0

1

u2

ThenX is branchwise implicative but not weakly implicative because
�
1�(2�1)

�
�
�
0�(2�1)

�
=

(1 � 2) � (0 � 2) = 2 � 2 = 0 6= 1:

We now investigate necessary and suÆcient conditions for a BCI-algebra to be a branch-

wise implicative BCI-algebra.

Theorem 2. If a BCI-algebra X is a branchwise positive implicative and branchwise

commutative BCI-algebra, then it is a branchwise implicative BCI-algebra.

Proof. Let X be a branchwise positive implicative as well as a branchwise commutative

BCI-algebra. Let x0 2 Med(X) and x; y 2 B(x0): Then (24) gives

x �
�
x � (y � x)

�
= (y � x) �

�
(y � x) �

�
x �

�
x � (y � x)

���
:

Using (25) we get

x �
�
x � (y � x)

�
=

�
(y � x) �

�
x �

�
0 � (0 � x)

���
�

�
(y � x) �

�
x �

�
x � (y � x)

���

=
h
(y � x) �

�
(y � x) �

�
x �

�
x � (y � x)

���i
�

�
x �

�
0 � (0 � x)

��

=
�
x �

�
x � (y � x)

��
�

�
x �

�
0 � (0 � x)

��
(by (24))

�
�
0 � (0 � x)

�
�
�
x � (y � x)

�
(by (1))

=
�
0 �

�
x � (y � x)

��
�(0 � x) (by (6))

=
�
(0 � x) �

�
0 � (y � x)

��
�(0 � x) (by (10))

=
�
(0 � x) � 0

�
�(0 � x) (by Th: E (part iii))

= (0 � x) � (0 � x) = 0:

Hence

(d) x � x � (y � x):
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Further,
�
x � (y � x)

�
� x = (x � x) � (y � x) = 0 � (y � x) = 0: Thus

(e) x � (y � x) � x

which along with (d) implies x = x � (y � x) for all x; y 2 B(x0): Hence X is branchwise

implicative. This completes the proof.

We now state and use the following theorem.

Theorem G [17, Theorem 1]. If X is a quasi-implicative BCI-algebra, then it is both

weakly positive implicative and branchwise commutative.

Remark 3. Theorem 1 gives that every weakly positive implicative BCI-algebra X is

branchwise positive implicative. Thus Theorem G implies that every quasi-implicative

BCI-algebra is both branchwise positive implicative and branchwise commutative. Using

Theorem 2 we get that every quasi-implicative BCI-algebra is branchwise implicative. But

its converse is not true because that BCI-algebra of Example 2 is branchwise positive

implicative as well as branchwise implicative but it is not quasi-implicative. This is because

1 �
�
1 �

�
3 � (3 � 1)

��
= 1 �

�
1 � (3 � 2)

�
= 1 � (1 � 1) = 1 � 0 = 1

and

��
3 � (3 � 1)

�
�(3 � 1)

�
�
�
0 � (3 � 1)

�
=

�
(3 � 2) � 2

�
�(0 � 2)

= (1 � 2) � 2 = 2 � 2 = 0;

which implies

y �
�
y �

�
x � (x � y)

��
6=

��
x � (x � y)

�
�(x � y)

��
0 � (x � y)

�
:

Theorem 3. If X is a branchwise implicative BCI-algebra, then it is both branchwise

positive implicative and branchwise commutative.

Proof. Let X be branchwise implicative. Let x0 2 Med(X) and x; y 2 B(x0): Then

x = x � (y � x); which implies

x � (x � y) =
�
x � (y � x)

�
�(x � y)

=
�
x � (x � y)

�
�(y � x) � y � (y � x):

Interchanging x and y we get

y � (y � x) � x � (x � y):

Thus x � (x � y) = y � (y � x) for all x; y 2 B(x0): Hence X is branchwise commutative.

Further
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h
(x � y) �

�
y �

�
0 � (0 � y)

��i
�(x � y)

=
�
(x � y) � (x � y)

�
�

�
y �

�
0 � (0 � y)

��

= 0 �
�
y �

�
0 � (0 � y)

��
= (0 � y) �

�
0 �

�
0 � (0 � y)

��

= (0 � y) � (0 � y) = 0:

Thus

(f) (x � y) �
�
y �

�
0 � (0 � y)

��
� x � y:

Since x; y 2 B(x0); therefore x � y 2 M = B(0): Further 0 � (0 � y) � y gives that 0 � (0 � y)

and y belong to the same branch B(y0): Thus y �
�
0 � (0 � y)

�
2 M = B(0): Since X is

branchwise commutative, therefore

(x � y) �
�
(x � y) �

�
y �

�
0 � (0 � y)

���

=
�
y �

�
0 � (0 � y)

��
�

��
y �

�
0 � (0 � y)

��
�(x � y)

�

=
�
y �

�
0 � (0 � y)

��
�

��
y � (x � y)

�
�
�
0 � (0 � y)

��

=
�
y �

�
0 � (0 � y)

��
�

�
y �

�
0 � (0 � y)

��
; (by (28))

because X is branchwise implicative. Hence

(x � y) �
�
(x � y) �

�
y �

�
0 � (0 � y)

���

=
�
y �

�
0 � (0 � y)

��
�

�
y �

�
0 � (0 � y)

��
= 0:

Thus

(g) x � y � (x � y) �
�
y �

�
0 � (0 � y)

��
;

which along with (f) implies x�y = (x�y)�
�
y�

�
0�(0�y)

��
: Thus X is branchwise positive

implicative. This complete the proof.

Combining Theorems 2 and 3, we get the following theorem.

Theorem 4. A BCI-algebra X is branchwise implicative if and only if it is both branchwise

positive implicative and branchwise commutative.

Remark 4. Since in a BCK-algebra X branchwise implicativeness, branchwise positive

implicativeness and branchwise commutativeness coincide with implicativeness, positive im-

plicativeness and commutativeness, respectively, therefore the following well-known result,

Theorem A, of K. Iseki [10] follows as a corollary from Theorem 4.
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Corollary 1. A BCK-algebras X is implicative if and only if it is both positive implicative

and commutative.
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